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Optimizing Lifetime for Continuous Data
Aggregation With Precision Guarantees in
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Abstract—This paper exploits the tradeoff between data quality
and energy consumption to extend the lifetime of wireless sensor
networks. To obtain an aggregate form of sensor data with pre-
cision guarantees, the precision constraint is partitioned and
allocated to individual sensor nodes in a coordinated fashion. Our
key idea is to differentiate the precisions of data collected from
different sensor nodes to balance their energy consumption. Three
factors affecting the lifetime of sensor nodes are identified: 1) the
changing pattern of sensor readings; 2) the residual energy of
sensor nodes; and 3) the communication cost between the sensor
nodes and the base station. We analyze the optimal precision
allocation in terms of network lifetime and propose an adaptive
scheme that dynamically adjusts the precision constraints at the
sensor nodes. The adaptive scheme also takes into consideration
the topological relations among sensor nodes and the effect of
in-network aggregation. Experimental results using real data
traces show that the proposed scheme significantly improves
network lifetime compared to existing methods.

Index Terms—Data accuracy, data aggregation, energy effi-
ciency, network lifetime, sensor network.

I. INTRODUCTION

W IRELESS sensor networks are used in a wide range
of applications to capture, gather and analyze live en-

vironmental data [1], [2]. A wireless sensor network typically
consists of a base station and a group of sensor nodes (see
Fig. 1). The sensor nodes are responsible for continuously sam-
pling physical phenomena such as temperature and humidity.
They are also capable of communicating with each other and
the base station through radios. The base station, on the other
hand, serves as a gateway for the sensor network to exchange
data with applications to accomplish their missions.

While the base station can have continuous power supply, the
sensor nodes are usually battery-powered. The batteries are in-
convenient and sometimes even impossible to replace. When a
sensor node runs out of energy, its coverage is lost. The mis-
sion of a sensor application would not be able to continue if
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Fig. 1. System architecture.

the coverage loss is remarkable. Therefore, the practical value
of a sensor network is determined by the time duration before
it fails to carry out the mission due to insufficient number of
“alive” sensor nodes. This duration is referred to as the network
lifetime [1]. It is both mission-critical and economically desir-
able to manage sensor data in an energy-efficient way to extend
the lifetime of sensor networks.

The data captured by the sensor nodes are often converted
into an aggregate form requested by the applications (e.g., av-
erage temperature reading). Primarily designed for monitoring
purposes, many sensor applications require continuous aggrega-
tion of sensor data [3]. Exact data aggregation requires substan-
tial energy consumption because each sensor node has to report
every reading to the base station. In wireless sensor networks,
communication is a dominant source of energy consumption [4],
[5]. To save energy, data semantics can be relaxed to allow ap-
proximate data aggregation with precision guarantees [6]–[9].
The precision can, for example, be specified in the form of quan-
titative error bounds: “average temperature reading of all sensor
nodes within an error bound of 1 C.” In this way, the sensor
nodes do not have to report all readings to the base station. Only
the updates necessary to guarantee the desired level of precision
need to be sent.

It is, however, a challenging task to optimize network life-
time under approximate data aggregation because the sensor
nodes are inherently heterogeneous in energy consumption.
First, when the data captured by different sensor nodes change
at different magnitudes and frequencies, the sensor nodes may
report data at different rates. Second, the wireless communica-
tion cost depends on the transmission distance [10], [11]. Due
to the geographically distributed nature of sensor networks,
the sensor nodes are likely to differ significantly in the energy
cost of sending a message to the base station. Even if all sensor
nodes report data at the same rate, their energy consumption
can be highly unbalanced, thereby reducing network lifetime.
In addition to reporting local sensor readings, the intermediate
nodes in a multi-hop network are also responsible for relaying
the data originated from other nodes to the base station. The
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nodes closer to the base station normally relay larger amounts
of data than the nodes farther away from the base station.

In this paper, we investigate the optimization of network life-
time for approximate data aggregation. We leverage the seman-
tics of approximate data aggregation in balancing the energy
consumption of the sensor nodes. Our key idea is to differen-
tiate the quality of data collected from different sensor nodes by
partitioning the precision constraint of data aggregation among
the sensor nodes in a coordinated fashion. Our contributions are
summarized as follows.

• We identify three factors affecting the lifetime of sensor
nodes in the context of approximate data aggregation:
1) the changing pattern of sensor readings; 2) the residual
energy of the sensor nodes; and 3) the communication
cost between the sensor nodes and the base station. We
then analyze the optimal precision allocation in terms of
network lifetime.

• We develop a candidate-based method for precision allo-
cation and prove its optimality for single-hop networks.
Based on this method, an adaptive scheme is proposed to
dynamically adjust the error bounds allocated to the sensor
nodes. The adjustment period is also dynamically set to
control the communication overhead.

• We derive the hardness results of candidate-based preci-
sion allocation in multi-hop networks. We extend the adap-
tive scheme to work in multi-hop networks by taking into
consideration the effect of in-network aggregation and the
topological relations among the sensor nodes.

• We present an experimental evaluation using real data
traces over a wide range of system configurations. The
results show that the proposed scheme significantly im-
proves network lifetime compared to existing methods.

The rest of this paper is organized as follows. Section II sum-
marizes the related work. Section III describes the system model
and gives some basic definitions. Section IV analyzes the op-
timal precision allocation in single-hop networks and then pro-
poses an adaptive precision allocation scheme. Section V ex-
tends the adaptive scheme to multi-hop networks. The experi-
mental setup and results are discussed in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK

Wireless sensor networks have attracted much research effort
in recent years. From the networking perspective, researchers
have primarily focused on optimizing network related opera-
tions such as routing and media access [12]–[15]. From the data-
base perspective, researchers have mainly focused on query pro-
cessing over sensor data [16]–[19]. However, not much work has
looked into trading data quality for energy efficiency.

