
Privacy-Conscious Location-Based Queries
in Mobile Environments

Jianliang Xu, Senior Member, IEEE, Xueyan Tang, Senior Member, IEEE, Haibo Hu, and Jing Du

Abstract—In location-based services, users with location-aware mobile devices are able to make queries about their surroundings
anywhere and at any time. While this ubiquitous computing paradigm brings great convenience for information access, it also raises
concerns over potential intrusion into user location privacy. To protect location privacy, one typical approach is to cloak user locations
into spatial regions based on user-specified privacy requirements, and to transform location-based queries into region-based queries.
In this paper, we identify and address three new issues concerning this location cloaking approach. First, we study the representation
of cloaking regions and show that a circular region generally leads to a small result size for region-based queries. Second, we develop
a mobility-aware location cloaking technique to resist trace analysis attacks. Two cloaking algorithms, namely MaxAccu_Cloak and
MinComm_Cloak, are designed based on different performance objectives. Finally, we develop an efficient polynomial algorithm for
evaluating circular-region-based kNN queries. Two query processing modes, namely bulk and progressive, are presented to return
query results either all at once or in an incremental manner. Experimental results show that our proposed mobility-aware cloaking
algorithms significantly improve the quality of location cloaking in terms of an entropy measure without compromising much on query
latency or communication cost. Moreover, the progressive query processing mode achieves a shorter response time than the bulk
mode by parallelizing the query evaluation and result transmission.

Index Terms—Location-based services, location privacy, query processing, mobile computing.
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1 INTRODUCTION

LOCATION-BASED services (LBS) are emerging as a major
application of mobile geospatial technologies [1], [10],

[16], [21]. In LBS, users with location-aware mobile devices
are able to make queries about their surroundings anywhere
and at any time. Spatial range queries and k-nearest-neighbor
(kNN) queries are two types of the most commonly used
queries in LBS. For example, a user can make a range query to
find out all shopping centers within a certain distance of her
current location, or make a kNN query to find out the k-
nearest gas stations. In these queries, the user has to provide
the LBS server with her current location. The disclosure of
location information to the server, however, raises privacy
concerns, which have hampered the widespread use of LBS
[25]. Thus, how to provision location-based services while
protecting user location privacy has recently become a hot
research topic [10], [12], [18], [19], [20].

Location cloaking is one typical approach to protecting
user location privacy in LBS. Upon receiving a location-based
spatial query (e.g., a range query or a kNN query) from the
user, the system cloaks the user’s current location into a
cloaking region based on the user’s privacy requirement. The
location-based spatial query is, thus, transformed into a
region-based spatial query before being sent to the LBS server.
The LBS server then evaluates the region-based query and
returns a result superset, which contains the query results for

all possible location points in the cloaking region. Finally, the
system refines the result superset to generate the exact results
for the query location. Fig. 1a shows a sample NN query.
Instead of providing the exact location l, the system submits a
cloaking regionR to the LBS server, which then returns the set
of objects fb; c; dg that are the nearest neighbors of at least one
point in R. Finally, among fb; c; dg, the system finds out the
true nearest neighbor b of query location l. Throughout this
query processing procedure, the LBS server knows only the
region R in which the user is located, not the exact location l.
In the literature, a variety of cloaking algorithms based on
snapshot user locations have been developed for different
privacy metrics (e.g., [6], [10], [11], [18], [20]).

In this paper, we identify and address three new issues
concerning the location cloaking approach. We first show
that the representation of a cloaking region has an impact
on the result superset size of the region-based query. In
general, a small result superset is preferred for saving the
cost of data transmission and reducing the workload of the
result refinement process (especially if this process is
implemented on the mobile client). Our findings indicate
that, given a privacy requirement, representing the cloaking
region with a circle generally leads to a smaller result
superset than using other shapes.

Second, we consider the location cloaking problem for
continuous LBS queries. In such scenarios, trace analysis
attacks are possible by linking historical cloaking regions
with user mobility patterns. Assume that in our previous
example, the user issues a second query at location l0 with a
cloaking region R0 (see Fig. 1b). If the LBS server somehow
learns the user’s maximum possible moving speed vm, the
server can draw a region Re (the shaded area in Fig. 1b)
expanded from the last cloaking region R based on vm and
the interval t between the two queries. The server is then
able to infer that the user must be located in the intersection
area of Re and R0, which degrades the quality of location
cloaking and may fail to meet the expected privacy
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requirement. The cloaking quality will further deteriorate
with the analysis of more successive queries and cloaking
regions. To address this issue, we develop a mobility-aware
location cloaking technique that resists trace analysis
attacks. Given that the server observes a cloaking region
together with any series of historical cloaking regions, our
proposed technique makes equal the derivable probability
that the user will be located at any one point within the
cloaking region. To achieve this, we leverage the probability
theory to control the generation of cloaking regions and
design two cloaking algorithms, namely MaxAccu_Cloak
and MinComm_Cloak, based on different performance
objectives. MaxAccu_Cloak is designed to maximize the
accuracy of query results, while MinComm_Cloak attempts
to reduce the network communication cost.

Finally, we investigate how to evaluate efficiently
circular-region-based spatial queries on the LBS server.
While the evaluation of circular-region-based range queries
is straightforward, we develop an efficient OðkM3Þ algo-
rithm for evaluating circular-region-based kNN queries,
where M is the cardinality of the spatial object set. In
addition, we present two query processing modes, namely
bulk and progressive, which return query results either all at
once or in an incremental manner.

We conduct simulation experiments to evaluate the
performance of the proposed location cloaking and query
processing algorithms. The results show that the proposed
mobility-aware cloaking algorithms outperform an isolated
cloaking algorithm in terms of an entropy measure of
cloaking quality, without compromising much on query
latency or communication cost (and sometimes performing
even better). Regarding the end-to-end system performance,
MaxAccu_Cloak results in a very high query accuracy, while
MinComm_Cloak achieves a good balance between commu-
nication cost and query accuracy. When the result superset
size is small, the bulk and progressive modes of query
progressing perform similarly. For large result supersets that
require a long time to evaluate and transmit, the progressive
mode achieves a shorter user-perceived response time than
the bulk mode by parallelizing the query evaluation and
result transmission.

The rest of this paper is organized as follows: Section 2
surveys the related work on location privacy protection and
spatial query processing. Section 3 gives an overview of our
system model and location privacy metrics. Section 4 studies
the representation of cloaking regions, followed by Section 5,
which presents the mobility-aware location cloaking algo-
rithms. The processing of circular-region-based queries is
discussed in Section 6. Section 7 experimentally evaluates the
proposed location cloaking and query processing algorithms.
Finally, Section 8 concludes this paper.

2 RELATED WORK

Location privacy protection. There are two main ap-
proaches to protecting location privacy in LBS. The first
approach relies on a trusted LBS server to restrict access to
location data based on rule-based policies [8], [27]. The
second approach runs a trustworthy agent between the
client and the LBS server. Every time the user makes a
location-based query, the agent anonymizes the user
identity and/or location before forwarding the query to
the LBS server [4], [10], [20]. Our study is under the
framework of the second approach.

