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Abstract—Communication is a primary source of energy consumption in wireless sensor networks. Due to resource constraints, the

sensor nodes may not have enough energy to report every reading to the base station over a required network lifetime. This paper

investigates data collection strategies in lifetime-constrained wireless sensor networks. Our objective is to maximize the accuracy of

data collected by the base station over the network lifetime. Instead of sending sensor readings periodically, the relative importance of

the readings is considered in data collection: the sensor nodes send data updates to the base station when the new readings differ

more substantially from the previous ones. We analyze the optimal update strategy and develop adaptive update strategies for both

individual and aggregate data collections. We also present two methods to cope with message losses in wireless transmission. To

make full use of the energy budgets, we design an algorithm to allocate the numbers of updates allowed to be sent by the sensor nodes

based on their topological relations. Experimental results using real data traces show that, compared with the periodic strategy,

adaptive strategies significantly improve the accuracy of data collected by the base station.

Index Terms—Data collection, energy efficiency, network lifetime, data accuracy, sensor network.
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1 INTRODUCTION

THE primary functions of wireless sensor networks are to
observe and analyze physical phenomena [1], [2], [3]. A

wireless sensor network typically consists of a base station
and a group of geographically distributed sensor nodes.
The sensor nodes are responsible for sampling real-world
phenomena such as temperature and solar radiation. They
also communicate with each other and the base station
through radios to exchange information. The base station,
on the other hand, collects the data acquired by the sensor
nodes for relevant applications. The data collected by the
base station may include individual sensor readings or an
aggregate form of sensor readings. Primarily designed for
monitoring purposes, many sensor applications request
continuous collection of up-to-date sensor data.

In wireless sensor networks, the sensor nodes are usually
battery powered. Replacing the batteries is not only costly
but also inconvenient in many situations. Thus, many
sensor networks are deployed to operate for a designated
time period called network lifetime [4]. Due to resource
constraints, however, a sensor node may not have enough
energy to report every reading to the base station over the
required network lifetime, since communication is a
primary source of energy consumption [5], [6]. Therefore,
the node has to decide which readings to send to the base
station on the fly.

A straightforward method is to let the sensor nodes
periodically report readings at the maximum rate subject to
the energy constraint [7]. However, this approach is not
effective. Consider, for example, a series of solar radiation
readings 369, 330, 264, 266, 274, 279, 260, 233, and 225 ðW=m2Þ
logged in the Live from Earth and Mars (LEM) project1 at
nine successive time units [8]. Suppose the energy budget is
sufficient for a sensor node to send only three updates to the
base station. This implies the maximum report rate is once
every three time units. If the node reports periodically, the
first, fourth, and seventh readings would be sent to the base
station. Then, the readings observed by the base station in
real time are 369, 369, 369, 266, 266, 266, 260, 260, and 260 over
the nine time units (see Fig. 1a). So, the instantaneous
deviations from up-to-date sensor readings are 0, 39, 105, 0, 8,
13, 0, 27, and 35. As a result, the cumulative deviation is 227.
In contrast, if the sensor node sends the first, third, and
eighth readings to the base station, the base station would
observe 369, 369, 264, 264, 264, 264, 264, 233, and 233 over the
nine time units (see Fig. 1b). The instantaneous deviations
are, thus, 0, 39, 0, 2, 10, 15, 4, 0, and 8. Therefore, the
cumulative deviation is 78—a 66 percent reduction com-
pared to the periodic approach. This example motivates us to
consider the relative importance of sensor readings when
making update decisions. In the above example, the first,
third, and eighth readings are more important because they
differ more substantially from the previous readings. It is
desirable to update the base station with these readings to
reduce the deviation of the data observed by the base station.

In this paper, we investigate data collection strategies in
lifetime-constrained wireless sensor networks. Given a net-
work lifetime requirement, we are interested in determining
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which sensor readings to send to the base station with an
objective of minimizing the deviations of the readings
observed by the base station over the network lifetime. Our
contributions are as follows:

. We formulate the lifetime-constrained data collec-
tion problem in sensor networks. An offline algo-
rithm is developed to compute the optimal data
update strategy.

. We propose an adaptive strategy that makes data
update decisions on the fly based on sensor readings
to meet network lifetime requirements. The basic
strategy applies directly to individual data collection
where the application monitors the reading of an
individual sensor node. It is also extended to deal
with aggregate data collection where the application
continuously requests an aggregate form of sensor
data (e.g., the average reading of all sensor nodes).

. We develop two methods, History and Expected, for
the adaptive strategy to cope with message losses in
wireless transmission. The key idea is to take into
consideration the possibility of update losses in
estimating the importance of sensor readings.

. In connection with the adaptive strategy for aggre-
gate data collection, we develop an algorithm to
allocate the numbers of updates allowed to be sent
by the sensor nodes based on their topological
relations. The goal is to make full use of the energy
budgets of the sensor nodes to improve the quality
of collected data.

. We conduct an experimental evaluation using a
wide range of real data traces for both individual
and aggregate data collections. The results show
that, compared to the periodic strategy, the pro-
posed adaptive strategies significantly improve the
accuracy of data collected by the base station over
the network lifetime.

The rest of this paper is organized as follows: Section 2
summarizes the related work. Section 3 describes the
system model. Section 4 analyzes the optimal data update
strategy and proposes a basic adaptive update strategy for
individual data collection. Section 5 extends the adaptive
strategy to aggregate data collection. The experimental

setup and results are discussed in Section 6. Finally,
Section 7 concludes the paper.

2 RELATED WORK

Several approaches have been proposed to trade the quality
of data collection for energy efficiency in wireless sensor
networks. One approach is to relax data semantics to allow
a specified degree of error to be tolerated in the collected
data. Studies have been carried out for individual data
collection [9], [10], [11], aggregate data collection [12], [13],
[14], [15], [16], and quantile tracking [17], [18], [19]. In our
earlier work, we designed a two-tier storage scheme for
one-shot individual data collection in object tracking sensor
networks [20]. We also developed precision allocation
schemes to extend network lifetime for continuous aggre-
gate data collection [21], [22]. Different from existing work,
in this paper, we target at improving the accuracy of
continuous data collection given the requirements of
network lifetime. Without a priori knowledge of the
changing pattern of sensor readings, it is difficult to preset
appropriate precision constraints on sensor data collection
to meet a given network lifetime requirement. Moreover, a
static precision constraint is insufficient if the changing
pattern of sensor readings keeps evolving over time. In this
paper, we propose techniques to dynamically adjust the
precision of data collection on the fly.

