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I. INTRODUCTION

Location-based services (LBS) are mobile content services
that provide location-related information to users. However, in
order to enjoy such services, the mobile user must explicitly
expose his/her accurate location to the server. A typical exam-
ple is a k-nearest-neighbor (kNN) query shown in Fig. 1(a).
The user o sends out his/her accurate location and asks for the
nearest restaurant. Upon receiving the kNN query, the server
returns the name and address of the nearest restaurant (which
is g), and other up-to-minute information, such as menu, table
reservation status and customer reviews.
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(a) Nearest Neighbor Query
Fig. 1.

(b) Range Nearest Neighbor Query
Location Privacy in kNN Queries

Mobile users see their location privacy compromised in
exchange for services (e.g., finding the nearest restaurant).
This issue has been receiving arising concerns from both the
research community and the public [4], [23], [21], particularly
when some locations (e.g., clinics, police stations) can lead
to sensitive information such as medical conditions and legal
affairs. To address this issue, an intuitive solution is to cache
the whole dataset on the mobile device and resolve location-
based queries locally. However, due to limited resources of
the mobile device, this solution is neither scalable to large
datasets nor robust to data updates [25]. Thus, researchers
have recently been interested in developing online privacy-
aware data access techniques [15], [12], [30], [3], [8], [26].
Along this line, location cloaking has been proposed to blur
the user locations when they request services [15], [12], [23],
[19]. The idea is to replace the accurate user location in the
request with a well-shaped cloaked region (usually a circle
or a rectangle), according to some privacy metric such as
granularity [23], [27], [17], [22] (the area of this region must
exceed a threshold) or K-anonymity [15], [12] (this region
must contain at least K users). A kNN query with such a
cloaked region is called a k-range-nearest-neighbor (KRNN)
query [16], and the server returns to the user the kNNs of
all points inside this region. Finally, the user refines the
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genuine kNNs from the kRNN query results, based on the
accurate user location. In other words, to protect location
privacy, the user requests a superset of kNN results from
the server, thereby trading network bandwidth for location
privacy. Fig. 1(b) shows a l-range-nearest-neighbor (RNN)
query (with the dashed-line box as the cloaked region) when
location cloaking is applied to the NN query in Fig. 1(a). In
this example, the server returns not only the genuine result g
for the NN query, but also g; and g, because they are the
NNs for some points in the cloaked region.

In effect, location cloaking achieves privacy at the cost of re-
questing non-result objects (e.g., g1 and go) together with their
contents (e.g., menu, customer reviews). Since the contents are
usually web pages that include texts, images and even videos,
their sizes could be significant. Moreover, the larger is the
cloaked region, the more privacy is preserved, but the contents
of more non-result objects are requested. Requesting these
contents waste precious network bandwidth, consume device
battery, and charge the user more than necessary. Therefore, an
important issue is how to control location cloaking in order
to minimize the number of non-result objects. This issue is
especially critical in a client-server environment where the
mobile user cannot rely on any trusted third party for location
cloaking and service request. Whereas a number of location
cloaking algorithms have been proposed for different privacy
metrics (e.g., [15], [12], [23], [19], [9], [32]), their objective
is always to minimize the size of the cloaked region, and thus
only indirectly minimizing the bandwidth. Yet an integration
of location cloaking with subsequent service request has not
been explored in the literature. For example, in Fig. 1(b) if
the user knows more restaurants are in the west than in the
east of this user, the cloaked region could move more towards
the east to avoid receiving too many objects during the kKRNN
search.