Recently, several approaches have been proposed to relax
data semantics and allow a specified degree of inaccuracy to
be tolerated in sensor data collection. To acquire approximate
readings of individual sensor nodes, the precision constraints
can be set independently for different sensor nodes [8], [20]. In
contrast, to collect an aggregate form of sensor data over the
network, the precision settings of different sensor nodes should
be inter-related. Olston et al. [6] investigated burden-based pre-
cision adjustment for continuous queries over distributed data

streams. However, they did not model in-network aggregation,
which is a commonly used technique to reduce the traffic of data
collection in wireless sensor networks [21]. Sharaf et al. [7] im-
plemented a simple uniform precision allocation for in-network
sensor data aggregation. Deligiannakis et al. [9] further opti-
mized the allocation to reduce the number of messages trans-
mitted in the network. However, none of these studies has taken
energy and lifetime models into consideration. Thus, their pro-
posed techniques are not effective in handling the energy con-
straints in wireless sensor networks. As shall be shown by our
experimental results, minimizing the total network traffic does
not necessarily optimize network lifetime. Different from ex-
isting work, in this paper, we aim at extending network life-
time for data aggregation with precision guarantees in sensor
networks.

Considine et al. [22] and Nath et al. [23] implemented ap-
proximate data aggregation in the presence of multi-path routing
by means of sketches and synopses. However, they did not make
use of temporal locality to suppress data updates. Deshpande
et al. [24] and Chu et al. [25] applied statistical techniques
to model the distributions of sensor data for approximate data
collection. The performance of this approach depends on the
quality of the models built. Different from this approach, we do
not require the construction of statistical models in advance. Our
proposed techniques dynamically adapt to the changing pattern
of sensor readings on the fly. Related work on approximate data
collection also includes representing sensor readings with so-
phisticated data structures [26], [27] and exploiting the spatial
correlation between sensor readings [28], [29]. These studies are
complementary to our work.

III. PRELIMINARIES

We consider data aggregation with precision guarantees in a
network of sensor nodes. The sensor nodes are geographically
distributed in an operational area. They periodically sample the
local phenomena such as temperature and humidity. Without
loss of generality, the sampling period is assumed to be 1 time
unit. The base station collects data from the sensor nodes and
feeds them to an application. The application specifies the preci-
sion constraint of data aggregation by an upperbound (called
the error bound) on the quantitative difference between an ap-
proximate result and the exact result [7], [9]. That is, on re-
ceiving an aggregate result from the sensor network, the ap-
plication would like to be assured that the exact aggregate result

lies in the interval .
In approximate data aggregation, not all sensor readings have

to be sent to the base station. To reduce communication cost,
the designated error bound on aggregate data can be partitioned
and allocated to individual sensor nodes (we shall call it preci-
sion allocation). Each sensor node updates a new reading with
the base station only when the new reading significantly devi-
ates from the last update to the base station and violates the al-
located error bound. To guarantee the designated precision of
aggregate data, the error bounds allocated to individual sensor
nodes have to satisfy certain feasibility constraints. Different ag-
gregation functions impose different constraints. In this paper,
we consider three commonly used types of aggregations: SUM,
COUNT and AVERAGE. For SUM and COUNT aggregations,
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to guarantee an error bound on aggregate data, the total error
bound allocated to the sensor nodes cannot exceed , i.e.,

(1)

where is the error bound allocated to node . For AVERAGE
aggregation, the total error bound allocated to the sensor nodes
cannot exceed , i.e.,

(2)

where is the number of sensor nodes.
Eligible precision allocation under the feasibility constraint is

not unique. For example, in a network of 10 temperature sensor
nodes, if the given error bound on AVERAGE aggregation is
1 C, we can allocate an error bound of 1 C to each sensor node.
Alternatively, we can also allocate an error bound of 5.5 C to a
selected node and an error bound 0.5 C to each of the remaining
nodes. This offers the flexibility to adjust the energy consump-
tion of individual sensor nodes by careful precision allocation.
In general, to collect the readings of a sensor node at higher pre-
cision (i.e., smaller error bound), the sensor node needs to send
data updates to the base station more frequently, which intro-
duces higher energy consumption.

We denote the energy consumed by sensor node to send and
receive a data update by and respectively. They can take
different forms to cater for a wide range of factors. In the sim-
plest case, if all sensor nodes use a default radio communication
range, ’s are the same for all nodes. More sophisticatedly, if
the sensor nodes know the locations of the receivers [11], [30],
[31], they can adapt the power level to the transmission distance.
The sensor nodes with longer transmission distances would be
associated with higher ’s. In addition, reliability can also be
modeled in the energy cost. The sensor nodes incident to less
reliable links are entitled to higher ’s and ’s due to possible
retransmissions. The exact forms of and are orthogonal to
our analysis and beyond the scope of this paper. We simply as-
sume that each sensor node knows and .

Similar to other studies [32]–[35], we define the network life-
time as the time duration before the first sensor node runs out of
energy. Our analysis is also applicable to redundant sensor de-
ployment where each location of interest is covered by several
sensor nodes. From the viewpoint of network lifetime, the set
of sensor nodes monitoring the same location can be converted
to an equivalent single node by adding up the energy budgets
of these sensor nodes. More generally, if the network lifetime
is defined as the time duration before a given portion of sensor
nodes run out of energy, our proposed scheme can be applied
repeatedly after the exhaustion of a sensor node’s energy.

IV. PRECISION ALLOCATION IN SINGLE-HOP NETWORKS

We start by investigating the precision allocation in a
single-hop network where each sensor node sends its local
readings to the base station directly. Single-hop networks are
preferred in some situations due to a number of reasons [11].
Moreover, the analysis of precision allocation in a single-hop
network also provides insights on the allocation in a multi-hop

network. The adaptive precision allocation scheme developed
for single-hop networks will serve as a building block of the
scheme we shall propose for multi-hop networks in Section V.