Early studies on location privacy protection considered
object tracking applications, where a proxy server is
employed to collect exact locations from moving clients
and to anonymize location data through depersonalization
before release. In [4], once a client enters a predefined zone,
its identity is mixed with all other clients in the same zone.
It appears that this idea can be extended to deal with trace
analysis attacks by associating each LBS request with a
different pseudonym. Unfortunately, this approach may not
be effective because historical user locations are highly
correlative and, hence, they could be relinked using
trajectory tracking methods (e.g., multitarget tracking [22])
even without knowing any identity [26].

Gruteser and Grunwald [10] proposed to achieve identity
anonymity in LBS by spatiotemporal cloaking based on a k-
anonymity model, that is, the cloaked location is made
indistinguishable from the location information of at least
k� 1 other users. To perform the spatial cloaking, they used a
Quad-tree-like algorithm. Gedik and Liu [11], [12] extended
this to a personalized k-anonymity model, in which users can
specify the parameter k at a per-message level. They also
developed a new cloaking algorithm called CliqueCloak.
Ghinita et al. [9] proposed a location cloaking algorithm
called hilbASR, in which all user locations are sorted and
grouped by Hilbert space-filling curve ordering. Bettini et al.
[2] presented a framework to model various background
attacks in LBS and discussed defense techniques to guarantee
user anonymity. Bamba et al. [1] developed location cloaking
algorithms for both k-anonymity and l-diversity models in a
PrivacyGrid framework. While the above cloaking algo-
rithms require to know the accurate locations of all users, in a
more recent study [16], we developed a novel cloaking
algorithm based on proximity information among mobile
users, without the need to know their accurate locations. But
like most existing cloaking algorithms, we considered only
snapshot user locations in [16]. In this paper, we investigate
the location cloaking problem for continuous LBS queries. In
particular, we focus on trace analysis attacks and propose a
new mobility-aware cloaking technique to resist them.

Xu and Cai [26] recently developed a trajectory cloaking
algorithm that aims to reduce the cloaking area and the
frequency of location updates. The idea is to use historical
user locations as footprints in performing k-anonymity
cloaking. In contrast, we aim to prevent an adversary from
utilizing historical cloaking regions to degrade the quality
of current location cloaking.

Spatial query processing. A large body of research has
investigated spatial query processing, in particular kNN
queries. Most kNN query algorithms have focused on disk
access methods based on R-tree-like index structures [13]. The
branch-and-bound approach is often employed in query
evaluation to traverse the index and prune search space.
Various query evaluation algorithms differ in terms of the
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Fig. 1. Dynamic location cloaking. (a) Location cloaking. (b) Isolated

cloaking.



visiting order of index nodes and the metric used to prune
search space [14], [23]. Whereas the previous studies
investigated the kNN problem for a location point or a line
segment only, our recent work has developed an evaluation
strategy for rectangular-region-based kNN queries that
retrieve the k-nearest neighbors of all possible location points
in a rectangular region [15]. We remark that the strategy
developed in [15] is based on the fact that the perimeter of a
rectangle can be decomposed into a set of straight-line
segments. But because such decomposition is infeasible for
a circle, the strategy of [15] cannot be extended to evaluate
circular-region-based kNN queries. In another related work
[5], Cheng et al. developed algorithms for evaluating
probabilistic queries over imprecise object locations. In
contrast, we are interested in using imprecise locations to
retrieve result supersets through region-based spatial
queries.

Parallel to our work, Mokbel et al. [20] and Kalnis et al.
[18] have investigated both the location cloaking and query
processing problems. But our work differs from theirs in
several respects. First, like other previous studies [10], [11],
[12], the location cloaking algorithms in [18] and [20]
account for snapshot user locations only. Neither of them
considers continuous queries and trace analysis attacks. In
contrast, we focus on location cloaking for protecting
against trace analysis attacks for continuous queries.
Second, Kalnis et al. [18] and Mokbel et al. [20] did not
study the issue of how to represent a cloaking region. In this
paper, we show that a circular cloaking region generally
leads to a small result superset size and, thus, we focus on
query processing algorithms for circular regions. Finally,
Mokbel et al. [20] investigated bulk query processing for
rectangular regions only. Though Kalnis et al. [18] devel-
oped a bulk processing algorithm for circular-region-based
kNN queries, the algorithm has an exponential time
complexity of OðMkÞ, where M is the cardinality of the
spatial object set. In this paper, we propose a polynomial
OðkM3Þ algorithm for circular-region-based kNN queries.
Furthermore, we develop a novel progressive query proces-
sing algorithm, which is favorable to slow mobile networks.

3 SYSTEM MODEL AND PRIVACY METRICS

3.1 System Model

This section describes the system model under our study.
We consider mobile clients that are equipped with wireless
interfaces to communicate with the Internet. We assume
that mobile clients are location aware, that is, they are able
to position their locations at any time. The users of mobile
clients are interested in querying public spatial objects (e.g.,
hotels, restaurants, gas stations, etc.) related to their current
locations. We consider two types of location-based spatial
queries. A range query, specified with the user’s current
location l and a distance dr, retrieves all the objects lying in
the circle centered at l with radius dr. A kNN query,
specified with the user’s current location l and a parameter
k, retrieves the k-nearest objects to l.

Fig. 2 illustrates the procedure for processing a location-
based query. After the user issues such a query, the mobile
client sends the query Q ¼ fl; qg, where l is the current
location and q includes other query parameter(s), to a location
cloaking agent. The cloaking agent then cloaks the location l
into a region R (l 2 R) based on the user’s privacy require-
ment, and forwards the modified query Q0 ¼ fR; qg to the
LBS server. The LBS server evaluates Q0 and returns the

results ofQ0 to the cloaking agent. Since the results ofQ0 are a
superset of the results of Q, the cloaking agent refines the
results ofQ0 to obtain the exact results ofQ and finally returns
them to the mobile client. In this procedure, we focus on two
performance objectives: 1) to optimize the quality of location
cloaking with respect to trace analysis attacks while satisfying
the user-specified privacy requirement, and 2) to make the
size of the results ofQ0 as small as possible for saving the cost
of data transmission and the workload of the cloaking agent
in downloading and refining them.

We remark that in the system architecture, the location
cloaking agent runs between the mobile client and the LBS
server. It may be implemented on an Internet-resident proxy
or incorporated into the mobile client. These two solutions
have different performance trade-offs. The first proxy-based
solution greatly alleviates the workload of the mobile client
by delegating the tasks of location cloaking and result
refinement to the resource-richer proxy. But, implementing
the proxy-based solution is not cost free. First, the connection
between the mobile client and the proxy has to be secured to
prevent disclosure of location data in network transmission
(e.g., by applying proper encryption and authentication
protocols), which incurs extra processing overhead at the
mobile client. These measures are not needed, however, in the
second client-based solution. Second, since the proxy owns
the private information about mobile users (including their
privacy preferences as well as current and historical loca-
tions), more security risks would be introduced owing to the
presence of the proxy. The proxy can become a new target of
attacks and a potential performance bottleneck. A system
administrator can determine where to implement the location
cloaking agent by taking into consideration the bandwidth
budget, client capabilities, and security requirements.