Another approach exploits the spatial correlation be-
tween sensor readings [23], [24]. In this approach, groups of
sensor nodes that are geographically clustered and have
similar sensor readings are identified. Data are then
collected from an elected representative node in each group
only, thereby saving the energy at the other nodes. Our
approach complements this one in that we exploit the
temporal correlation between sensor readings. We instruct
the sensor nodes to send fewer data updates when the
physical phenomena in their immediate surroundings
change slowly. The saved energy is then used to send
more updates when the physical phenomena change
rapidly to improve the quality of data collected in real time.

In addition, Considine et al. [25] and Nath et al. [26]
implemented approximate data aggregation under multi-
path routing by means of sketches and synopses. However,
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Fig. 1. Deviation of data collected by base station. (a) Periodic strategy. (b) Improved strategy.



they did not make use of temporal locality to suppress data
updates. Work has also been done on compressing
historical sensor readings for transmission [27], [28]. These
methods are applicable to archival data collection where the
application wants to log historical sensor readings and
analyze them at a later time. In contrast, we consider
monitoring applications such as environmental and struc-
tural monitoring that continuously request up-to-date
sensor readings.

3 SYSTEM MODEL

We consider a network of sensor nodes that periodically
sample local measurements (e.g., temperature and solar
radiation) at a designated rate. Without loss of generality,
the period between two successive samplings is assumed to
be one time unit. The base station gathers data from the
sensor nodes. The sensor network has a lifetime require-
ment of T time units. Due to the energy constraints of
sensor nodes, not all sensor readings can be sent to the base
station over the required network lifetime. Thus, the data
collected by the base station are likely to deviate from up-to-
date sensor readings at some time units. Let BðtÞ be the data
value observed by the base station at time t, and QðtÞ be the
exact data value at time t. The instantaneous deviation at
time t is then given by

BðtÞ �QðtÞj j:

Note that the definitions of BðtÞ and QðtÞ vary with the type
of data collection. In individual data collection, they refer to
the reading of an individual sensor node. In aggregate data
collection, they refer to an aggregate form of the readings
acquired by all sensor nodes (e.g., the maximum or the
average reading of all sensor nodes). We measure the
quality of data collection as the root-mean-square error of
collected data with respect to exact data over the network
lifetime [26], [7], i.e., ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1 BðtÞ �QðtÞj j2

T

s
:

Root-mean-square error is a well-known metric to measure
deviation in statistics. The smaller is the root-mean-square
error, the higher is the accuracy of collected data. Our
objective is to determine for the sensor nodes which
readings to send to the base station (called the data update
strategy) so as to minimize the root-mean-square error over
the network lifetime.

4 BASIC DATA UPDATE STRATEGIES

We start by investigating the simple case where a single
sensor node sends its readings to the base station directly in
individual data collection. The data update strategies
developed for this simple case serve as a building block
for the strategies we shall propose for aggregate data
collection in a network of sensor nodes (Section 5).

4.1 Problem Formulation

For simplicity, we assume the base station maintains the
reading last updated by the sensor node until the next
update. Our analysis and algorithms can be extended in a
straightforward manner to include more sophisticated

prediction models [23], [27] for the base station to
extrapolate sensor readings on the fly over interupdate
periods (see Section 4.3).

Let d1; d2; � � � ; dT be the T readings acquired by a sensor
node over the network lifetime, i.e., for any 1 � t � T

QðtÞ ¼ dt:

Assume the sensor node can send, at most, M � T data
updates to the base station due to its energy constraint.
Suppose the data updates are sent at times v1; v2; � � � ; vM ,
where 1¼v1 < v2 < � � � < vM � T .2 Then, for each 1 � i < M,
the data observed by the base station3 from time vi to viþ1 � 1
is dvi , and that from time vM to T is dvM , i.e.,

BðtÞ ¼ dvi if vi � t < viþ1;
dvM if vM � t � T:

�

Thus, the root-mean-square error is given by

DðT : v1; v2; � � � ; vMÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 BðtÞ �QðtÞj j2

T

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM�1
i¼1

Pviþ1�1
j¼vi jdj � dvi j

2 þ
PT

j¼vM jdj � dvM j
2

T

s
:

The data collection problem can, therefore, be formulated as
finding v1; v2; � � � ; vM that minimize DðT : v1; v2; � � � ; vMÞ.

4.2 Optimal Data Update Strategy

We develop an optimal data update strategy assuming
that all sensor readings are known a priori. It will be used
as a yardstick (lower bound) in performance evaluation
(Section 6).

The data collection problem defined above can be
solved by a dynamic programming algorithm. Note that
given a network lifetime requirement, to minimize the
root-mean-square error, it is equivalent to minimize the
total square error. Consider a more generalized problem of
finding 1 ¼ v1 < v2 < � � � < vm � t (where m �M and
t � T ) that minimize

T � Dðt : v1; v2; � � � ; vmÞ2

¼
Xm�1

i¼1

Xviþ1�1

j¼vi
dj � dvi
�� ��2þXt

j¼vm
dj � dvm
�� ��2:

We shall call it the ðt;mÞ-optimization problem.
Let v�1; v

�
2; � � � ; v�m be an optimal solution to the

ðt;mÞ-optimization problem. We show that v�1; v
�
2; � � � ; v�m�1

must be an optimal solution to the ðv�m � 1;m� 1Þ-
optimization problem. Assume on the contrary that there
exists a better solution u�1; u

�
2; � � � ; u�m�1 to the ðv�m � 1;m� 1Þ-

optimization problem, i.e.,

T � D v�m � 1 : u�1; u
�
2; � � � ; u�m�1

� �2

< T � D v�m � 1 : v�1; v
�
2; � � � ; v�m�1

� �2
:
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2. We stipulate that v1 ¼ 1 because the data collected by the base station
are undefined initially. Thus, the sensor node must send its reading to the
base station at the first time unit.