Note that constraints (1) and (2) share the characteristic that
the total error bound of the sensor nodes is capped by a given
value. We shall focus on constraint (1) in our discussion. The
analysis and algorithms developed in this paper can be adapted
to handle constraint (2) in a straightforward manner. They are
also directly applicable to SUM and AVERAGE aggregations
over any fixed subset of the sensor nodes.

A. Analysis of Optimal Precision Allocation

Consider a snapshot of the network. Let be
the error bounds currently allocated to sensor nodes
respectively. The quantitative relationship between the rate of
data updates sent by a sensor node and its allocated error bound
depends on the changing pattern of sensor readings. Without
loss of generality, we shall denote the update rate of each sensor
node as a function of the allocated error bound .

is essentially the rate at which node ’s reading changes
by more than . Intuitively, is a non-increasing function
with respect to , and .

Since the sensor nodes in a single-hop network are not in-
volved in relaying data from other sensor nodes to the base sta-
tion, the energy consumption rate of node is simply

where refers to the energy cost for node to send a data update
to the base station. Suppose the residual energy of node is .
Then, the expected lifetime of node is

Therefore, the network lifetime is given by

The objective of precision allocation is to find a set of error
bounds that maximize the network lifetime under
the constraint

We now analyze the optimal precision allocation. For sim-
plicity, we shall assume functions ’s are continuous and
denote the inverse function of by .

Since is non-increasing, the minimum lifetime of sensor
node is given by

Without loss of generality, suppose

For each pair of nodes and where , consider the
error bound that makes the lifetime of node
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equivalent to the minimum lifetime of node . Since is
non-increasing, it follows from that

Thus, given any ,

This implies is non-decreasing with
increasing . Note that when ,

Therefore, given an error bound on data aggregation,
if , there must exist a , where

, such that

Since

we have

Hence, there also exists an , where , such
that

(3)

On the other hand, if , since
’s are non-increasing and , there exists an ,

where , such that

(4)

For convenience, we shall denote in this case so that (4)
is consistent with (3).

Theorem 1: An optimal precision allocation is given by

,

.

This allocation has a lifetime .
Proof: It follows from (3) that satisfies

the feasibility constraint of precision allocation. Assume on
the contrary that there exists another precision allocation

which has a lifetime . The definition of
network lifetime implies that for any ,

Thus,

Since is non-increasing, we have

Therefore,

which contradicts the feasibility of .
Hence, the theorem is proven.
Theorem 1 implies that the sensor nodes with high residual

energy , slow change in readings (i.e., low ), and low
communication cost may be assigned zero error bounds.
The sensor nodes allocated nonzero error bounds in an optimal
precision allocation must be equal in the energy consumption
rate normalized by the residual energy

We shall call the normalized energy consumption rate. To ex-
tend network lifetime, it is important to balance the normalized
energy consumption rates of the sensor nodes.

B. Candidate-Based Precision Allocation

In practice, the exact forms of ’s (i.e., the changing pat-
terns of sensor readings) may not be known a priori and they
may even change dynamically. Thus, we propose a candidate-
based method for precision allocation. The key idea is to let each
sensor node estimate and report to the base station the normal-
ized energy consumption rates for a number of candidate error
bounds based on historical sensor readings. The base station op-
timizes precision allocation based on these candidates to extend
network lifetime. Since the general relationships between error
bounds and update rates are not known, we restrict the error
bound allocated to each sensor node to one of its candidates.
Such allocations are called candidate precision allocations and
the one that maximizes network lifetime is called the optimal
candidate precision allocation.

Assume that each sensor node chooses candidates. For
each node , let be the list of candidate
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error bounds, and be the corresponding nor-
malized energy consumption rates. It follows that

. Suppose the smallest candidate error bounds for
the sensor nodes do not add up to the designated bound on data
aggregation, i.e., .1 Algorithm 1
presents the pseudocode to compute the optimal candidate pre-
cision allocation.

Algorithm 1 Optimal Candidate Precision Allocation in a
Single-Hop Network

Input:

: error bound of data aggregation

, : candidate error bounds and normalized energy
consumption rates

Output:

: error bound of each node in optimal allocation

1: for to do

2: ;

3: end for

4: while do

5: ;

6: if then

7: break;

8: end if

9: ;

10: end while

Initially, the error bound of each sensor node is set to its
smallest candidate (steps 1–3). In each iteration of steps 4–10,
the error bound of the node having the highest energy consump-
tion rate is replaced with its next smallest candidate. The itera-
tion stops if a new replacement would make the total error bound
of the sensor nodes exceed the designated bound on data ag-
gregation (steps 6–7). The worst-case time complexity of Algo-
rithm 1 is .2 We show that Algorithm 1 produces
an optimal candidate precision allocation.

Theorem 2: The candidate precision allocation computed by
Algorithm 1 maximizes network lifetime.

Proof: Let be the precision
allocation computed by Algorithm 1. It is obvious that

is feasible. Suppose under such al-
location, sensor node has the highest normalized energy
consumption rate, i.e.,

The network lifetime is then given by

1Our proposed candidate selection method (to be discussed later in this sec-
tion) satisfies this constraint.

2As shall be shown by our experimental results in Section VI, a small� like
5 is sufficient to achieve near optimal network lifetime.

It is easy to infer from Algorithm 1 that: (i) if ,

and (ii) for each where ,

Assuming on the contrary that there exists another candidate
precision allocation with a longer net-
work lifetime, i.e.,

It follows that

Since

we have

Therefore,

and hence,

Based on property (i)

Thus, there must exist a such that

which implies

It follows from property (ii) that

Therefore,
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which contradicts the assumption that
has a longer network lifetime.

Hence, the theorem is proven.