Yet, regardless of which solution the system adopts, the
following issues arising from the location cloaking approach
deserve our investigation: 1) how to represent cloaking
regions in terms of shape such that the result size of the
region-based query Q0 is minimized (Section 4); 2) how to
effectively perform location cloaking on the location cloak-
ing agent so that the cloaking quality is optimized against
trace analysis attacks (Section 5); and 3) how to efficiently
evaluate region-based spatial queries (on the LBS server) to
reduce the query response time (Section 6). It is worth noting
that the techniques proposed in this paper are beneficial to
both proxy-based and client-based solutions.

3.2 Privacy Metrics

We employ an intuitive privacy metric for location
anonymity, that is, the area of the cloaking region (or
briefly, the cloaking area). A user specifies a minimum
acceptable cloaking area for each query. For example, a user
can set the minimum acceptable cloaking area to one square
mile. To consider resistance to trace analysis attacks, the
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quality of location cloaking is measured by entropy, a well-
known metric for quantifying the amount of uncertainty in
information theory. Suppose it can be derived that the
probability density function for the user to be at location l in
cloaking region R is pðlÞ, the entropy is then defined by

�
Z
l2R

pðlÞ ln pðlÞ dl: ð1Þ

Given a cloaking region, entropy will be zero if it is derived
that the user is at some location with 100 percent probability.
Entropy will increase if the user location is more uncertain,
and will be maximized when the derivable probability for the
user to be at any location in the region is equal.

4 REPRESENTATION OF CLOAKING REGIONS

In this section, we study the representation of cloaking
regions. Given a cloaking area, we are interested in finding
out how to represent the cloaking region in terms of shape
such that the result size of the region-based query is
minimized. It is worth noting that the representation of a
cloaking region is independent of the issue of maximizing
entropy in location cloaking. For any cloaking region of a
given area, irrespective of its shape, entropy is maximized
when the derivable probability for the user to be at any
location in the region is uniform across that region.

Consider a region-based kNN query that retrieves the k-
nearest neighbors of all the points in the region. The
following theorem shows that the result of a region-based
kNN query should include all objects in the region as well
as the kNNs of the points on the perimeter of the region.

Theorem 1. An object o is in the kNN results of region R if and
only if: i) o 2 R, or ii) o is in the kNN results of some point on
the perimeter of R.

Proof. Obviously any object inside R is the NN of the same
point it occupies. Next, we use a proof-by-contradiction
approach to show that if an object outside R is the ith
NN (i � k) of a point inside R, this object must be in the
iNN results (and hence the kNN results) of some point
on the perimeter of R.

As shown in Fig. 3, suppose that object a is the ith NN of
pointp insideR. Assume, on the contrary, thata is not in the
iNNresultsofanypointontheperimeterofR.Consider the
intersecting point p0 of the segment pa and the perimeter of
R. It follows that a is not in the iNN results of p0. Thus, the
iNN results of p0 and poverlap by at most i� 1 objects. As a
result, there must exist an object b in the iNN results of p0

that is not in the iNN results of p. This implies jp0bj � jp0aj.
Thus, we have jpbj < jp0bj þ jpp0j � jp0aj þ jpp0j ¼ jpaj. This
means that b is closer to p than a, which contradicts the

hypothesis that a is the ith NN of p, and that b is not in the
iNN results of p. Hence, the theorem is proven. tu

To simplify our analysis, we follow the previous work of
Berchtold et al. [3] and assume that the spatial objects to be
queried are uniformly distributed in the search space. Denote
by � the object density. According to Berchtold et al. [3], the
average distance between a query point and its kth NN is
given by

dkNN ¼
ffiffiffiffiffiffi
k

��

s
: ð2Þ

Following Theorem 1, the solution space for a region-
based kNN query can be approximated by the area extended
from the query region by a distance of dkNN (see the shaded
areas in Fig. 4).1 Thus, we estimate the size of the kNN results
jRkNN j by the number of objects lying in the approximated
solution space. LetA and P , respectively, be the area and the
perimeter length of the query region. For a general convex
region (Fig. 4a), we obtain

jRkNN j¼: Aþ P � dkNN þ
X
i

1

2
�id

2
kNN

 !
� �

¼ A � �þ P �
ffiffiffiffiffi
k�

�

r
þ k:

ð3Þ

Similarly, for a region-based range query, we can
estimate the size of its query results as

jRrangej ¼ ðAþ P � dr þ �d2
rÞ � �; ð4Þ

where dr is the radius of the query range.

Theorem 2. Comparing different shapes for a cloaking region of
area A, a circle gives the smallest value for both jRkNN j in (3)
and jRrangej in (4).

Proof. Given a cloaking area A, from (3) (or (4)), the relative
value of jRkNN j (or jRrangej) is determined by the perimeter
length P . It is well known that a circle (see Fig. 4b) has the
shortest perimeter under a fixed area. tu

Theorem 2 implies that given a cloaking area, a circular
region is expected to give the smallest result set for both range
and kNN queries under a uniform distribution of spatial
objects. Fig. 5a compares the result sizes obtained by using
both the circular and square cloaking regions of area 10�5 for
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Fig. 3. Proof of Theorem 1.
Fig. 4. Solution space of a region-based kNN query. (a) Convex region.

(b) Circular region.

1. Note that this is neither a necessary nor a sufficient condition for an
object to be part of the kNN results.



kNN queries on a data set containing 300,000 objects
randomly distributed in a unit space. The simulation results
in Fig. 5a are the average of 1,000 random queries on the data
set2; the analytical results are computed using (3). It can be
seen that the analytical results well match the simulation
results, and the average result size given by a circular
cloaking region is less than that given by a square region of the
same area. We also compare circular and square cloaking
regions for a real California data set where the objects are not
uniformly distributed (see Section 7 for more details about
this data set). As shown in Fig. 5b, a circular cloaking region
again leads to a smaller result size than a square cloaking
region. Thus, in the rest of this paper, we will use circles to
represent cloaking regions.

5 MOBILITY-AWARE LOCATION CLOAKING

We now study how to generate circular cloaking regions
based on privacy requirements. Under isolated cloaking, for
each query with a cloaking area requirement Amin, a circle
with radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amin=�

p
covering the user location l is randomly

generated to serve as the cloaking region. But this scheme is
vulnerable to trace analysis attacks. As discussed in Section 1,
by correlating the query trace and some knowledge of
mobility pattern, the LBS server (adversary) is able to derive
possible user locations in the cloaking region. This leads to a
significant degradation of the quality of location cloaking. In
this section, we develop an optimal mobility-aware cloaking
technique that works as follows: The cloaking region of the
first query is generated randomly. For each subsequent
query, we control the generation of cloaking regions to
maximize the cloaking quality in terms of entropy as defined
in (1), that is, given that the server observes a cloaking region
together with any series of historical cloaking regions, the
derivable probability for the user to be located at any point in
the cloaking region is equal.