In this paper, we develop an innovative result-aware loca-
tion cloaking approach for client-server environments, called
2PASS (2-Phase Asynchronous Secure Search), based on a
notion of Voronoi cells. Voronoi cells are a set of disjoint space
partitions such that 1) each object corresponds to a Voronoi
cell; and 2) each object is the nearest neighbor of any point in
its Voronoi cell [5]. For example, the shaded region in Fig. 1(b)
is the Voronoi cell of g; and the nearest restaurant is g for
any point in this cell. If the user knows the Voronoi cells
in advance, he/she can set the cloaked region to the Voronoi
cell of the nearest neighbor object (that is, the user requests
only this object). This is the best a user can get for an NN
query — the cloaked region spans the entire cell, the result
object is requested, and no non-result objects are requested —
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a saving of 67% in bandwidth usage compared to the RNN
approach in Fig. 1(b). 2PASS works under the granularity
metric, which is the predominant privacy definition in client-
server environments, for its simplicity and user-friendliness.'
If a single cell still does not meet the privacy requirement,
that is, the area of this cell is smaller than the threshold, then
the cloaked region must span more cells, which means the
user must request more objects. To minimize the number of
non-result objects, we reduce this problem to the k-minimum
spanning tree (k-MST) problem and provide an efficient and
yet close-to-optimal algorithm to select objects to request.

Furthermore, due to limited storage capacity, the client may
not have the complete Voronoi cell information cached locally.
Thus, our 2PASS approach processes a kNN query in two
phases. In the first phase, the client requests the Voronoi cell
information relevant to the query, based on which it selects
objects to request in the second phase. Since the delivery of
such information also consumes network bandwidth, its struc-
ture must be kept concise. In this paper, we propose a WAG-
tree index that encapsulates the Voronoi cell information. This
index possesses the following features: 1) by requesting pieces
of this index, the user does not suffer from any privacy loss,
i.e., the server gets no additional information about the user
location, except that he/she is in one of the Voronoi cells of
requested objects; and 2) the index is lightweight, i.e., not only
its size is small so as to save bandwidth, but also the user can
easily compute the requested objects from it. Based on the
WAG-tree index, we develop the client and server procedures
for the 2PASS approach, which are also lightweight in terms
of CPU cost.

To summarize, our contributions in this paper are as follows:

o To the best of our knowledge, this is the first study that
explores the connection between location cloaking and
bandwidth usage of requested services.

o Based on the notion of Voronoi cells, we develop an
innovative 2PASS location cloaking approach that aims
to minimize the bandwidth while still protecting user
privacy. Through analysis and experiments, this approach
is shown to significantly outperform existing approaches
and remain robust against various threat models.

e 2PASS is applicable to the granularity privacy metric,
and can be extended to other common types of location-
based services. A case study application is developed to
demonstrate the feasibility of 2PASS.

o We design a lightweight WAG-tree index that facilitates
the access of the Voronoi cell information for 2PASS. We
show that the bandwidth overhead incurred by this index
is negligible compared with the bandwidth it saves from
non-result objects.

The rest of the paper proceeds as follows. Section II re-
views existing work on privacy-aware location-based services.
Section III presents the proposed 2PASS approach for NN
queries, followed by Section IV that extends this approach to
kNN queries and service allocation queries in general. Further
discussions on the privacy protection and security of the

! K -anonymity, on the other hand, requires a trusted third party to monitor
and collect location information of all users.

2PASS approach are presented in Section V. The experimental
results are shown in Section VI. Section VII describes a case
study of the 2PASS approach, followed by the concluding
remarks in Section VIII.