C. Adaptive Precision Allocation

We now present an adaptive precision allocation scheme that
works by adjusting the error bounds of the sensor nodes periodi-
cally. The interval between two successive adjustments is called
an adjustment period. At the beginning of an adjustment pe-
riod, each sensor node selects a list of candidate error bounds

. The node keeps track of the update counts
under these error bounds as it captures new readings.3 At the
end of the adjustment period, node normalizes the counts by
the length of period to obtain the data update rate for each

. Node then computes the normalized energy consumption
rate for each by

where is the present residual energy of node . Node
sends a candidate report message including the ’s and

’s to the base station. On receiving the messages from all
sensor nodes, the base station computes the optimal precision
allocation using Algorithm 1. In case

, the leftover error bound is
simply allocated to the node with the highest normalized energy
consumption rate since doing so would only extend network
lifetime. Finally, the base station sends a precision allocation
message to the sensor nodes including the new error bounds for
their adjustments.

Algorithm 1 and Theorem 2 are generic in that they are ap-
plicable to any list of candidates. In this paper, we propose to
choose a set of candidate error bounds that are exponentially
spaced. The closer the candidates to the current error bound,
the smaller the difference between neighboring candidates. The
motivation is to adjust the error bounds at coarse granularity
when they are far away from the optimum, and adjust them at
fine granularity when they are close to the optimum. Let be
the current error bound of sensor node . Then, the candidate
error bounds of node range from to . Given the
number of candidates , the candidate error bounds
are selected as

Note that the network lifetime is determined by the lifetime
of the most energy-consuming node. Thus, to control the energy
overhead of adjustments, we propose to cap the energy overhead
at the most energy-consuming node by a given portion of its
energy budget. This is done by dynamically adapting the adjust-
ment period at each adjustment. Specifically, each sensor node
counts the number of data updates sent to the base station in the
adjustment periods. At an adjustment, node estimates its en-
ergy consumption rate by , where is the update count
in the past adjustment period, is the energy cost for sending,
and is the duration of the past adjustment period. Note that at

3Note that the sensor node does not actually send data updates based on these
candidate error bounds. It updates the readings with the base station according
to the currently allocated error bound only.

an adjustment, each sensor node needs to send a candidate re-
port message to and receive a precision allocation message from
the base station. Thus, the energy cost at node due to an adjust-
ment is , where and are the sending and receiving
costs respectively. To limit it at a portion of the energy con-
sumed by node , the duration of the next adjustment period
should be set such that

i.e.,

Each sensor node computes and includes it in the candidate
report message sent to the base station at the end of an adjust-
ment period. Among all ’s received, the base station selects
the lowest one as the next adjustment period so as to cap the
adjustment overhead at a portion of the energy consumed at
the most consuming node. is then included in the precision al-
location message sent by the base station to all sensor nodes. We
shall investigate the impact of with simulation experiments in
Section VI.

V. PRECISION ALLOCATION IN MULTI-HOP NETWORKS

A. Modeling In-Network Aggregation

If the base station is beyond the radio coverage of some
sensor nodes, a multi-hop routing infrastructure has to be set
up to transport data from the sensor nodes to the base station.
A common practice is to organize the sensor nodes into a tree
structure rooted at the base station [21]. In-network aggregation
is often used to reduce the network traffic of data collection
in multi-hop networks [7], [9], [21], [27]. In this approach,
each intermediate node aggregates the data received from its
children before forwarding them upstream in order to cut down
the volume of data sent over the upper-level links in the tree.
As a result, the data sent by an intermediate node to its parent
is a partial aggregate result of the sensor readings in the subtree
rooted at the intermediate node.

Like that in a single-hop network, each sensor node is allo-
cated an error bound to control its reporting of data updates
to the parent. We shall call it node ’s local error bound. The
operation of a leaf node in a multi-hop network is the same as
that in a single-hop network: it updates the parent node with
a new reading whenever the new reading differs from the last
reported reading by more than the local error bound. For each
intermediate node, the local error bound is applied to the par-
tial aggregate results at the node rather than its local readings
[9]. To do so, each intermediate node maintains the latest data
value reported by each child. At each sampling period, the inter-
mediate node re-aggregates these data values together with its
new local reading. It sends the new partial aggregate result to the
parent only when the result has changed beyond the local error
bound since the last update to the parent. For SUM aggregation,
the partial aggregate result is the sum of the sensor readings in
the subtree rooted at the intermediate node. In this way, the ag-
gregate result collected by the base station is guaranteed to be
within an error bound from the exact aggregate result
over the network [9].
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In fact, it can be shown by induction that for each node , the
data value maintained by ’s parent node for differs from the
exact aggregate result over the subtree rooted at node by at
most . The correctness of this claim is trivial for any
leaf node. Suppose it is also true for any child of an intermediate
node . Let be the set of ’s children. Then, for any node

, we have

where is the sensor reading at node , is the data value
maintained by node for node , and is the subtree rooted at
node . Denote ’s parent node by . According to the operation
of an intermediate node presented above, we also have

where is the data value maintained by node for node .
Therefore,

It follows from the above claim that the data value maintained
by the base station for each of its child differs from the exact
aggregate result over subtree by at most . Therefore,
the error of the aggregate result computed by the base station is
bounded by the sum of the local error bounds at all sensor nodes

.
We denote the rate of data updates sent by a sensor node

to its parent as a function of ’s local error bound .4

Taking into consideration the energy consumed in sending and
receiving data updates, the energy consumption rate of node is
then given by

where refers to the energy cost for node to send a data up-
date to ’s parent, and refers to the energy cost for node to
receive a data update from a child. Therefore, the expected net-
work lifetime is given by

4Recall that �’s local error bound � is applied to the partial aggregate results
at node �. Therefore, strictly speaking, the update rate from node � to its parent
also depends on how error bounds are allocated to �’s descendants. To simplify
the analysis, we assume that the update rate relies on � only.