3. We neglect the transmission delay in the network since it simply shifts
the data observed by the base station by a time offset that is independent of
any data update strategy.



It follows that

T � D t : u�1; u
�
2; � � � ; u�m�1; v

�
m

� �2

¼ T � D v�m � 1 : u�1; u
�
2; � � � ; u�m�1

� �2þ
Xt
j¼v�m

dj � dv�m
�� ��2

< T � D v�m � 1 : v�1; v
�
2; � � � ; v�m�1

� �2þ
Xt
j¼v�m

dj � dv�m
�� ��2

¼ T � D t : v�1; v
�
2; � � � ; v�m�1; v

�
m

� �2
;

which contradicts the optimality of v�1; v
�
2; � � � ; v�m. Therefore,

the optimal solution to the ðt;mÞ-optimization problem must
contain optimal solutions to some subproblems.

Let Aðt;mÞ be the minimal achievable total square error
in the ðt;mÞ-optimization problem, and let Bðt;mÞ be the
time of the last data update in the optimal solution. The
recurrences for dynamic programming are then given by

Aðt;mÞ

¼
min
m�i�t

�
Aði� 1;m� 1Þ þ

Pt
j¼i jdj � dij

2
�

if m > 1;Pt
j¼1 jdj � d1j2 if m ¼ 1;

8<
:

and

Bðt;mÞ

¼
arg min

m�i�t

�
Aði� 1;m� 1Þ þ

Pt
j¼i jdj � dij

2
�

if m > 1;

1 if m ¼ 1:

8<
:
Starting from Aðt; 1Þs and Bðt; 1Þs, we can compute all

Aðt;mÞs and Bðt;mÞs in increasing orders of t and m. To
solve the problem defined in Section 4.1, on obtaining all
A- and B-entries, the optimal times for sending data
updates are calculated by tracing back the B-entries:

vM ¼ BðT;MÞ;

and for each 1 � i < M,

vi ¼ Bðviþ1 � 1; iÞ:

Given any i, the computation complexity of
Pt

j¼i jdj � dij
2

for all different t values isOðT Þ. Hence,
Pt

j¼i jdj � dij
2 for all

pairs of i and t can be computed in a preprocessing stage in

OðT 2Þ time. Then, the time complexity to compute each

A-=B-entry is given by OðT Þ. Since there are a total of

OðM � T Þ A-=B-entries, the total time complexity of the

dynamic programming algorithm isOðMT 2Þ.

4.3 Adaptive Data Update Strategy

The dynamic programming solution presented above is an
offline algorithm—all sensor readings over the network
lifetime are required in the computation. In real-time
monitoring applications, however, future sensor readings
are not known a priori and data update decisions must be
made on the fly. So now, we propose an adaptive online
data update strategy.

The basic idea is to let the sensor node update a new
reading with the base station only when the new reading
substantially differs from the last update to the base station.
The rationale behind this is that these sensor readings, as

shown by the example in Section 1, are more effective in
reducing the instantaneous deviations of the data observed
by the base station. It is similar in spirit to the idea of
prioritizing sensor data delivery based on their differences
from the data most recently transmitted when the radio
queue of a sensor node overflows [7].

Specifically, the sensor node maintains the reading U last
updated with the base station. When a new reading V is
generated, the difference between V and U is computed.
The sensor node updates the new reading with the base
station only if the difference is greater than a threshold W .

It is intuitive that the rate of data updates sent by the
sensor node depends on the threshold W . We propose to
dynamically adjust the threshold to meet the network
lifetime requirement. Our design is inspired by the work of
Olston et al. [13], which used thresholds to filter streams of
data updates and adapted the thresholds to control stream
rates. Their purpose of adaptation, however, was to
minimize the total communication cost between a set of
data sources and the data sink. In contrast, our objective
here is to adjust the threshold of a data source over time to
meet the lifetime requirement. To this end, the sensor node
measures the data update period I (i.e., the duration
between two successive data updates to the base station)
using an exponential aging method. At each data update,
the estimate of I is recomputed as

I ¼ � � ðTc � TlÞ þ ð1� �Þ � Iold;

where Tc is the current time, Tl is the time of the last data
update to the base station, Iold is the estimate of I at the last
data update, and � is a factor weighing the significance of
the current update period against past ones. On the other
hand, the expected data update period under the network
lifetime requirement is computed as

IE ¼
T � Tc
R

;

where T � Tc is the remaining network lifetime and R is the
remaining number of data updates allowed. If the total
allowable number of updates due to energy constraints is
M, then R is given by M � C, where C is the number of
data updates sent so far.
I is compared with IE whenever the sensor node updates

its reading with the base station. If I is greater than IE by a
factor � (i.e., I > IE � ð1þ �Þ), the threshold W is reduced by
a factor �: W ¼W � ð1� �Þ to increase the data update rate
and, hence, improve the accuracy of data collected by the
base station. On the other hand, if I is less than IE by a factor
� (i.e., I < IE � ð1� �Þ), the threshold W is increased by a
factor � : W ¼W � ð1þ �Þ to extend the data update period.
We shall investigate the impact of algorithm parameters �,
�, and � with simulation experiments in Section 6.

If we check (and adjust if necessary) the threshold each
time the sensor node updates with the base station, the
adaptive algorithm would react quickly to increase the
threshold when the changing of physical phenomena
becomes more intensive. This is because when the changes
increase in magnitude, the data update rate increases,
thereby giving more chances of adjustment. However,
when the changing of physical phenomena becomes less
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intensive, the algorithm would react slowly to reduce the
threshold. This is because when the changes decrease in
magnitude, the data update rate decreases, leading to fewer
chances of adjustment. To remedy it, we deliberately make
some adjustments to the threshold in addition to those
performed when the sensor node updates its reading with
the base station. Specifically, if there has been no data
update to the base station for twice the expected update
period IE , we decrease the threshold W by a factor of �.

To initialize the threshold, the sensor node is instructed
to send data updates periodically (at the expected data
update period IE) for a small number of h times at the
beginning of data collection. The average difference
between successively updated readings is used to initialize
the threshold. The adaptive data update strategy is
summarized in Algorithm 1.