5.1 Problem Formulation

We consider a general user mobility pattern that is known
to the mobile client. We assume, in the worst case, that the
adversary also knows the user mobility pattern and, thus,
has the potential to conduct trace analysis attacks. The user
mobility pattern may be built by the adversary based on
traces (of nonprivacy-conscious users of the same type) or
mobility scenarios (e.g., the random walk model is good to
model the mobility pattern of pedestrians in small-scale
urban areas) [17].

Denote by O the center of the cloaking region produced

for the last query (with a radius of r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amin=�

p
). Assume

that at the time of the last query, the probability for the user

to be located at any point in the last cloaking region is equal.

Suppose that the user moves in all directions with equal

probability. Let uðxÞ be the probability density function of

the new user location being distance x away from O at the

time of the new query. It follows thatZ D

0

uðxÞdx ¼ 1; ð5Þ

where D is the farthest possible distance that the user can
travel since the last query, D ¼ minfy j 8x � y; uðxÞ ¼ 0g.

Denote by O0 the center of the new cloaking region.
Suppose that the generation of the new cloaking region is
governed by the probability density function pðz j yÞ for
making O0 distance z away from O given that the user is
distanceyawayfromOat the timeof thenewquery(seeFig.6).
In order for the new cloaking region to cover the user,O0must
be within a distance of r from the user’s new location, i.e.,
maxf0; y� rg � z � minfD� r; yþ rg. Thus, we haveZ minfD�r;yþrg

maxf0;y�rg
pðz j yÞdz ¼ 1: ð6Þ

Our goal is to determine the pðz j yÞ function such that
the derivable probability for the new user to be located at
any point is uniform across the new cloaking region, i.e., to
maximize entropy. To mathematically characterize this
objective, we define qðy j zÞ as the derivable probability
density function of the new user location being distance y
away from the center O of the last cloaking region given
that the center O0 of the new cloaking region is distance z
away from O. For the user to be equally possible at any
point in the new cloaking region, qðy j zÞ should be
proportional to the length of the arc (centered at O and
with radius y) overlapping with the new cloaking region (as
indicated by the solid arc in Fig. 7b; hereafter, referred to as
the overlapping arc length). Below we analyze the value of
qðy j zÞ under maximum-entropy cloaking.

. Assume z � r. If 0 � y � z� r (Fig. 7a) or y � zþ r
(Fig. 7c), the overlapping arc length is 0. If z� r � y �
zþ r (Fig. 7b), the overlapping arc length is

2�y ¼ 2 � arccos y
2þz2�r2

2yz � y. Therefore, after normaliz-

ing by the integration over the possible range of

y values in which qðy j zÞ is not zero, we obtain

qðyjzÞ ¼

2 � arccos
y2 þ z2 � r2

2yz
� y

R zþr
z�r 2 � arccos

y2 þ z2 � r2

2yz
� ydy

;

if z� r � y � zþ r;
0; otherwise:

8>>>>>><>>>>>>:
ð7Þ
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2. To allow for fair comparison, both the circular and square cloaking
regions are formed with the query point at the centroid.

Fig. 5. Size of the kNN results. (a) Uniform data set. (b) California data
set.

Fig. 6. Last and new cloaking regions.



. Assume z < r. If 0 � y � r� z (Fig. 8a), the over-

lapping arc length is 2�y. If r� z � y � zþ r (Fig. 8b),

the overlapping arc length is 2�y ¼ 2 � arccos y
2þz2�r2

2yz �
y. If y � zþ r (Fig. 8c), the overlapping arc length is 0.

Therefore, after normalization, we obtain

qðy j zÞ ¼
2�y

�ðr� zÞ2 þ
R zþr
r�z 2 � arccos

y2 þ z2 � r2

2yz
� ydy

;

if 0 � y � r� z;

2 � arccos
y2 þ z2 � r2

2yz
� y

�ðr� zÞ2 þ
R zþr
r�z 2 � arccos

y2 þ z2 � r2

2yz
� ydy

;

if r� z � y � zþ r;
0; otherwise:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð8Þ

Having known qðy j zÞ as expressed in (7) and (8) under
maximum-entropy cloaking, our problem becomes to deter-
mine pðz j yÞ given qðy j zÞ. Note that the relation between
pðz j yÞ and qðy j zÞ can be established by the Bayes’ rule, i.e.,

qðy j zÞ ¼ pðz j yÞ � uðyÞRminfR�r;xþrg
maxf0;x�rg pðz j xÞ � uðxÞdx

: ð9Þ

We will discuss how to solve pðz j yÞ from (6), (7), (8),
and (9) in the next section.

We remark that in our approach, only the last cloaking
region is needed to generate a new maximum-entropy
cloaking region. The following theorem shows the correct-
ness of this approach.

Theorem 3. Given that the server observes the new cloaking
region and all historical cloaking regions, the derivable
probability is equal for the user to be located at any point in
the new cloaking region.

Proof. Denote by ðxn; ynÞ the user’s location and Gn the

cloaking region at the time of the nth query. Define

pðxn; ynÞ as the derivable probability density function

of the user being at location ðxn; ynÞ in region Gn. We

prove the claim by induction: given that the server

observes G1-Gn, for any two points ðxn; ynÞ; ðx0n; y0nÞ in

Gn; pðxn; ynÞ ¼ pðx0n; y0nÞ.

First, it is obvious that pðx1; y1Þ ¼ pðx01; y01Þ for n ¼ 1
since the first cloaking region is randomly generated.

Next, we assume that the claim holds for somen (n � 1).
Then, pðxn; ynÞ is a constant 1

�r2 . We are going to prove that
the claim also holds for nþ 1. Given G1-Gnþ1, for any two
points ðxnþ1; ynþ1Þ; ðx0nþ1; y

0
nþ1Þ in Gnþ1, we have

pðxnþ1; ynþ1Þ

¼
ZZ

Gn

pððxnþ1; ynþ1Þ; ðxn; ynÞÞ dxndyn

¼
ZZ

Gn

pððxnþ1; ynþ1Þjðxn; ynÞÞ � pðxn; ynÞ dxndyn

¼
ZZ

Gn

pððxnþ1; ynþ1Þjðxn; ynÞÞ �
1

�r2
dxndyn;

and similarly,

pðx0nþ1; y
0
nþ1Þ ¼

ZZ
Gn

pððx0nþ1; y
0
nþ1Þjðxn; ynÞÞ �

1

�r2
dxndyn:

Satisfying (7) and (8), our cloaking approach ensuresZZ
Gn

pððxnþ1; ynþ1Þjðxn; ynÞÞ �
1

�r2
dxndyn

¼
ZZ

Gn

pððx0nþ1; y
0
nþ1Þjðxn; ynÞÞ �

1

�r2
dxndyn:

Hence, pðxnþ1; ynþ1Þ ¼ pðx0nþ1; y
0
nþ1Þ, and the theorem

follows. tu

5.2 Problem Discretization

Now what we are left is to solve pðz j yÞ from (6), (7), (8), and
(9). Unfortunately, a closed-form solution is difficult to
obtain. In this section, we present a discretization-based
numerical method. We divide the plane into a set of rings of
sufficiently small width �. The rings are centered at O. As
shown in Fig. 9, ring 1 is enclosed by a circle centered atOwith
a radius of �, i.e., ring 1 contains all points that are within
distance � from O. For each i > 1, ring i is enclosed by two
circles centered at O with radii of ði� 1Þ� and i�,
respectively, i.e., ring i includes all points that are ði� 1Þ�
to i� away from O.