II. RELATED WORK

Privacy awareness in mobile computing and location-based
services has been extensively studied in the recent litera-
ture. The objective is to allow the mobile user to request
services without compromising his/her privacy, especially lo-
cation privacy. Various privacy protection techniques have
been proposed. Based on the underlying methodologies, these
techniques can be divided into three categories: pseudonym,
dummy, and cloaking. Pseudonym decouples the mapping
between the user identity and the location so that an untrusted
server only receives the location without the user identity [24],
[4]. However, such a technique is limited to those location-
based services that do not require the user’s identity. In
particular, the lack of user identity makes the billing of these
services impossible. Dummy generates fake user locations
(called dummies) and mixes them together with the genuine
user location into the request [20]. However, by monitoring
long-term movement patterns of the user, the server may
distinguish the genuine location from dummies. You et al.
enhance this technique by generating consistent movement
patterns for dummies in a long run [33]. Ghinita ef al. pro-
posed a novel framework that is based on Private Information
Retrieval (PIR) [14]. The framework partitions the space into
grid cells and then the user requests the content of the cell
where he/she is located. Thanks to PIR, the user can hide
which cell is requested while receiving the correct content. By
setting the content of a cell to its range nearest neighbors, this
framework can support NN queries. The framework guarantees
the user to disclose nothing to the server, but at a high cost. To
guarantee perfect privacy, this framework needs a large number
of modulus bits to ensure PIR is computationally secure. This
leads to significant overhead in terms of both computational
and communication costs, compared with location cloaking
techniques. For large datasets where the content size of an
object can easily reach kilo- or even mega-bytes, PIR becomes
unaffordable or as costly as requesting the entire dataset.

Cloaking has attracted intensive research as a solution to
privacy protection. Gruteser and Grunwald were the first to
propose spatio-temporal cloaking [15], where a trusted middle-
ware generalizes (i.c., cloaks) the spatial and temporal extents
of the user location so that this user satisfies K -anonymity,
i.e., he/she is indistinguishable from at least K — 1 other
users with the same generalized location. More specifically,
the middleware indexes all user locations using a quad-tree.
Upon receiving a request, the middleware traverses the quad-
tree until the smallest quadrant that contains the user of this
request and other K — 1 users is found. This quadrant is the
cloaked region for this request. Gedik and Liu considered
a personalized anonymization model and proposed “Clique-
Cloak,” which constructs a clique graph to combine clients
that can share the same cloaked region [12], [13]. Mokbel et
al. proposed the Casper framework for location-based spatial
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Abbreviation Full Term

WAG Weighted Adjacency Graph

MVWCC Minimum Valid-Weight Connected Component
VWCC Valid-Weight Connected Component

k-MST k-Minimum Spanning Tree

k-ST k-Spanning Tree

RNN Range Nearest Neighbor

TABLE 1
GLOSSARY OF ABBREVIATIONS

queries [23]. A grid-based cloaking algorithm was suggested
on the anonymizer for both the K -anonymity and granularity
metrics. Chow et al. studied location cloaking in a peer-to-peer
environment [9]. The main idea is to let the client form a group
from his/her peers via multi-hop communication. The cloaked
region of any subsequent request is then a region that covers all
peers in this group. Kalnis er al. identified reciprocity, a suf-
ficient property for spatial K -anonymity [19]. They proposed
two cloaking algorithms, namely, nearest neighbor cloaking
(NNC) and Hilbert cloaking (HC, which satisfies reciprocity).
In HC, all user locations are sorted by Hilbert space-filling
curve ordering, and then users are grouped together in this
order. Xu and Cai recently studied location cloaking based on
historical trajectories for continuous location-based services
[31] and mobile ad-hoc networks [32]. We also studied loca-
tion cloaking for continuous LBS and proposed two cloaking
algorithms that are aware of user mobility pattern and resist
trace analysis attacks [30].

Our research is essentially a result-aware location cloaking
approach. It is different from existing cloaking approaches in
that the objective is to minimize the number of requested
objects, as this determines the cloaking overhead such as
bandwidth usage, device energy consumption, and operational
charge from a user’s perspective.

ITI. 2PASS FOR NN QUERY

In this section, we first introduce some preliminaries and
the system model, followed by an overview of the 2PASS
approach. Then we thoroughly study the client-side and
server-side procedures in this approach. Finally, we propose
the WAG-tree index which scales up the approach to large
datasets. For the ease of presentation, we list in Table I the
abbreviations used in this paper.