where is the residual energy of node . The objective of
precision allocation is again to find a set of error bounds

that maximize the network lifetime subject to the
constraint

where is the given error bound on data aggregation. Similar
to single-hop networks, to extend network lifetime, it is impor-
tant to balance the normalized energy consumption rates of the
sensor nodes, i.e., to minimize

B. Adaptive Precision Allocation

Adaptive precision allocation in a multi-hop network also
works by adjusting the error bounds of the sensor nodes peri-
odically. Again, we adopt the candidate-based method for pre-
cision allocation. Each sensor node selects a list of candi-
date local error bounds . The sensor
node keeps track of the data update rates (to its parent node)

for these error bounds as it captures new
readings and produces new partial aggregate results. At the ad-
justment, the local error bound of each node is to be set to one
of its candidates (where ). Following the anal-
ysis in Section V-A, the objective of precision allocation is to
minimize

subject to the constraint

This is an NP-hard problem.
Theorem 3: The candidate precision allocation problem de-

fined above is NP-hard.
Proof: We show the allocation problem is NP-hard by

a polynomial reduction from the knapsack problem which
is known to be NP-complete [36]. The knapsack problem is
defined as follows: Given a knapsack of capacity , and
objects of sizes and profits , the
objective of the knapsack problem is to find the largest total
profit among all subsets of the objects that fit in the knapsack.

Let be an instance of the knapsack problem. We first con-
struct a tree topology including a base station and sensor
nodes, where node 1 is a child of the base station and the re-
maining nodes are children of node 1 (see Fig. 2). An instance
of the candidate precision allocation problem is then constructed
on this tree by setting (i.e., each node has two candidate
local error bounds); , , ,

, , , , where
, , and are integer constants;

and . It is obvious that the construction time of
instance is polynomial to the size of instance . Next, we
show that, for any integral bound , there exists a subset of the
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Fig. 2. Instance � of candidate precision allocation problem.

objects fitting in the knapsack with a total profit at least for
instance if and only if there exists a feasible candidate pre-
cision allocation with highest normalized energy consumption
rate at most for instance .

Note that all sensor nodes in instance have the same en-
ergy cost to send or receive a data update. This implies the en-
ergy consumption rates of the leaf nodes in Fig. 2 (i.e., nodes

) cannot exceed that of node 1. Also note that all
sensor nodes have the same amount of residual energy. There-
fore, regardless of precision allocation, the highest normalized
energy consumption rate over all nodes is always that of node
1. It is then easy to establish a one-to-one correspondence be-
tween the object subsets fitting in the knapsack in instance
and the feasible candidate precision allocations in instance .
In fact, for any object subset , if fits in the knapsack (i.e.,

), the corresponding candidate precision allo-
cation is feasible and in this
case, node 1 has a normalized energy consumption rate

, where is the total profit of the object
subset . Vice versa, for any feasible candidate precision allo-
cation , node 1 has a normalized energy
consumption rate , and the corresponding
object subset fits in the knapsack. Thus, there exists
an object subset with a total profit at least for instance if and
only if there exists a candidate precision allocation with highest
normalized energy consumption rate at most for
instance .

Hence, the theorem is proven.
In the following, we present a distributed algorithm to com-

pute a suboptimal candidate precision allocation. We advocate
distributed algorithms because having all nodes reporting the es-
timated update rates ’s and residual energy levels ’s to the
base station places further burdens of energy consumption on
the nodes closer to the base station which are usually the energy
bottlenecks in multi-hop networks.

To facilitate presentation, we shall refer to the sum of the
local error bounds at the sensor nodes in the subtree rooted
at node as its gross error bound. In addition to the candidate
local error bounds, each sensor node also selects a list of
thresholds for its gross error bound
to assist the computation. For each threshold , node com-
putes a locally best precision allocation (we shall call it )
among and its children under the constraint that the gross error
bound at node does not exceed . The computation in our
algorithm is carried out in a bottom-up manner from the leaf
sensor nodes to the base station. On computing the allocations

’s, each node sends a candidate report message including a
list

to its parent, where is the gross error bound at node under
(it is straightforward that ),

is the rate of data updates sent by node to its parent under ,
and is the highest normalized energy consumption rate of
the sensor nodes in subtree under . A parent node per-
forms the local computation after receiving the candidate report
messages from all children.

If is a leaf sensor node, the thresholds are set the same as
its candidate local error bounds, i.e., . Thus, ’s
are simply ’s, and ’s are simply the estimated update
rates ’s. Since does not receive data updates from any other
node, ’s are simply .

If is an intermediate sensor node, it collects the candidate re-
port messages from all of its children. Together with the locally
estimated update rates , node computes a
locally best precision allocation for each threshold using
Algorithm 2. Given a threshold , only the candidate local
error bounds satisfying are likely
to appear in a feasible precision allocation (step 3, otherwise
the gross error bound at node would exceed ). For each of
these ’s, the best allocation of among ’s children
is computed using Algorithm 1 (step 4). Suppose is the
gross error bound of each child in the best allocation. Then,

is the corresponding data update rate from to , and
is the highest normalized energy consumption rate of the

nodes in subtree . On computing ’s energy consumption rate,
the highest normalized energy consumption rate of the nodes in
subtree can then be computed (step 6). The candidate local
error bound that leads to the minimum highest energy
consumption rate is included in the locally best precision allo-
cation (steps 7–13). The corresponding allocation ’s
among ’s children are also recorded in . The worst-case
time complexity of Algorithm 2 is ,5

where is the number of ’s children. Node records
the computed best allocation for each threshold ,
and sends a candidate report message including the list

to
its parent node.