Without loss of generality, we assume that the radius of a
region r ¼ K�, and the farthest possible distance that the
user can travel since the last query D ¼ L�, where K and L

are integers. Based on the assumption of mobility pattern,
the probability UðiÞ of the new user location being in ring i
is given by UðiÞ ¼

R i�
ði�1Þ� uðxÞdx, and it follows that

Uð1Þ þ Uð2Þ þ � � � þ UðLÞ ¼ 1:
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We define QðijjÞ as the probability of the new user

location being in ring i given that the center of the new

region is in ring j. For ring i, we use the average radius of

two enclosing circles (i.e., (i�þ ði� 1Þ�Þ=2 ¼ ði� 1=2Þ�)

to approximate its distance to O. Thus, following (7) and (8),

QðijjÞ is given as follows: If j � K,

QðijjÞ ¼

arccos
ði� 1

2Þ
2 þ ðj� 1

2Þ
2 �K2

2ði� 1
2Þðj� 1

2Þ
� ði� 1

2
Þ

PjþK�1

m¼j�Kþ1
arccos

ðm� 1
2Þ

2 þ ðj� 1
2Þ

2 �K2

2ðm� 1
2Þðj� 1

2Þ
� ðm� 1

2
Þ
;

if j�K þ 1 � i � jþK � 1;

0; otherwise:

8>>>>>>>><>>>>>>>>:
ð10Þ

If j < K,

QðijjÞ ¼
�ði� 1

2ÞPK�j
m¼1 �ðm� 1

2Þþ
PjþK�1

m¼K�jþ1 arccos
ðm�1

2Þ
2þðj�1

2Þ
2�K2

2ðm�1
2Þðj�1

2Þ
� ðm� 1

2Þ
;

if 1 � i � K � j;

arccos
ði�1

2Þ
2þðj�1

2Þ
2�K2

2ði�1
2Þðj�1

2Þ
� ði� 1

2ÞPK�j
m¼1 �ðm� 1

2Þþ
PjþK�1

m¼K�jþ1 arccos
ðm�1

2Þ
2þðj�1

2Þ
2�K2

2ðm�1
2Þðj�1

2Þ
� ðm� 1

2Þ
;

if K � jþ 1 � i � jþK � 1;

0; otherwise:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð11Þ

What we want to find out is P ðj j iÞ—the probability of

the center of the new region being in ring j given that the new

user location is in ring i. Following (6), the definable

probabilities are listed as a matrix in Fig. 10. The sum of

each row in the matrix equals 1, i.e.,
PminfL�Kþ1;iþK�1g

j¼maxf1;i�Kþ1g
P ðj j iÞ ¼ 1. After discretization, our problem becomes to

determine P ðj j iÞ givenQði j jÞ as expressed in (10) and (11).
Following the Bayes’ rule, for any i and j,

P ðj j iÞ ¼ Qði j jÞ
UðiÞ �

X
m

ðP ðj j mÞ � UðmÞÞ:

Let vj ¼
P

mðP ðj j mÞ � UðmÞÞ. Thus, we have

P ðj j iÞ ¼ Qði j jÞ
UðiÞ � vj: ð12Þ

The matrix we want to compute can be rewritten as
shown in Fig. 11. Our problem further becomes to find
v1; v2; . . . ; vL�Kþ1 such that the sum of each row in the
matrix equals 1:

XminfL�Kþ1;iþK�1g

j¼maxf1;i�Kþ1g
P ðj j iÞ

¼
XminfL�Kþ1;iþK�1g

j¼maxf1;i�Kþ1g

Qði j jÞ
UðiÞ vj ¼ 1; 1 � i � L;

vj � 0; 1 � j � L�K þ 1:

8>>>>>>><>>>>>>>:
ð13Þ

5.3 Practical Cloaking Algorithms

The linear equation set (13) does not always have a feasible
solution since the number of equations (L) is more than the
number of variables (L�K þ 1). Thus, we have to relax
some of the constraints. To this end, we allow the sum of
each row in the matrix to be less than 1, i.e., user locations
may not be cloaked for some queries. Thus, the set of linear
equations is relaxed to

XminfL�Kþ1;iþK�1g

j¼maxf1;i�Kþ1g

Qði j jÞ
UðiÞ vj � 1; 1 � i � L;

vj � 0; 1 � j � L�K þ 1:

8><>: ð14Þ

To protect location privacy, the queries whose locations
are not cloaked will be blocked and are not sent to the LBS
server. To answer blocked queries, we propose to cache the
last result superset for potential reuse. Note that the
amount of cache memory needed is minimal since only
the result superset for the last query is cached. In fact, if a
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new query is issued from ring i � K (i.e., from the last
cloaking region; called inner query), we should block it in
order to save communication cost as the precise results can
be computed from the cached result superset. Thus, all the
inner queries are blocked, except those sent to the server to
achieve optimal cloaking. On the other hand, if a query
issued from ring i > K (called outer query) is blocked, the
client might obtain inaccurate query results on the cached
result superset and, hence, the accuracy of query results
might be sacrificed. Therefore, we formulate two linear
programs with different objective functions:

MaxAccu_Cloak:

minimize 1�
XL
i¼Kþ1

XminfL�Kþ1;iþK�1g

j¼maxf1;i�Kþ1g

QðijjÞ
UðiÞ vj

0@ 1A: ð15Þ

MinComm_Cloak:

minimize 1�
XL
i¼Kþ1

XminfL�Kþ1;iþK�1g

j¼maxf1;i�Kþ1g

QðijjÞ
UðiÞ vj

0@ 1A
� 1�

XK
i¼1

XminfL�Kþ1;iþK�1g

j¼maxf1;i�Kþ1g

QðijjÞ
UðiÞ vj

0@ 1A:
ð16Þ

The first objective function MaxAccu_Cloak attempts to
minimize the outer query blocking probability for
i ¼ K þ 1; K þ 2; . . . ; L, thereby, maximizing the query
accuracy. In contrast, the second MinComm_Cloak trades
query accuracy for communication cost. It also aims to
maximize the inner query blocking probability for i ¼
1; 2; . . . ; K to increase the result reuse rate and save remote
queries. The performance of these two cloaking algorithms
will be evaluated by experiments in Section 7.3.