We remark that this basic adaptive strategy applies
directly to individual data collection that requests the
reading of an individual sensor node. If the communication
between the source sensor node and the base station has to
go through multiple hops in a wireless sensor network, the
energy constraints at the intermediate nodes should be
taken account of in calculating the total allowable number
of data updates M.

The basic adaptive strategy can also be tailored to
include prediction models for the base station to extrapolate
sensor readings on the fly over interupdate periods. To do
so, the sensor node maintains the same prediction model as
that used by the base station and applies the threshold W to
the difference between the actual sensor reading and the
reading predicted by the model. That is, the sensor node
updates a new reading with the base station only if the new
readings differ from the predicted reading by more than W .
Again, the threshold W is adjusted dynamically to meet the
network lifetime requirement. A good extrapolation model
is expected to reduce the threshold W , thereby improving
the accuracy of data observed by the base station.

Algorithm 1: Adaptive data update strategy
1: set W  0;

2: for each time unit Tc ¼ T=M � iþ 1ð0 � i � h� 1Þ do

3: let V be the sensor reading acquired at time Tc;

4: send a data update V to the base station;

5: if i 6¼ 0 then

6: set W  W þ jV � Uj;
7: end if

8: set U  V , Tl  Tc;
9: end for

10: set W  W=ðh� 1Þ;
11: set C  h, I  T=M, IE  T=M;

12: for each time unit Tc > T=M � ðh� 1Þ þ 1 do

13: let V be the sensor reading acquired at time Tc;

14: if jV � U j > W and C < M then

15: send a data update V to the base station;

16: set C  C þ 1;
17: set I  � � ðTc � TlÞ þ ð1� �Þ � I;

18: set IE  ðT � TcÞ=ðM � CÞ;
19: if I > IE � ð1þ �Þ then

20: set W  W � ð1� �Þ;
21: else if I < IE � ð1� �Þ then

22: set W  W � ð1þ �Þ;
23: end if

24: set U  V , Tl  Tc;

25: else if Tc � Tl > 2 � IE then

26: set W  W � ð1� �Þ;
27: set Tl  Tc;

28: end if

29: end for

4.4 Coping with Message Losses

In general, messages transmitted over wireless links are
subject to losses due to environmental interference, packet
collision, and low signal-to-noise ratios [25], [26]. So far, we
have assumed reliable transmission of data updates. The
adaptive strategy described in Section 4.3 is directly
applicable if a reliable transfer protocol is used by the
sensor network to guarantee the delivery of every single
data update [29]. If the transfer protocol is not reliable,
however, data updates may be lost in transmission. Losing
a data update in the adaptive strategy has an adverse effect
on the accuracy of data collection that may be even more
severe than losing an update in the periodic strategy. This is
because update decisions in the adaptive strategy are made
based on sensor readings. For example, if the physical
phenomena measured by a sensor node undergo a dramatic
change and then remain stable for a long time period, the
adaptive strategy would transmit only one data update. In
case the update is lost, the base station would retain
obsolete and incorrect data until the phenomena change
again significantly to trigger the next data update. In
contrast, under the periodic strategy, the sensor readings
are transmitted periodically even if the phenomena are
stable. As a result, the data observed by the base station
would be corrected sooner.

In this section, we propose two methods to cope with
message losses in the adaptive strategy. The key idea is to
take into consideration the possibility of update losses in
calculating the difference of a new sensor reading with
respect to previously updated readings. Let p be the
message loss rate from a sensor node to the base station.4

Our first method maintains the last k updated readings
Uk; Uk�1; . . . ; U2; U1 sent by the sensor node, where k is a
given number and Ui is the ith most recently updated
reading. The data currently observed by the base station
would be Ui ði ¼ 1; 2; . . . ; kÞ if and only if the updates of
Ui�1; Ui�2; . . . ; U2; U1 were all lost and the update of Ui was
successful. Assuming that message losses occur indepen-
dently, the probability of the base station observing Ui at
present is then pi�1ð1� pÞ. When a new sensor reading V is
generated, the expected difference of V from the data at the
base station is given by

Pk
i¼1

pi�1ð1� pÞ � jV � Uij

Pk
i¼1

pi�1ð1� pÞ
¼

Pk
i¼1

pi�1ð1� pÞ � jV � Uij

1� pk : ð1Þ
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4. Message losses can be inferred by tracking the sequence numbers of
the messages successfully received at the destination. A number of efficient
estimators exist for link reliability based on message losses observed [30].
The effect of imperfect loss rate estimation will be investigated by
simulation experiments in Section 6.



The sensor node compares the expected difference (1) with

the threshold W and updates the new reading with the base

station only if the expected difference is greater than W . On

sending a data update, the sensor node updates the set of

last k updated readings. We shall refer to this method as

History. In fact, the original adaptive strategy of Section 4.3

is a special case of the History method with k ¼ 1. Note that

in calculating the expected difference (1), we do not take into

consideration the situation where all the last k updates were

lost. This is because the sensor node maintains the readings

of the last k updates only. We remark that the effect of such

simplification is insignificant since the probability of losing

all the last k updates is pk, which decreases exponentially

with increasing k. A k value of 8 would make this probability

lower than 0.4 percent even if the message loss rate p is as

high as 50 percent.
It is intuitive that the accuracy of the History method

improves with increasing k (i.e., maintaining a longer

history of updated readings). However, the storage cost as

well as the computation cost of (1) both increase with k. Our

second method attempts to reduce these costs by maintain-

ing at the sensor node only one updated reading—the

expected updated reading. Let Ui be the ith most recently

updated reading sent by the sensor node. Taking all past

updated readings into consideration, the expected updated

reading is computed as

X
i

pi�1ð1� pÞ � Ui:

The expected updated reading can be maintained incre-

mentally at the sensor node. Let Ue be the expected updated

reading. On sending a data update V , the sensor node

simply updates Ue by setting

Ue ¼ Ue � pþ V � ð1� pÞ:

On generating a new reading, the sensor node computes its

difference from the expected updated reading Ue. The new

reading is updated with the base station only if the

difference is greater than the threshold W . We shall refer

to this method as Expected. Note that the Expected method

trades the accuracy of estimation for storage and computa-

tion complexities. In general, the difference between a new

sensor reading V and Ue is smaller than the expected

difference (1) defined in the History method (with a

complete history of updated readings maintained) since

jV � Uej ¼
���V �X

i

pi�1ð1� pÞ � Ui
���

�
X
i

pi�1ð1� pÞ � jV � Uij:

The two differences are equivalent only if V together with
all past updated readings U1; U2; U3; . . . increase or decrease
monotonically.