A. Voronoi Diagram and Weighted Adjacency Graph

Given a set of n objects, a Voronoi diagram divides the
space into n partitions [5]. Each partition is called a Voronoi
cell and corresponds to one object. The cell is in such a
shape that the nearest neighbor of any point in this cell is the
corresponding object. Fig. 2(a) shows an example of Voronoi
diagram with 6 objects a through f. The solid lines show
the borders of Voronoi cells, and the dotted lines connect the
objects whose cells are adjacent. These latter lines divide the
space into partitions of a special shape — triangles. As such,
the set of these lines is called Delaunay triangulation of the
space. It is noteworthy, however, if the space is bounded, these
dotted lines might not form a closed Delaunay triangulation
because two cells might share a border at somewhere beyond
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(a) Voronoi Diagram (solid lines are cell bor-  (b) Weighted Adjacency Graph

ders, dotted lines are Delaunay triangulation)
Fig. 2. Voronoi Diagram and WAG

the bounded space. For example, in the rectangular space of
Fig. 2(a), there is no dotted line between objects a and d,
because their Voronoi cells are not adjacent in this space,
although they share a border outside the space.

We design a weighted undirected graph to store the Voronoi
diagram and Delaunay triangulation. As shown in Fig. 2(b),
each vertex in this graph denotes an object, and each edge
denotes a line in the Delaunay triangulation. Each vertex
is also assigned a non-negative weight w; (to be detailed in
the next subsection). We call this graph a weighted adjacency
graph (WAG) in the sequel. It is noteworthy that a WAG is
a special weighted graph, because its vertices, instead of its
edges are weighted.

B. System and Privacy Model

In this subsection, we describe the system model and
privacy assumptions. As shown in Fig. 3, a mobile user
wants to request a location-based service (e.g., finding the
nearest restaurant) from the LBS server. The traditional loca-
tion cloaking approaches protect location privacy as follows.
Before requesting the service, the user should invoke location
cloaking, which obtains for this user a cloaked region that
satisfies the privacy metric (step @). In this paper, we focus on
the granularity privacy metric, so location cloaking generates
a random cloaked region that encloses the user’s genuine loca-
tion and whose area is no less than a user-specified threshold
7. The user then attaches this region (e.g., [22.30N114.18E,
22.31N114.20E] by the longitude-latitude coordinates), instead
of the accurate location, in the service request (step @). Upon
receiving this request, the server processes it and returns the
resulted objects (step @).

(m traditional approach

restaurant: (22.30N114.18E,22.31N114.20E)
Mille's, Maxim's + nearest restaurant

A b
request local WAG info. ’

2PASS

@ location >
cloaking :local WAG info.
Qo
\__3 objects to r(?quest :
mobile user @ cloaked region + query

LBS server

<
<

@ returned objects

Fig. 3. System Model

Fig. 3 also shows how 2PASS differs from traditional cloak-
ing approaches. In 2PASS, the cloaked region is not blindly
generated without knowing the dataset; rather, 2PASS is aware
of the spatial locations of the objects and directly requests
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contents of result objects from the server instead of sending
out an explicit cloaked region. To achieve this, 2PASS works
in two phases. In the first phase (steps @@), the client requests
from the server a WAG of its neighborhood area, where the
weight of a vertex is the area of the corresponding Voronoi
cell. In the second phase (steps ©@), the client selects objects
from this WAG (e.g., two restaurants Mille’s and Maxim’s)
and requests them for their complete contents (e.g., map,
customer reviews, and reservation status). Without additional
information, the server can only know that the client is in the
(implicit) cloaked region implied by these requested objects.
In this sense, the client controls the objects to be returned and
minimizes their number and hence the total bandwidth usage
while still satisfying the privacy requirement.

In general, 2PASS follows a simple client-server architec-
ture and is oblivious to the underlying type of service. The
rest of this section starts with NN queries, followed by kNN
queries in Section IV-A and other query types in Section IV-B
kNN.