On solving the linear program and obtaining
v1; v2; . . . ; vL�Kþ1, we can compute P ðjjiÞs using (12). Then,
given a new query with user location in ring i, the query has
a probability of ð1�

P
j P ðjjiÞÞ to be blocked. If the query is

not blocked, the distance between the new cloaking region
and the last cloaking region can be randomly generated
based on the probabilities of P ðjjiÞs. Given the distance, the
center of the new cloaking region can be randomly generated
on the corresponding arc. A summary of the optimal mobile-
aware cloaking technique is described in Algorithm 1.

Algorithm 1. Mobility-Aware Location Cloaking

Input: mobility pattern Uð�Þ, last cloaking region centered

at O, new user location in ring i

Output: the center of the new cloaking region

Procedure:

1: compute Qði j jÞs using (10) and (11)

2: construct a linear program formed by (14) and (15) (for

MaxAccu_Cloak), or (14) and (16) (for MinComm_

Cloak), depending on the performance objective

3: solve the linear program to get vj’s

4: compute P ðj j iÞs using (12)

5: determine whether the query is blocked based on the

probability of ð1�
P

j P ðj j iÞÞ
6: if the query is not blocked then

7: generate the distance of the new cloaking region

from O by following P ðj j iÞs
8: randomly generate the center of the new region on

the corresponding arc

6 REGION-BASED QUERY PROCESSING

This section discusses how to process circular-region-based
queries on the server side. The evaluation of a region-based
range query is straightforward since it is still a range query
(with an extended range), which simply retrieves all the
objects within the spatial range. Thus, we focus on the
evaluation of circular-region-based kNN queries (hereafter
called kCRNN queries) in this section. Following Theorem 1,
the results of a kCRNN query include all the objects in the
circular region as well as the kNNs of the points on the
perimeter of the circle (denoted by �).

In the following, we propose two kCRNN processing
algorithms: a bulk algorithm that generates the query results
all at once at the end of query evaluation and a progressive
algorithm that produces the results incrementally during
query evaluation.

6.1 Bulk Query Processing of kCRNN

Denote the set of spatial objects by fp1; p2; . . . ; pMg. The basic
idea is to scan the objects one by one, and during each scan
we maintain the set of arcs on � for each object to which this
object is the 1st; 2nd; . . . , and kth NN. The example shown in
Fig. 12a is used to illustrate the idea for a 2CRNN query.
Suppose that there are three objects p1; p2, and p3. Initially, p1

is the first NN to the circumference �. Then, p2 is scanned,
and the perpendicular bisector of p1 and p2 splits � into arcs
� and �. As a result, p2 takes the place of p1 to be the first NN
to �—p1 is the first NN to � and the second NN to �; p2 is the
first NN to � and the second NN to �. Next, p3 is scanned
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and we check it against p1 and p2. The perpendicular
bisectors further split � into �1; �2, and �3, and split � into
�1; �2, and �3. Now p3 takes the place of p1 to be the first NN
for �3 and the second NN for �2; p3 takes the place of p2 to be
the second NN for �2 and the first NN for �1. In general,
when object pi is scanned, initially we assume that pi is
farther away from any arc than any candidate kCRNN
result. Afterward, we check pi against each pj in the
candidate kCRNN result set. Given a pj, the perpendicular
bisector of pj and pi splits the existing arcs at two points at
most. For each of the arcs located on the pi side of the
perpendicular bisector, pj moves backward in the kNN list
(e.g., the second NN becomes the third NN), while pi
advances in the kNN list (e.g., the third NN becomes the
second NN). After each scan, those objects which have at
least one lth-NN arc (l � k) constitute the candidate set of
kCRNN results. The final kCRNN results of � are obtained
by scanning the entire set of objects. Recall that the results of
a kCRNN query also include all the objects in the circular
region. Thus, when scanning the objects, the algorithm also
checks whether they are in the circular region and if so,
includes them in the final kCRNN results.

Furthermore, in order to speed up the convergence of
the kCRNN candidate set, we sort the objects and apply a
heuristic (Heuristic 1) to scan the objects closest to � first
because they are most likely to appear in the final
kCRNN results.

Heuristic 1. The objects are sorted and scanned in the increasing
order of their minimum distances to �. And those objects
whose minimum distances to � are 2r (r is the radius of �)
farther than the kth NN of � are removed from scanning.

The second statement of Heuristic 1 sets a stop condition
for the scan, because those objects that are 2r farther from �

than the current kth NN of � must be farther away from any
point on � than the current kNNs of �. This can be explained
in Fig. 12b for the same 2CRNN query as in Fig. 12a. For the
moment, p1; p2, and p3 are the 2CRNNs of � and p2 is the
second NN of �. The minimum distance fromp2 to �, denoted
bymax kNN dist, is used to prune faraway objects in future
search. More specifically, if any object is more than 2rþ
max kNN dist away from any point on � (i.e., outside the
outermost circle in Fig. 12b), the object does not need to be
scanned since it must be farther away from any point on �
than p2 and p3.

The complete query processing algorithm is described in
Algorithm 2, where the data structure Fðpi; babÞ maintains
the order of object pi to arc bab. We call it a bulk algorithm as
all the candidate kCRNN results are finalized at the end of
query evaluation.

Algorithm 2. Bulk Query Processing of kCRNN
Input: query circle � with radius r, spatial object set S
Output: the kCRNN results of �

Procedure:

1: enqueue the objects in S into a priority queue in

increasing order of their (minimum) distances to �

(denoted by minDistðpi;�Þ)
2: dequeue the first object p1

3: Fðp1;�Þ := 1 // Fðpi; babÞ maintains order of pi to bab
4: cand kCRNN results := fp1g
5: max kNN dist := 1
6: dequeue the next object pi
7: while minDistðpi;�Þ < 2rþmax kNN dist do

8: if pi is inside � then

9: in circle results := in circle results [ pi
10: initialize Fðpi; babÞ := jcand kCRNN resultsj þ 1

for any arc bab // initially assuming pi is farther
// than any candidate kCRNN result

11: for each object pj in cand kCRNN result do

12: split existing arcs by ?pipj—the perpendicular

bisector of pi and pj
13: for any arc bab located on pi side of ?pipj do

14: if entry Fðpj; babÞ exists then Fðpj; babÞþþ
// move pj backward in the kNN list

15: Fðpi; babÞ � � // move pi forward in the list
16: let S be the set of scanned objects including pi;

cand kCRNN results :¼
fpjp 2 S; 9 an arc bab;Fðp; babÞ � kg

17: remove FðÞ entries with Fðp; babÞ > k for p 2 S
18: if i ¼ k then max kNN dist ¼ minDistðpi;�Þ
19: dequeue the next object pi
20: return in circle results [ cand kNN results as the

final results

We now analyze the complexity of Algorithm 2. Given a
kCRNN query with M objects, the while loop iterates
through at most M scans. Since each scan increases the
number of arcs by 2M in the worst case, the total number of
arcs for all candidate kCRNN results is bounded by OðM2Þ.
Each arc can appear in the arc sets of at most k objects. Thus,
the worst case storage complexity is OðkM2Þ. For the time
complexity, each Fðpj; babÞ entry may be updated at most
M times, once in each scan. Hence, the worst-case time
complexity is OðkM3Þ. Nevertheless, in practice the cost
would be far less because the candidate set of kCRNN results
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is normally not large and the scanning may terminate early
with the stop condition proposed in Heuristic 1.