Algorithm 2 Locally Best Precision Allocation at Node in
a Multi-Hop Network

Input:
: a threshold for the gross error bound of node
, : candidate local error bounds of node and

estimated data update rates to ’s parent node
, , : gross error bounds, data update rates

and highest normalized energy consumption rates
received from each child of node

Output:
: the computed best allocation, which includes the

local error bound allocated to node and the gross
error bound allocated to each child of node

: gross error bound at node under
: data update rate from node to its parent under
: highest normalized energy consumption rate of the

nodes in subtree under

5Again, as will be shown in Section VI, a small� is sufficient to achieve near
optimal network lifetime.
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1: ;
2: for to do
3: if then
4: compute the optimal candidate precision allocation

for error bound among ’s children using
Algorithm 1 based on and ;

5: for each child of , let be the error bound of in
the optimal allocation, then is the corresponding
data update rate from to , and is the
corresponding highest normalized energy consumption
rate of the nodes in subtree ;

6: ;

7: if then
8: ;
9: ;
10: ;
11: ;
12: for each child of , ;
13: end if
14: end if
15: end for

The base station, on receiving the candidate report messages
from all of its children, computes a locally best precision alloca-
tion among the children using Algorithm 1. The computed error
bounds are then sent to the sensor nodes for their adjustments
in a top-down manner. The base station sends a precision allo-
cation message to its children including the gross error bounds
allocated to them. An intermediate sensor node, on receiving its
allocated gross error bound, retrieves the stored corresponding
best allocation which contains a local error bound and a set of
gross error bounds for its children. The intermediate node ap-
plies the local error bound to its partial aggregate results and
sends the gross error bounds to its children in a precision allo-
cation message. A leaf sensor node, on receiving its allocated
gross error bound, simply takes it as the local error bound. In
case the total error bound in the precision allocation computed
by the base station does not add up to exactly, the leftover
error bound is allocated to the node with the highest normalized
energy consumption rate.6

Similar to adaptive precision allocation in a single-hop net-
work, the candidate local error bounds of each sensor node and
the thresholds for its gross error bound are exponentially spaced
around its current local and gross error bounds, respectively.
Let and be the current local and gross error bounds of
sensor node , respectively. Given the number of candidates

, the candidate local error bounds are selected as

and the thresholds for ’s gross error bound are selected as

6To do so, each recorded allocation � includes the child node that roots
the subtree containing the node with the highest normalized energy consumption
rate � . The allocation of the leftover error bound can then be routed to the
intended node along with the precision allocation message.

Like that in a single-hop network, we dynamically adapt the
adjustment period to limit the energy overhead of adjustments
at the most energy-consuming node by a portion of its energy
budget. Note that at an adjustment in a multi-hop network, a
sensor node receives a candidate report message from each
child and sends one to its parent. It also receives a precision
allocation message from its parent and sends one to its children.
Thus, the energy cost at node due to an adjustment is

, where and are the sending costs to
the parent and children respectively, is the receiving cost,7

and is the set of ’s children. At an adjustment, the energy
consumption rate of node is estimated by ,
where and are the numbers of data updates sent to ’s
parent and received from ’s children, respectively, in the past
adjustment period, and is the duration of the past adjustment
period. Node suggests the duration of next adjustment period

as

Each leaf node includes the suggested period in the candidate
report message sent to its parent. Each intermediate node, on re-
ceiving the candidate report messages from its children, chooses
the shortest period among that suggested locally and those re-
ceived from its children. This shortest period is then included in
the candidate report message sent by the intermediate node to
its parent. Among all suggested periods received, the base sta-
tion selects the shortest one as the next adjustment period so
as to cap the adjustment overhead at a portion of the energy
consumed at the most consuming node. is then included in the
precision allocation messages sent to all sensor nodes.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

We developed a simulator based on ns-2 [37] and NRL’s
sensor network extension [38] to evaluate the proposed adap-
tive precision allocation scheme. We used the following energy
models [10]. The energy consumed by a sensor node to send
a message is , where is the message size,

nJ/b is a distance-independent term, pJ/b/m is
the coefficient for a distance-dependent term, is the expo-
nent for the distance-dependent term, and is the transmission
distance. The energy consumed by a sensor node to receive a
data update is , where nJ/b is a coefficient indepen-
dent of transmission distance. In our experiments, the default
message size was set at 48 bytes [16]. The initial energy budget
at each sensor node was set at 0.5 J.

We simulated a single-hop network of 10 sensor nodes and
multi-hop networks of 100 sensor nodes. The layout of the
single-hop network is shown in Fig. 3. The multi-hop network
topologies were generated by randomly placing the base station
and 100 sensor nodes in a 200 m 200 m area. To simulate
the spatial irregularity in sensor network deployment [39], we
divided the area into a 4 4 grid. The probabilities of deploying
sensor nodes in the grid cells were assumed to follow a Zipf-like
distribution. That is, the 16 grid cells were randomly ordered
into a list and the probability to deploy sensor nodes in the

7The receiving cost is normally independent of the sender [10], [11], [33].
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Fig. 3. Single-hop network layout.

Fig. 4. Sample multi-hop network layout.

th cell on the list was set to , where is the Zipf
parameter and is a normalization factor [40].
The default value of was set at 1. The sensor nodes were
assumed to have a maximum radio transmission range of 40 m.
If two sensor nodes were within the radio range of each other,
they were considered neighbors in the network connectivity
graph. The breadth first search tree rooted at the base station
was then computed from the connectivity graph and used as
the routing infrastructure for data collection [21], [27]. We
have experimented with many randomly generated network
topologies and observed similar performance trends. Due to
space limitations, we shall only report the results of a sample
network topology in this paper. The layout of the topology
is shown in Fig. 4, where the solid circle represents the base
station, the remaining circles represent the sensor nodes and
the lines represent the links in the routing tree.