C. Overview of 2PASS

Based on the Voronoi cell information, 2PASS requests the
objects (including the genuine NN together with other non-
result objects) to satisfy the privacy requirement on the cloaked
region, which is implied by these requested objects. 2PASS is
unique in that the client controls what objects to request from
the server so that their total number and thus the overall band-
width are minimized. To minimize the object number while
still meeting the privacy threshold 7, the criteria of object
selection are a combination of the following: (1) the sum
of the areas of Voronoi cells from the selected objects must
exceed 7; (2) the genuine nearest neighbor o* must be selected;
and (3) these Voronoi cells must be connected, i.e., no cell is
isolated from the rest of the cells. The last criterion guarantees
the cloaked region is a single region, which is a common
assumption in all existing location cloaking approaches [15],
[12], [23], [19], [9]. Besides, the single-region assumption
not only adapts to most location-based services which readily
accept a single location as the input, but also alleviates some
security problems. For example, a single region is more
resilient than isolated regions against background or domain
knowledge attacks. With the introduction of WAG, the above
object selection is equivalent to finding a subgraph in the WAG
that satisfies the following criteria: (1) the sum of the weights
of vertices in the subgraph must exceed 7; (2) o* must be
in the subgraph; and (3) this subgraph must be a connected
component. In the sequel, we call such a subgraph a “valid-
weight connected component” (VWCC) of a query, and the
objective of 2PASS is to find a VWCC with the minimum
number of vertices. We formalize this problem as follows:

Problem 3.1: Minimum Valid-Weight Connected Com-
ponent (MVWCC) Problem: Given a WAG G, the privacy
threshold 7, and the genuine NN object o*, the problem is to
find a VWCC that has the minimum number of vertices.

A naive solution to this problem is to grow all connected
components starting from o* and stop when a VWCC is found
with no other VWCC having fewer vertices. To achieve this,

18 subsidiary / f, 14 subsidiary
- Ao - e
NS 7 subsidiary

— F— 1 ed

S INSCHS :

13 subsidiary 21 subsidiary 21 subsidiary
Fig. 4. Reduce MVWCC Problem to k-MST

we use a priority queue to sort all growing components by the
numbers of vertices, breaking tie by the sum of vertex weights.
Each time we pop up the top component in the queue and
insert components grown from it by appending one adjacent
vertex. The algorithm terminates when the first VWCC is
popped up. To prevent components from being grown more
than once, any component must be checked for duplicates in
the queue before it is inserted.

D. Approximate MVWCC Algorithm

Obviously, the naive solution is inefficient when 7 is large,
because in the worst case all components whose sums of
weights are less than 7 are grown. In this subsection, we
present an efficient approximation algorithm with a constant
bound of approximation ratio. A key observation is that
MVWCC problem is very similar to the rooted k-minimum
spanning tree (k-MST) problem. A k-spanning tree (k-ST) is
a spanning tree with at least k vertices.

Problem 3.2: k-MST Problem: Given a weighted undi-
rected graph and a vertex r, the problem is to find a k-spanning
tree rooted at r that spans at least k vertices with the minimum
sum of edge weights.

We show that the MVWCC problem can be reduced to a k-
MST problem in polynomial time. The key idea is to construct
a new edge-weighted graph G’ from the WAG G. Initially, G’
has the same sets of vertices and edges as G, with each edge
assigned a unit weight. Then for each vertex (called “primary
vertex”) in G’, we add a number of auxiliary vertices (called
“subsidiary”). Each subsidiary only connects to its primary
vertex via an edge with a weight of 0. The number of such
subsidiary vertices for each primary vertex ¢, denoted by p;,
is almost proportional to its weight w; in G: p; = w; * A — 1,
where A is a constant called scaling factor. Fig. 4 illustrates
the G’ constructed from the WAG G shown in Fig. 2(b).

On the other hand, we can also construct an MVWCC I in
G from a k-MST I' in G’, where k = 7x A: for each primary
vertex in I, we add it to T". The following theorem proves that
the resulted I' is an MVWCC. In the sequel, we call k-MST
and MVWCC the “dual” of each other.