6.2 Progressive Query Processing of kCRNN

The bulk query processing algorithm generates the kCRNN
results at the end of query evaluation. Therefore, the server
cannot start transmitting the results to the client until the
end of query evaluation. We now propose an alternative
progressive query processing algorithm to parallelize the
query evaluation and result transmission.

The idea is to determine whether an object will be a final
kCRNN result earlier. The query progressing procedure
remains the same as in Algorithm 2 except that 1) any object
in in circle results is immediately returned to the client
when it is scanned, and 2) after the scan of each object, we
add a checking procedure (see Algorithm 3). We randomly
pick an unchecked split point on � as the check point, and
go through the list of unscanned objects to compute its full
kNN results. If any of the kNN results has not been
returned to the client, it is output for immediate transmis-
sion. For our running example shown in Fig. 12a, after
scanning p2, we may select s1 as the check point. We then
compute s1’s 2NN results as p1 and p2 and return them
immediately. Compared to the bulk query processing, since
the checking procedure here incurs extra overhead, the
overall query processing time would be increased. Never-
theless, the worst case time complexity remains OðkM3Þ
since the checking procedure adds a complexity of OðkM2Þ
only. On the other hand, the progressive algorithm can start
returning the kCRNN results earlier and, hence, is likely to
result in a shorter user-perceived response time, as will be
demonstrated in Section 7.4.

Algorithm 3. Checking Procedure in Progressive Query

Processing of kCRNN

Input: Fðpi; babÞ entries, the queue of unscanned objects

Output: the kNN results of a check point
Procedure: // this procedure is added to between

// lines 17 and 18 of Algorithm 2

1: randomly select an unchecked split point s as the

check point

2: retrieve the tentative kNN results of s: fpjFðp; babÞ �
k; s 2 babg

3: current kNN distance := distance of the current kth

NN
4: dequeue the next object pi
5: while minDistðpi;�Þ < current kNN distance do

6: if Distðpi; sÞ < current kNN distance then

7: update the tentative kNN results

8: update current kNN distance

9: dequeue the next object pi
10: return the final kNN results if not yet

7 PERFORMANCE EVALUATION

7.1 Experiment Setup

We have developed a testbed [7] to evaluate the performance
of the proposed location cloaking and query processing
algorithms. The client-side query interface and location
cloaking agent were implemented on an O2 Xda Atom Exec
PDA with Intel PXA 27� 520 MHz Processor and 64 MB
RAM. The PDA supports GSM/GPRS/EGDE and WiFi
communications. The LBS server was implemented on a

Redhat 7.3 Linux server with Intel Xeon 2.80 GHz processor
and 2 GB RAM. We assume that the client and the server
communicate through a wireless network at a data transfer
rate of 114 kbps.

The spatial object set used in the experiments contains
2,249,727 objects representing the centroids of the street
segments in California [24]. We normalize the data space to
a unit space and index the spatial objects by an R-tree (with
a page fan-out of 200 and a page occupancy of 70 percent)
[13]. The size of an object record is set at 1 kb. To evaluate a
kCRNN query of a circle �, we first use our previously
developed method [15] as a preprocess to retrieve the kNN
results for the minimum bounding rectangle of �. By
definition, this set of kNN results is a superset of �’s
kCRNN results. The kCRNN processing algorithms devel-
oped in Section 6 are then applied on this superset to get the
kCRNN results of �.

We simulate a well-known random walk model [17], in
which the user moves in steps. In each step, the user selects
a speed and travels along an arbitrary direction for a
duration of 2 min. We test two speed settings: 1) constant
speed: the moving speed is fixed at 0.0003/min; 2) random
speed: for each step, a speed is randomly selected from a
range of [0.0001/min, 0.0005/min]. By default, the random
speed setting is adopted. The user makes privacy-conscious
kNN queries from time to time. The query interval I is set at
4 min by default. The user specifies the privacy requirement
by a radius r (i.e., the minimum acceptable cloaking area is
�r2), with a default setting of 0.001. The size of a kNN query
message is set at 20 bytes. For the numerical method of
optimal location cloaking, � is set at 0.0001, and the
Simplex algorithm is employed to solve the linear program.
The default parameter settings are summarized in Table 1.
The experimental results reported below are averaged over
1,000 randomly generated queries.

7.2 Effectiveness of Mobility-Aware Cloaking

In this section, we compare the proposed optimal mobility-
aware cloaking technique (Algorithm 1) against the isolated
cloaking scheme (described at the beginning of Section 5). For
both the optimal and isolated cloaking techniques, initially a
cloaking region is randomly generated based on the user
location. In other words, the user is equally likely to be at any
location in the cloaking region. We measure the quality of the
cloaking region for a subsequent query in terms of entropy
based on 1,500 sample locations and 1,000 random queries. As
shown in Figs. 13a and 13b, when the query interval is small
(i.e., 1 min), the entropy of isolated cloaking is nearly
20 percent lower than that of optimal cloaking for all queries
tested. With increasing query interval, the average entropy of
isolated cloaking improves (see Fig. 13c) but is still far lower
than that of optimal cloaking. When the query interval is
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8 min, Figs. 13a and 13b show that the entropy of isolated
cloaking is 40 percent lower than that of optimal cloaking for
over 15 percent of the queries tested and 20 percent lower for
over 40 percent of the queries tested. Note that the results
shown here are for one successive query only. With more
successive queries, the quality of isolated cloaking would
further degrade.

To highlight the benefit of achieving higher entropy, we

conduct two possible attacks. Recall that through trace

analysis attacks, the LBS server can derive the probabilities

of the user being at different locations in a cloaking region.

The first attack attempts to limit the possible user location to a

subregion with 95 percent confidence. The second attack

calculates the highest aggregate probability for any subregion

with size equal to 5 percent of the cloaking region. Figs. 14a

and 14b show the results when the number of historical

cloaking regions used in trace analysis attacks is increased

from 1 to 10. We can see from the results that our optimal

cloaking is robust against the attacks: for example, concerning

the first attack (Fig. 14a), the subregion size is as large as

95 percent of the cloaking region since the derivable

probability for the user to be at any location is uniform across

the region. In contrast, with the same level of confidence, the

subregion size under isolated cloaking could be much smaller

due to a skewed probability distribution (see Fig. 14c for a

sample distribution we observed in the experiment). Simi-

larly, concerning the second attack (Fig. 14b), under isolated

cloaking, the server would be able to derive the probability for

the user to be in a subregion of 5 percent size of the cloaking

region with a confidence of 16-99 percent. The confidence for

the same subregion is only 5 percent under optimal cloaking.