The adaptive data update strategy can be augmented
with the History or Expected method to cope with update
losses. Like that in the original adaptive strategy of
Section 4.3, the threshold W in the History and Expected
methods is also dynamically adjusted to meet the network
lifetime requirement.

5 ADAPTIVE AGGREGATE DATA COLLECTION

Now, we consider aggregate data collection that requests an
aggregate form of sensor data over a network of sensor
nodes (e.g., the maximum or the average reading of all
sensor nodes).

5.1 Applying Adaptive Data Update Strategy

Due to limited radio transmission range, a routing
infrastructure has to be established to transport data from
the sensor nodes to the base station. A common practice is
to organize the sensor nodes into a tree structure rooted at
the base station (e.g., by flooding a routing request over the
network) [7], [11], [18], [31]. To collect data, each
intermediate node is responsible for forwarding the data
updates received from its children to its parent.5 In-network
aggregation is often used to cut down the volume of data
sent over the upper-level links in the tree for aggregate
data collection [34]. That is, the data update sent by an
intermediate node to its parent is a partial aggregate result
of the sensor readings in the subtree rooted at the
intermediate node. For example, at a node i, the partial
result for maximum aggregation is the maximum sensor
reading in the subtree T i rooted at node i; the partial result
for average aggregation has the form of hSi; jT iji, where Si
is the sum of the sensor readings in T i, and jT ij is the size
of T i [34].

If all sensor nodes send data updates periodically and at
the same rate, the same number of data updates are sent
over each link in the tree. Assuming there is one update
every three time units, Fig. 3 shows some sample update
behaviors of the sensor nodes in the tree of Fig. 2. Each row
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5. A number of MAC protocols exist to coordinate the switches between
sleep and active modes among the sensor nodes [32], [33].

Fig. 2. A simple routing tree.

Fig. 3. Periodic update strategy.



in the figure shows the behavior of one node (specified at
the left side) and each arrow represents a data update sent
by the node to its parent. As seen in Fig. 3, over the nine
time units, each sensor node sends three updates at times 1,
4, and 7. Note that sending and receiving data updates both
consume energy. Thus, under the periodic update strategy,
the energy bottleneck in each subtree rooted at a child of the
base station is the node with the highest degree in the
subtree. Let i be the bottleneck node in the subtree rooted at
a child node j of the base station. Suppose node i has an
energy budget ei. Then, the number of data updates each
node in T j can send is given by ei=ðsþ jCij � vÞ, where Ci is
the set of i’s children, jCij is the number of i’s children, and s
and v are the energy costs for a sensor node to send and
receive a data update, respectively.

However, unlike individual data collection, we cannot
simply apply the adaptive update strategy in Section 4.3 to
the local readings of each sensor node for aggregate data
collection. This is because if each sensor node makes update
decisions based on its local readings independently, the
data updates initiated by different nodes may not be
synchronized. If an intermediate node forwards a data
update to its parent immediately upon receiving an update
from any child, it may end up in sending as many updates
as the total of those sent by its children, thus defeating the
purpose of in-network aggregation. Fig. 4 shows some
sample update behaviors of the sensor nodes in the tree of
Fig. 2. Assume that node B sends data updates at times 1, 5,
and 8 based on its local readings, and node C sends updates
at times 3, 8, and 9. The row marked “A(local)” shows the
data updates initiated by node A based on its local readings.
Integrating the three update streams of “A(local),” “B,” and
“C,” the intermediate node A would need to send eight
updates over the nine time units. The situation deteriorates
if an intermediate node has more descendants.

To leverage the advantages of both adaptive update
strategy and in-network aggregation, we propose to let each
intermediate node apply the adaptive update strategy to its
partial aggregate results rather than its local readings.
Specifically, in addition to the local reading, an intermediate
node also maintains the latest data value reported by each
child. The data value maintained for a child is refreshed
when the intermediate node receives a new update from the
child. When this happens or when the intermediate node
acquires a new local reading, it reaggregates the data values
to produce a new partial aggregate result. The result is then
sent to the parent if it differs from the last updated data

value to the parent by more than a threshold W . In general,
not every data update from the children of an intermediate
node leads to an immediate update from the intermediate
node to its parent. Fig. 5 shows some sample update
behaviors of the sensor nodes in the tree of Fig. 2. Using the
adaptive strategy in Section 4.3, the number of updates sent
by an intermediate node is controlled by adjusting the
threshold dynamically. The intermediate node can also
employ the History or Expected method developed in
Section 4.4 to cope with update losses. In this case, the loss
rate p refers to the link loss rate between the intermediate
node and its parent.

5.2 Allocating Numbers of Updates

In addition to the energy constraints of individual sensor
nodes, aggregate data collection over a network of sensor
nodes is also restricted by the topological relations among
the nodes. We now study the number of updates each
sensor node can send in adaptive aggregate data collection.
Note that in periodic data collection, since the update
decisions are not made based on sensor readings, there is no
need for a sensor node to send more updates to its parent
than those sent by its parent to its grandparent. As a result,
the rate of updates sent by a sensor node does not exceed
that by its parent—it either equals the parent’s rate or is an
integral divisor of the parent’s rate [7]. However, adaptive
data collection is different. Consider an example topology in
Fig. 6a. Suppose all nodes have the same energy budget e.
Following the periodic strategy, since B and C have a
degree 3, each of them can send at most e=ðsþ 3 � vÞ data
updates to their parent A, where s and v are the energy costs
for a sensor node to send and receive a data update,
respectively. If each of the remaining nodes sends the same
number of updates as B and C, their energy budgets are
underutilized. Node A consumes a portion ðsþ 2 � vÞ=ðsþ
3 � vÞ of the energy budget, nodes D to F each consumes a
portion ðsþ vÞ=ðsþ 3 � vÞ of the budget, and nodes G to L
each consumes a portion s=ðsþ 3 � vÞ of the budget only.
Thus, nodes J , K, and L can send more data updates to D,
E, and F , respectively, without breaking the energy
constraints. This would improve the accuracy of data values
maintained at D, E, and F for J , K, and L, respectively,
and, hence, improve the quality of data update decisions
made by D, E, and F . It in turn improves the accuracy of
data collected by the base station. Similarly, A can also send
more data updates to the base station to improve the quality
of data collection without breaking the energy constraints.
In the following, we propose an algorithm to allocate the
numbers of updates allowed to be sent by the sensor nodes
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Fig. 4. Improper use of adaptive update strategy.