Theorem 3.1: T, the dual of a k-MST IV in G’, is an
MVWCC in G.

Proof: First, we prove that the sum of weights in I is no
less than 7. According to the definition of k-MST, the number
of vertices in T" is at least k = 7 * A. In addition, since the
weights of the edges that connect a primary vertex and its
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subsidiaries are all 0, if this primary vertex is in IV, all its
subsidiaries must also be in I'V.> Therefore,

T*A:k§Z(pl-—i—l):Zwi*A:AZwi.

That is, >, w; > 7.

Second, we prove I' is the VWCC with the minimum
number of vertices. Suppose, by contradiction, that there were
another VWCC I'* with fewer vertices, then its dual must
have less weight than I in G’ because this dual must have
fewer primary vertices in G’ than I, and its sum of weights is
exactly the number of primary vertices minus 1 (because all
such edges have unit weights). Furthermore, this dual is a k-
ST because it has vertices no fewer than k = 7 A. Therefore,
this dual is the k-MST in G’, which contradicts the assumption
that I is the k-MST.

Finally, obviously, I" is a connected componentin G. H

Similarly, a VWCC can also be constructed from a k-ST by
adding all primary vertices in the k-ST to this VWCC. The
following corollary shows that k-ST and VWCC are the dual
of each other.

Corollary 3.2: T, the dual of a k-ST IV in G’, is a VWCC
in G.

Since the k-MST problem is NP-complete [28], Theo-
rem 3.1 essentially proves that the MVWCC problem is
also NP-complete. Furthermore, the following theorem further
proves that any algorithm with an approximation ratio to
the k-MST problem has the same approximation ratio to the
MVWCC problem.

Theorem 3.3: The dual VWCC T' of a k-ST I with
« approximate ratio to the optimal k-MST T, is also a-
approximate to the MVWCC T',.

Proof: Let W denote the weight of k-ST in G’ and P
denote the number of vertices of VWCC in G. By definition,
Wrr < aWr, . We also have

Pr, —1=Wgr,y <Wr,

On the other hand, Pr — 1 = Wrs. Therefore, Pr — 1 <
Oz(Pp* — 1) — Pr < aPr,. |

The above theorem applies only when the scaling factor A is
selected in such a way that Vi, p;, the number of subsidiaries,
is exactly A *x w; — 1. However, in practice, w;, the weight
of primary vertex ¢ in WAG, is a continuous value, so even a
large scaling factor A cannot guarantee A x w; is an integer
for all 7. Furthermore, the time complexity of state-of-the-art
k-MST approximation algorithms [11], [6], [1] are polynomial
to the number of vertices in G’, which is proportional to A.
So it is advisable to use a medium A and let the number of
subsidiaries p; rounded as [A * w;|-1. This is equivalent to
rounding each w; in the WAG G to w] where w} = wi%.
We call this modified WAG the “integral WAG” (denoted i)y
G) while the original WAG the “fractional WAG”. Let ¢ denote
the maximum ratio of w}/w;, i.e., Vi,w; < w} < dw;. Then
we have the following corollary on the approximate ratio of
the integral MVWCC problem.

2If not all subsidiaries are in I/, we can add them to I/ with no additional
costs.

Corollary 3.4: Let T denote an a-approximate k-ST to the
k-MST T, on the integral 6/. Then on the fractional G, the
dual VWCC T of TV is ad-approximate to the MVWCC T,.