We made use of the data provided by the LEM project
[41] at the University of Washington to simulate the physical
phenomena in the immediate surroundings of sensor nodes.
Weather data were collected in the LEM project from several
stations in the Washington and Oregon states. We used the tem-
perature (TEMP) and solar radiation (SOLAR) traces logged
by the station at the University of Washington from August
2004 to August 2005 in our experiments. Each trace consisted
of more than 500 000 readings captured at a sampling period
of 1 minute. Fig. 5 shows some representative segments of
these traces. The TEMP and SOLAR data both fluctuate over
time—their readings are higher in the daytime and lower at
night. In particular, the SOLAR readings remain unchanged
regularly because the solar radiation is 0 at night. For each
of the TEMP and SOLAR traces, we extracted 100 different
subtraces starting at randomly selected timepoints and associ-
ated them with the sensor nodes in our simulated network. The

Fig. 5. Sample data traces.

Fig. 6. Network lifetime versus number of candidate error bounds in adap-
tive-PA (TEMP trace, � � ��� F).

sampling period between two successive readings in the trace
was assumed to be 1 time unit.

The base station computes the AVERAGE aggregation of the
readings collected from all sensor nodes with a designated error
bound . As discussed in Section III, in this case, the total
error bound allocated to the sensor nodes should be capped by

, where is the number of sensor nodes. The experiments
started with the error bound uniformly allocated to the sensor
nodes, i.e., each node was allocated an error bound of . The
following precision allocation schemes were simulated for per-
formance comparison. We measured the energy consumption of
each sensor node and the network lifetime in the experiments.

• Our Adaptive Precision Allocation (Adaptive-PA):
This is the adaptive precision allocation scheme proposed
in Sections IV-C and V-B. By default, each sensor node
selected candidate error bounds and the energy cost
due to adjustments was capped at % of the energy
consumed at the most consuming node. The performance
impacts of and are investigated in Section VI-B.
We assumed that each data value in the message (e.g.,
sensor reading and candidate error bound) took up 2 bytes.
In addition, a timestamp of 2 bytes was included in all
messages for ordering and synchronization purposes. The
largest messages encountered in our experiments were
the candidate report messages in multi-hop networks.
Recall that the candidate report message includes a list
of ’s and a suggested next adjustment
period. It requires a total of bytes when

, which fits into the default message size.
• Uniform Precision Allocation (Uniform-PA): The error

bound is evenly partitioned among all sensor nodes [7],
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Fig. 7. Network lifetime versus � (TEMP trace). (a) Single-hop network. (b) Multi-hop network.

i.e., the precision allocation remains the initial one. This is
a simple and static scheme which does not differentiate the
sensor nodes by the changing pattern of sensor readings,
the residual energy, and the communication cost with the
base station.

• Burden-based Precision Allocation (Burden-PA):
Olston et al. [6] presented a burden-based precision al-
location scheme for aggregate queries over distributed
data streams. Their objective was to minimize the total
communication cost between data sources and the data
sink. In our experiments, the energy consumed by each
sensor node to send a data update to its parent was taken as
a measure of its communication cost.8 Burden-PA works
by periodically reducing the error bound of each sensor
node by a shrink percentage and redistributing the leftover
portion among the sensor nodes. As suggested by [6], the
shrink percentage was set at 5%. We simulated Burden-PA
over a wide range of different adjustment periods (from
144 to 2880 time units, which correspond to 0.1 to 2 days
of data traces) and found that no single period provided
the best performance for all experimental settings. Thus,
to favor Burden-PA, for each experimental setting, we se-
lected the best result obtained over all adjustment periods
tested and present it in this paper.

• Potential-Gain-based Precision Allocation (PGain-PA):
To reduce the total number of messages in the network,
Deligiannakis et al. [9] presented a precision allocation
scheme for sensor data aggregation based on online esti-
mation of potential gains. Similar to Burden-PA, PGain-PA
periodically reduces the error bound of each sensor node by
a shrink percentage and redistributes the leftover portion
among the sensor nodes. As suggested by [9], the shrink
percentage was set at 40%. Again, we simulated PGain-PA
over a wide range of adjustment periods (from 144 to 2880
time units) and selected the best result obtained to present
in this paper.

B. Effect of and in Adaptive-PA

First, we investigate the performance impact of the number of
candidate error bounds in the proposed Adaptive-PA scheme.

8We have also simulated Burden-PA with the communication cost of each
node set to the total energy consumed to send a data update to the base sta-
tion, which includes the sending and receiving costs at intermediate nodes for
relaying purposes if any. This strategy was observed to perform worse than the
one above in the main text.

Fig. 6 shows the network lifetime for different values when
the error bound was set at 0.6 for the TEMP trace.9 Note that
when , the current error bound is the only candidate.
Thus, the optimal candidate precision allocation computed by
Algorithm 1 is always the same as the current allocation. Since
the experiments started with uniformly allocated error bounds,
Adaptive-PA degenerates to Uniform-PA at . The flex-
ibility of precision allocation increases with . As seen from
Fig. 6, an value of 3 improves network lifetime significantly
compared to (by factors of 3.4 and 1.7 in single-hop
and multi-hop networks respectively). The network lifetime is
generally insensitive to when exceeds 5. Since the largest
allowable for a candidate report message to fit into the default
message size is 7, was set at 7 in the remaining experiments.

Recall that Adaptive-PA limits the energy overhead of adjust-
ments at the most energy-consuming node by a portion of
its energy budget. The setting of reflects a tradeoff between
overhead and adaptivity, both of which increase with . Fig. 7
shows the network lifetime for different values. As expected,
the curve of network lifetime is convex for most system con-
figurations tested. In general, the performance of Adaptive-PA
is not very sensitive to the value from 0.1% to 0.5%. There-
fore, we shall report only the experimental results for the default

% in the remainder of this paper.

C. Performance Comparison in Single-Hop Networks

Fig. 8 shows the network lifetime as a function of the desig-
nated error bound on data aggregation for different precision
allocation schemes in the single-hop network of Fig. 3. Note that
an error bound implies exact data aggregation (the left-
most points in Fig. 8). With exact data aggregation, all sensor
nodes must be allocated error bounds of 0. Therefore, in this
case, the four precision allocation schemes have similar perfor-
mance.