Fig. 5. Proper use of adaptive update strategy.



based on their topological relations. Our objective is to let
the sensor nodes send as many updates as possible subject
to the energy constraints.

Algorithm 2: Update allocation algorithm

1: set s energy cost to send a data update;

2: set v energy cost to receive a data update;

3: for each i do

4: set ui  energy budget of node i;

5: initialize its allowable number of updates: ci  0;
6: end for

7: repeat

8: for each i do

9: set xi  ui=ðjfðfpigÞj � sþ jfðCiÞj � vÞ;
10: end for

11: for each i do

12: set �i  minðxi; xpiÞ;
13: end for

14: for each i do

15: set ci  ci þ�i;

16: set ui  ui ��i � s�
P

j2Ci �j � v;

17: end for

18: until �i ¼ 0 for all i

The allocation algorithm works in iterations. Starting from
a zero allocation for all nodes, the algorithm continues to
increase their allowable numbers of updates through energy
reservation until no further update can be added. Algorithm 2
shows the pseudocode. We maintain an unreserved energy
budget ui for each node i and a total allowable number of
updates ci allocated to node i. ui is initialized with the energy
budget ei of node i (step 4), and ci is initialized with 0 (step 5).
For any set of nodes I , let fðIÞ be the subset of nodes in I
whose energy budgets have not been fully reserved, i.e.,
fðIÞ ¼ fi j i 2 I and ui > 0g. In each round of allocation, we
first compute the number of updates xi each node i can send
under its unreserved energy budget (step 9). Let Ci be the set
of i’s children and pi be i’s parent. Then, i is able to send
xi ¼ ui=ðjfðfpigÞj � sþ jfðCiÞj � vÞupdates to its parentpi ifpi’s
energy budget has not been fully reserved, and is able to
receive xi updates from each child whose energy budget has
not been fully reserved. Taking into consideration the energy
constraint at i’s parent pi, node i is added an allowable
number of updates �i ¼ minðxi; xpiÞ (step 12), wherexpi is the
number of updates pi is able to receive from i (xpi is set to

infinity if node i is a child of the base station). After
incrementing the total allowable number of updates ci
(step 15), the unreserved energy budget of each node is
updated according to the number of updates allocated to
itself (for sending energy cost) and to its children (for
receiving energy cost) before the next round of allocation
(step 16). The algorithm terminates when �i ¼ 0 for all nodes
(step 18). Since the allocation for each node requires the
information of its parent and children only, it is easy to
execute Algorithm 2 in a distributed manner. The algorithm is
executed only once at the beginning of data collection, so the
associated overhead, amortized over network lifetime, is
minimal.

We show an example execution of Algorithm 2 on the tree
in Fig. 6a. Assume each node has an energy budget of 12 units,
and the costs for a sensor node to send and receive a data
update are one unit of energy each. Fig. 6b shows the
allocation results of the first round, where each node i is
labeled ui=xi=ci. Since nodes B and C are the highest degree
nodes, their energy budgets are fully reserved in the first
round. B, C, and their children are each allocated three
allowable updates. Nodes J , K, and L, however, are not
constrained by the energy budget of B. Each of them is
allocated six allowable updates because xD ¼ xE ¼ xF ¼ 6.
NodeA has two children, so it is allocated 12=3 ¼ 4 allowable
updates. Fig. 6c shows the allocation results of the second
round. Since nodesD,E, andF each has three units of energy
left unreserved, nodesJ ,K, andLeach is allocated three more
allowable updates in this round. Node A, on the other hand,
has two units of energy left unreserved. As a result, it is
allocated two more allowable updates. At the end of the
second round, each node either has fully reserved its own
energy budget or its parent has fully reserved the energy
budget. Therefore, no more update can be allocated in the
third round and the algorithm terminates. It is seen from the
final allocation results that nodesA,J ,K, andLare allowed to
send more updates than the highest degree nodes B and C.
This helps improve the accuracy of data collected by the base
station.

6 PERFORMANCE EVALUATION

6.1 Experimental Setup

We have developed a simulator to evaluate the proposed
adaptive data collection strategies. We considered, for the
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Fig. 6. An example network and its update allocation. (a) An example network. (b) Update allocation (round 1). (c) Update allocation (round 2).



sensor nodes, the energy costs of sending data updates,
receiving data updates, and acquiring sensor readings.
Following [35] and [24], Table 1 summarizes the power
requirements for different activities of sensor motes.

We simulated a network of 100 sensor nodes. The
network topology was generated as follows: We randomly
placed the base station and 100 sensor nodes in a 1 � 1 area.
The sensor nodes were assumed to have a radio transmis-
sion range of 0.2. If two sensor nodes were within the radio
range of each other, they were considered neighbors in the
network connectivity graph. The breadth first search tree
rooted at the base station was then computed from the
connectivity graph and used as the routing infrastructure
for data collection [18], [7]. We have experimented with
many randomly generated network topologies and ob-
served similar performance trends. Due to space limita-
tions, we shall only report the results of a sample network
topology in this paper. The layout of the topology is shown
in Fig. 7, where the solid circle represents the base station,
the remaining circles represent the sensor nodes, and the
lines represent the links in the routing tree.