7.3 Comparison of Mobility-Aware Cloaking
Algorithms

This section compares the two cloaking algorithms devel-
oped in Section 5 based on the optimal cloaking technique,
namely MaxAccu_Cloak (abbreviated as MaxAccu) and
MinComm_Cloak (abbreviated as MinComm). Recall that
MaxAccu aims at a higher query accuracy by minimizing
the outer query blocking probability while MinComm
attempts to achieve a balance between communication cost
and query accuracy by maximizing the inner query
blocking probability at the same time.

As shown in Fig. 15a, MaxAccu has an outer query
blocking probability of zero. Hence, its query results are
100 percent accurate as shown in Fig. 15b. In contrast,
MinComm has an outer query blocking probability of about
15 percent. For those blocked outer queries, approximate
results are obtained based on cached result supersets. Fig. 15b
shows that the average error (measured by the ratio of the
distance of an approximate kNN result to the actual kNN
distance) is pretty small. In the worst case, the approximate
kNN distance is no more than 2.3 times of the actual distance.

Fig. 15a also shows that MinComm has a much higher
inner query blocking probability than MaxAccu. Recall that
inner queries are sent to the server for evaluation merely for
the purpose of optimal cloaking. They do not affect query
accuracy but communication cost. With more queries
(including both inner and outer queries) being blocked,
the communication cost incurred by MinComm is about
half that of MaxAccu (see Fig. 15c).

7.4 Comparison of kCRNN Query Algorithms

In this section, we evaluate the performance of the bulk and
progressive kCRNN query processing algorithms devel-
oped in Section 6. Fig. 16 shows the user-perceived response
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Fig. 13. Performance of cloaking quality (entropy). (a) Percentile entropy (constant speed). (b) Percentile entropy (random speed). (c) Average

entropy.

Fig. 14. Trace analysis attacks. (a) First attack (95 percent confidence). (b) Second attack (5 percent region). (c) A probability distribution of isolated

cloaking.



time for both algorithms. When k or r is small, the bulk and
progressive algorithms perform similarly. However, when k
or r is large, the progressive algorithm clearly outperforms
the bulk algorithm. To explain, we show in Figs. 17a and
17b the timeline performance of two sample queries with
r ¼ 0:25� 10�3 and r ¼ 4� 10�3, respectively. For the query
with r ¼ 0:25� 10�3 (Fig. 17a), both the bulk and progres-
sive algorithms took a short time to process. Thus,
parallelizing the query evaluation and result transmission
does not help a lot in user-perceived response time. On the
other hand, when r ¼ 4� 10�3 (Fig. 17b), the result superset
size is large and the query requires a long time (over
1,000 ms) to evaluate; then by returning the kCRNN results
incrementally, the progressive algorithm completes the
result transmission earlier.

7.5 End-to-End System Performance

This section evaluates the end-to-end system performance.
In this set of experiments, we used the progressive kCRNN
query processing. In addition to the MaxAccu and
MinComm cloaking algorithms, the existing isolated cloak-
ing method is also included for comparison. For all the

cloaking algorithms, the inner queries (i.e., the queries
inside the last cloaking region) reuse cached result super-
sets and compute their answers immediately. The inner
queries are not sent to the server by default. However, with
MaxAccu and MinComm, some of them might need to be
sent to the server to achieve optimal cloaking, depending
on the inner query blocking probability. Moreover, as
discussed before, the blocked outer queries for MaxAccu
and MinComm compute their approximate kNN results
based on cached result supersets.

Figs. 18a and 18b show the average end-to-end query
latency, which is defined as the period from the time when the
user issues a location-based query to the time when the exact
query results are obtained. It can be seen that MinComm
outperforms MaxAccu in all cases tested. This is explained as
follows: As shown in Fig. 18c, the query evaluation and result
transmission time dominates the overall query latency. Since
MinComm has a higher outer query blocking rate and hence a
higher result reuse rate (Fig. 18d), it results in a lower average
query latency. For the same reason, MinComm outperforms
Isolated when the region size is small (see Fig. 18b). When the
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Fig. 15. Performance comparison of cloaking algorithms. (a) Query blocking probability. (b) Query accuracy. (c) Communication cost.

Fig. 16. Performance comparison of kCRNN query processing algorithms. (a) Varying k (r ¼ 0:001). (b) Varying region size (k ¼ 5).

Fig. 17. Timeline performance. (a) k ¼ 5; r ¼ 0:00025 and (b) k ¼ 5; r ¼ 0:004.



region size is large, Isolated performs better than both
MaxAccu and MinComm due to a higher result reuse rate.
Their relative performance is insensitive to the value of k (see
Fig. 18a).

Figs. 18e and 18f show the average amount of network
traffic incurred for each query, which is a good indicator of
energy consumption on the client. The less is the network
traffic, the lower is the energy consumption. As expected,
MinComm incurs less network traffic than MaxAccu due to a
higher query blocking rate. Both MaxAccu and MinComm
are competitive compared to Isolated; in particular, Min-
Comm outperforms Isolated for most cases tested. Summar-
izing the results of Figs. 13 and 18, it can be concluded that the
price to pay for resisting trace analysis attacks is not high. Our
proposed MaxAccu and MinComm cloaking algorithms
improve the cloaking quality over Isolated without compro-
mising much on query latency or communication cost (and
sometimes performing even better).

8 CONCLUSION

This paper has presented a complete study on processing
privacy-conscious location-based queries in mobile environ-
ments. We have studied the representation of cloaking
regions and showed that a circular region generally leads to
a small result superset. We have developed a mobility-aware
location cloaking technique to resist trace analysis attacks.
Two cloaking algorithms, namely MaxAccu_Cloak and Min-
Comm_Cloak, have been designed to favor different perfor-
mance objectives. We have also developed two efficient
polynomial algorithms, namely bulk and progressive, for
processing circular-region-based kNN queries. In addition,
we have conducted simulation experiments to evaluate the
proposed algorithms. Experimental results show that the
mobility-aware cloaking algorithms are robust against trace
analysis attacks without compromising much on query

latency or communication cost. MaxAccu_Cloak gets a
100 percent query accuracy while MinComm_Cloak achieves
a good balance between communication cost and query
accuracy. It is also shown that the progressive query
processing algorithm generally achieves a shorter user-
perceived response time than the bulk algorithm.

As for future work, we are going to extend the mobility-

aware location cloaking technique to other privacy metrics

(e.g., the k-anonymity model and the l-diversity model) and

road networks. We are also interested in investigating

mobility-aware peer-to-peer cloaking techniques.
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