As seen from Fig. 8, the network lifetime increases with error
bound. When , the proposed Adaptive-PA scheme sig-
nificantly outperforms the other schemes for both traces tested.
Even if the readings at all sensor nodes follow similar changing
patterns, it is not desirable to allocate the same error bound
to all nodes because they are geographically distributed. In a
single-hop network, a node farther away from the base station
consumes more energy in sending a data update than a node

9Only the experimental results of the TEMP trace are reported in this section
to show the effect of � and �. The results of the SOLAR trace have similar
trends.
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Fig. 8. Network lifetime versus designated error bound (single-hop network). (a) TEMP trace. (b) SOLAR trace.

Fig. 9. Energy consumed at different sensor nodes (single-hop network). (a) TEMP trace, � � ��� F. (b) SOLAR trace, � � �� W/m .

closer to the base station. Among the four precision alloca-
tion schemes examined, Uniform-PA and PGain-PA do not take
this heterogeneity into consideration. Thus, as shown in Fig. 8,
Adaptive-PA improves network lifetime by factors up to 3.4 and
2.6 compared to Uniform-PA and PGain-PA respectively. To
show the importance of balancing energy consumption in ex-
tending network lifetime, we plot in Fig. 9 the total energy con-
sumed by each sensor node by the time when the first node ran
out of energy (i.e., the network lifetime elapsed). Under Adap-
tive-PA, most nodes were close to exhausting their energy when
the network lifetime elapsed. However, under Uniform-PA and
PGain-PA, the nodes close to the base station (i.e., nodes 3 and
8 in Fig. 3) consumed as low as 5%–20% of the energy budget
only.

Burden-PA considers the heterogeneity in communication
cost due to transmission distance. However, the objective of
Burden-PA is to minimize the total communication cost. Fig. 8
shows that our Adaptive-PA scheme extends network lifetime
by a factor up to 1.9 over Burden-PA. This implies minimizing
network-wide total energy consumption does not necessarily
balance the energy consumption of the sensor nodes. As seen
from Fig. 9(b), under Burden-PA, nodes 3 and 8 consumed
as low as 12% and 36% of the energy respectively when the
network lifetime elapsed.

D. Performance Comparison in Multi-Hop Networks

We have implemented in-network aggregation in the experi-
ments for multi-hop networks. Fig. 10 shows the results for the
multi-hop network of Fig. 4. The performance trends remain
similar to those in the single-hop network. The network lifetime

increases rapidly with error bound. For example, under Adap-
tive-PA, increasing from 0 (exact data aggregation) to 0.2 and
20 prolongs the network lifetime by factors of 2.6 and 3.8 for the
TEMP and SOLAR traces, respectively. This demonstrates the
effectiveness of approximate data aggregation in improving en-
ergy efficiency.

Comparing the performance of different precision allocation
schemes, Adaptive-PA significantly outperforms the other
schemes for both traces tested. As seen from Fig. 10, the im-
provements over Uniform-PA, Burden-PA and PGain-PA are up
to factors 3.7, 1.6 and 1.5 respectively. Comparing Figs. 8 and
10, it is also observed that the relative performance of PGain-PA
to Burden-PA improves in the multi-hop network. This is be-
cause PGain-PA takes into account the topological relations
among the sensor nodes as well as in-network aggregation.
In contrast, Burden-PA treats the sensor nodes separately and
does not model in-network aggregation. However, PGain-PA
aims at minimizing the total number of messages transmitted
in the network without considering the heterogeneity in com-
munication cost. Neither does it attempt to balance the energy
consumption at different nodes. Thus, its performance is still
much worse than our Adaptive-PA.

Fig. 11 shows the distribution of energy consumed at all
sensor nodes when the network lifetime elapsed. A point
on the curve means that of the nodes consume more than
Joule energy each. It is clear that by balancing the energy con-
sumption at different nodes, the proposed Adaptive-PA scheme
makes much better utilization of the energy budgets than the
other schemes. For the TEMP trace (see Fig. 11(a)), over 30%
of the nodes consume more than 80% of the energy budget (i.e.,
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Fig. 10. Network lifetime versus designated error bound (multi-hop network). (a) TEMP trace. (b) SOLAR trace.

Fig. 11. Distribution of energy consumed at different sensor nodes (multi-hop network). (a) TEMP trace, � � ��� F. (b) SOLAR trace, � � �� W/m .

0.4 J) in Adaptive-PA, while only 2%, 4%, and 3% of the nodes
do so in Uniform-PA, Burden-PA and PGain-PA respectively.
This helps Adaptive-PA to improve network lifetime over the
other three schemes. Similar trends are observed for the results
of the SOLAR trace (see Fig. 11(b)).

VII. CONCLUSION

We have investigated adaptive precision allocation to extend
the lifetime of data aggregation with precision guarantees in
wireless sensor networks. The purpose of precision allocation
is to differentiate the quality of data collected from different
sensor nodes, thereby balancing their energy consumption. Our
proposed schemes effectively exploit the tradeoff between data
quality and energy consumption. These schemes dynamically
adjust the error bounds allocated to the sensor nodes. The basic
scheme for single-hop networks is based on the analysis of an
optimal precision allocation in terms of network lifetime. The
extended scheme for multi-hop networks takes into considera-
tion the topological relations among the sensor nodes as well as
the effect of in-network aggregation. Experimental results using
real data traces show that: 1) tolerating just a small degree of in-
accuracy in data collection prolongs network lifetime substan-
tially; 2) due to geographically distributed nature of sensor net-
works, uniform precision allocation does not perform well even
if the readings at all sensor nodes follow similar changing pat-
terns; 3) to extend network lifetime, it is more important to bal-
ance the energy consumption of the sensor nodes than to min-
imize network-wide total energy consumption; and 4) the pro-
posed adaptive precision allocation schemes significantly out-
perform existing methods over a wide range of system configu-
rations.
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