We made use of the data provided by the LEM project [8]
at the University of Washington to simulate the physical
phenomena in the immediate surroundings of sensor nodes.
Weather data were collected in the LEM project from several
stations in the Washington and Oregon states. We used the
temperature (TEMP), solar radiation (SOLAR), and cumula-
tive rain (RAIN) traces logged by the station at the University
of Washington from August 2004 to August 2005 in our
experiments. Each trace consisted of more than 500,000 read-
ings acquired at a sampling interval of 1 minute. The data in
these traces have different changing patterns. Fig. 8 shows

some representative segments of these traces. Both TEMP
and SOLAR data fluctuate over time—their readings are
higher in the daytime and lower at night. As seen in Fig. 8,
the SOLAR data vary more widely than the TEMP data. A
remarkable feature of the SOLAR data is that the SOLAR
readings remain unchanged regularly because the solar
radiation is 0 at night. The RAIN data differ from the TEMP
and SOLAR data in that the (cumulative) RAIN readings
increase monotonically over time. There also exist periods in
which the RAIN readings remain unchanged because there
is no rainfall. However, unlike the SOLAR trace, the
occurrence of these periods is not regular in the RAIN trace.
For each of the TEMP, SOLAR, and RAIN traces, we
extracted 100 different subtraces starting at the same time-
point of different days and associated them with the sensor
nodes in our simulated network. Each subtrace contained
20,000 readings. The period between two successive read-
ings in the trace was assumed to be one time unit.

We simulated the periodic, adaptive, and optimal data
update strategies under different requirements of network
lifetime. As defined in Section 3, we measured the root-
mean-square error of the data collected at the base station
with respect to the up-to-date sensor readings over the
required network lifetime. Recall that the adaptive strategy
has three parameters: �, �, and �. The following values were
chosen as the default settings: � ¼ 0:8, � ¼ 0:1, and � ¼ 0:1.
As shall be shown in Section 6.2, the performance of the
adaptive strategy is generally not sensitive to the parameter
settings.

6.2 Performance for Individual Data Collection

First, we evaluate the performance of different strategies
for individual data collection in which the base station
collects the reading of an individual sensor node. For
simplicity, we selected a source sensor node that is a
child of the base station in the routing tree (i.e., the
source node sends its readings to the base station
directly). The initial energy budget of the source node
was set to allow it to acquire 2,500 local sensor readings
and send 2,500 data updates to the base station, i.e.,
2;500� 1:08þ 2;500� 20 ¼ 5:27� 104 nAh.

In the periodic strategy, the data update decisions are not
made based on sensor readings. Hence, there is no need for
a sensor node to acquire more readings than the number of
updates it sends for its local readings. So, we instructed the
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TABLE 1
Energy Consumption for Different Activities

Fig. 7. A sample network topology in the experiments.

Fig. 8. Sample data traces.



source sensor node to periodically acquire readings and
send updates at the maximum rate subject to the energy
constraint. For example, given a network lifetime require-
ment of 10,000 time units, the node acquires and sends
one reading every four time units, i.e., at times 1, 5, 9, 13,
17, . . . . The adaptive and optimal strategies, on the other
hand, are capable of selecting and sending a subset of the
acquired readings on the fly based on their relative
importance. In the experiments, we instructed the source
sensor node to acquire one reading every time unit over the
network lifetime (i.e., acquire all readings in the trace). As a
result, more energy was spent in acquiring sensor readings
in these two strategies than in the periodic strategy. The
energy left over was used for data updates.

Fig. 9 shows the root-mean-square error as a function of
network lifetime requirement (from 2,500 to 20,000 time
units) for different strategies and traces. At a network
lifetime requirement of 2,500 time units, the source sensor
node is able to acquire one reading every time unit and
send all readings to the base station. The root-mean-square
error, as shown in Fig. 9, increases with network lifetime
requirement for all strategies. Since the optimal strategy
assumes a priori knowledge of all sensor readings over the
network lifetime, it is used as a yardstick (lower bound) on
root-mean-square error. As seen in Fig. 9, there is a
substantial performance gap between the periodic and
optimal strategies. The optimal strategy is able to cut down
root-mean-square error by over 50 percent and 80 percent
for the TEMP and SOLAR traces, respectively. It maintains

zero error for the RAIN trace throughout the range of
network lifetime requirement tested. This strongly moti-
vates the consideration of the relative importance of sensor
readings in data collection. By making update decisions on
the fly based on sensor readings, the proposed adaptive
strategy significantly reduces root-mean-square error
against the periodic strategy. As seen in Fig. 9, the relative
improvement is up to 54 percent, 89 percent, and
100 percent for the TEMP, SOLAR, and RAIN traces,
respectively. This demonstrates the effectiveness of the
adaptive strategy in selecting more important sensor read-
ings to update with the base station.

Fig. 10 shows the effect of parameter settings in the
adaptive strategy for the TEMP trace. We varied each of the
three parameters �, �, and � while keeping the remaining
two at their default settings. As shown in Fig. 10, the
adaptive strategy is not very sensitive to the parameter
settings. It produces similar results throughout the ranges
of parameter settings tested. These performance trends
have been consistently observed for both individual and
aggregate data collections over different traces and network
topologies. Therefore, we shall report only the experimental
results for the default parameter settings in the remainder
of this paper.

6.3 Performance for Aggregate Data Collection

Now, we compare the adaptive strategy against the periodic
strategy for aggregate data collection. The same initial
energy budget was assigned to each sensor node in the
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Fig. 9. Root-mean-square error versus network lifetime requirement (individual data collection). (a) TEMP trace. (b) SOLAR trace. (c) RAIN trace.

Fig. 10. Performance for different parameter settings in the adaptive strategy (TEMP trace). (a) Impact of �. (b) Impact of �. (c) Impact of �.



simulated network. The budget was set to allow the
bottleneck node (i.e., the highest degree node in the routing
tree, as discussed in Section 5) to acquire 2,500 local sensor
readings, send 2,500 data updates to its parent, and receive
2,500 updates from each of its children. For example, the
highest degree node in Fig. 7 has 11 children, so the initial
energy budget was set at 2;500� 1:08þ 2;500� 20þ 11�
2;500� 8 ¼ 2:727� 105 nAh.

Similar to the experimental methodology in Section 6.2,
for the periodic strategy, we instructed each sensor node to
acquire readings and send updates at the same rate. We
computed the rates for different sensor nodes subject to
their energy budgets. The rate of updates sent by a sensor
node either equals its parent’s rate or is an integral divisor
of its parent’s rate [7]. For the adaptive strategy, we
instructed each sensor node to acquire one reading every
time unit (i.e., acquire all readings in the trace). On
reserving the energy for acquiring sensor readings over
the required network lifetime, the remaining energy budget
was used for data updates. The number of updates each
sensor node can send to its parent was computed by the
allocation algorithm described in Section 5.2.

We tested two commonly used aggregates: MAX and
AVG, which refer to the maximum and average of the
readings at all sensor nodes, respectively. Figs. 11 and 12
show the root-mean-square errors of MAX and AVG
aggregations, respectively. At a network lifetime require-
ment of 2,500 time units, the sensor nodes are each able to
acquire one reading every time unit and send all readings to

the base station through in-network aggregation. The root-
mean-square error increases with network lifetime require-
ment for both strategies. By making update decisions based
on sensor readings, the adaptive strategy would not send
any update when the physical phenomena change slowly.
The saved energy is then used to send more updates when
the physical phenomena change rapidly. The periodic
strategy, on the other hand, does not take sensor readings
into consideration. It continues to send updates periodically
even when the physical phenomena do not change, thereby
wasting much energy. Therefore, as seen in Figs. 11 and 12,
the adaptive strategy significantly outperforms the periodic
strategy. For example, for MAX aggregation, the adaptive
strategy cuts down root-mean-square error by 53 percent,
47 percent, and 100 percent for the TEMP, SOLAR, and
RAIN traces, respectively, at a network lifetime requirement
of 10,000 time units.

6.4 Impact of Update Losses

So far, we have evaluated the data collection strategies under
reliable transmission of data updates. Now, we investigate
the impact of update losses. In addition to the periodic
strategy and the original adaptive strategy (Section 4.3), we
also simulated the adaptive strategies augmented with the
History and Expected methods (Section 4.4) to cope with
update losses. They shall be called Adaptive-History and
Adaptive-Expected strategies. In our experiments, we
randomly determined whether each data update transmitted
over a link was lost based on the link loss rate. We conducted
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Fig. 11. Root-mean-square error versus network lifetime requirement (MAX aggregation). (a) TEMP trace. (b) SOLAR trace. (c) RAIN trace.

Fig. 12. Root-mean-square error versus network lifetime requirement (AVG aggregation). (a) TEMP trace. (b) SOLAR trace. (c) RAIN trace.



20 different simulation runs for each loss rate value. The
average performance of these 20 simulation runs is plotted
for performance comparison.

Figs. 13 and 14 show the root-mean-square error as a
function of link loss rate for a network lifetime requirement
of 10,000 time units, where Adaptive-History(k) denotes the
Adaptive-History strategy that maintains the last k updated
data values at the sensor nodes. Note that all adaptive
strategies perform the same in the absence of update losses
(the leftmost points in Figs. 13 and 14) since the Adaptive-
History and Adaptive-Expected strategies degenerate to the
original adaptive strategy at a link loss rate of 0. As
expected, the quality of data collection deteriorates with
increasing link loss rate for all strategies. Comparing the
periodic and original adaptive strategies, it is seen that the
performance of the original adaptive strategy normally
degrades more rapidly than the periodic strategy. This
verifies that losing a data update in the adaptive strategy
has a more adverse effect on data accuracy than that in the
periodic strategy. In particular, at high link loss rates (above
20 percent), the adaptive strategy often collects data that are
even less accurate than the periodic strategy. In contrast, by
taking possible update losses into consideration in making
update decisions, the Adaptive-History and Adaptive-
Expected strategies significantly outperform the original
adaptive strategy in terms of root-mean-square error.
Figs. 13 and 14 show that the performance of the
Adaptive-History strategy improves with increasing k up
to 8 (i.e., maintaining a longer history of updated readings
at the sensor nodes) and remains quite stable when k

exceeds 8. The Adaptive-Expected strategy performs
similarly to Adaptive-History(8). Both of them are able to
maintain substantial improvement over the periodic strat-
egy in terms of data accuracy even if the link loss rate is as
high as 50 percent. The performance results for other
network lifetime requirements have similar trends and are
not shown here due to space limitations.

Finally, we study the effect of imperfect loss rate
knowledge. In this set of experiments, we used k ¼ 8 as
the history length maintained by the Adaptive-History
strategy. We tested two scenarios in which the link loss rate
was overestimated and underestimated relatively by
50 percent in the augmented adaptive strategies. These
two scenarios are identified by “ðþÞ” and “ð�Þ” in Figs. 15
and 16 (e.g., Adaptive-HistoryðþÞ=Adaptive-Historyð�Þ de-
notes the Adaptive-History strategy that overestimates/
underestimates the link loss rate relatively by 50 percent in
calculating the difference of a new data value with respect
to previously updated data values). As seen in Figs. 15 and
16, the Adaptive-History and Adaptive-Expected strategies
are generally not sensitive to the error in the knowledge of
link loss rate. They continue to outperform the periodic
strategy in terms of the accuracy of data collection even in
the absence of perfect loss rate knowledge.

7 CONCLUSION

In this paper, we have studied adaptive data collection
strategies for lifetime-constrained wireless sensor networks.
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Fig. 13. Root-mean-square error versus link loss rate (MAX aggregation). (a) TEMP trace. (b) SOLAR trace. (c) RAIN trace.

Fig. 14. Root-mean-square error versus link loss rate (AVG aggregation). (a) TEMP trace. (b) SOLAR trace. (c) RAIN trace.



Instead of collecting sensor readings periodically, the
relative importance of the readings is considered in data
collection. The sensor nodes send data updates to the base
station when the new readings differ more substantially
from the previous ones. We have developed adaptive
strategies for both individual and aggregate data collec-
tions. To make full use of the energy budgets, we have
designed an algorithm to allocate the numbers of updates
allowed to be sent by the sensor nodes based on their
topological relations. We have also presented two methods
to cope with message losses in wireless transmission.
Experimental results using real data traces show that,
compared to the periodic strategy, adaptive strategies
significantly improve the accuracy of data collected by the
base station over the network lifetime.
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