Proof: By definition, Wr» < oW, . We also have

1

Wi .
PR

Pp*—1:ZAwi—12%ZAwg—12

iel. i€l
On the other hand,

PF—IZZAU)Z'—ISZAU);—IZWF/.
i€l i€l

Therefore, Pr — 1 < ad(Pr, — 1) — Pr < adPr,. [ |

This corollary suggests that A does not need to be large:
as long as it keeps § from being too large, the approximate
ratio «d will remain low. At runtime, the client can tune
A according to its computational resources — a smaller A
leads to a lower time complexity and a worse approximate
ratio, and vice versa. In particular, when A is smaller than
the inverse of the highest weight, the constructed G’ contains
no subsidiary and equivalently the WAG degenerates to an
unweighted graph. Finally, the pseudo-code for the approxi-
mate MVWCC is listed in Algorithm 1. As for the k-MST
approximation algorithm, we adopt Garg’s 3-approximation
algorithm due to its constant approximate ratio (aw = 3) and
ease of implementation [11]. The time complexity of Garg’s
algorithm is O(N? log V), where N is the number of vertices
in the graph. Given n vertices and normalized weights in
G, graph G’ has at most N = Jn vertices. Therefore, the
time complexity for the approximate MVWCC algorithm is
O(62n? log? on).

Algorithm 1 Approximate MVWCC

Input: G: the WAG

o*: the genuine NN

7: the privacy threshold
Output: I': the selected VWCC
Procedure:

1: choose scaling factor A;

2: build integral ?l;

3: TV = Garg_approximate_]k-MST(@l,o*);
4: build T from I;

E. WAG-Tree and 2PASS

In the first phase of 2PASS, the client requests for the WAG
of its neighborhood. However, the definition of neighborhood
is not clarified. If the object dataset is not huge, the client can
request the WAG of the entire space and cache it to avoid re-
request for subsequent queries. However, for a practical dataset
with thousands or even millions of objects, it is impractical
to request and cache the entire WAG due to the following
reasons: (1) the WAG is huge in terms of memory footprint;
(2) the cached WAG is vulnerable to even a slight change
of the dataset, e.g., an object deleted/inserted/moved; (3) the
computational cost of the approximate MVWCC algorithm on
the entire WAG is high. As such, we propose to partition the
entire WAG into WAG snippets of reasonable sizes so that
the client receives only the snippet(s) surrounding the query
location. In essence, a WAG snippet is the WAG of a sub-
space. For example, in Fig. 5 the four snippets are obtained
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by partitioning the space in Fig. 2(a) into four sub-spaces
(A, B,C, D) of equal widths and heights and computing their
WAG’s respectively.® It is noteworthy that an object that is
outside of a sub-space can still appear in the WAG snippet
of this sub-space, as long as the Voronoi cell of this object
in the WAG of the entire space overlaps this sub-space, e.g.,
objects a and c¢ in snippet A. The weight of an object in a
WAG snippet is set to its Voronoi cell area that resides in this
sub-space. WAG snippets can be joined to become the WAG
of the union of these sub-spaces. The join is done by merging
the vertices corresponding to the same object and assigning
its new weight as the sum of the weights of these vertices.

In order for the client to know which snippet(s) to request
in the first phase of the query, we build a hierarchical index
called WAG-tree. Like a quad-tree, this index recursively
partitions the space into quadrants until a certain criterion
is met (discussed in Section III-F). Each entry in its leaf
node points to a WAG snippet. Note that since the WAG-tree
contains no WAG snippets, the size of this index is extremely
small. Fig. 6 illustrates a WAG-tree and WAG snippets pointed
by it.

Algorithm 2 Client NN Procedure for 2PASS

Input: g: the query point

7: the privacy threshold

Output: o*: the genuine NN

Procedure:
. if WAG-tree is not available then

obtain WAG-tree from server;

S = {the snippet contains g};
: while area(S) < 7 do
move one level up the tree and add snippets to S;
: request S from the server;
: join the received S into G;
: find o* from G;
I" = Approximate_ MVWCC(G, o*, T);
: request complete records of the objects appear in I' from the server;
: return o* and its attributes to the user;

oYX AELRD =

—_ =

The whole 2PASS procedure is summarized in Algorithm 2.
During the system initialization, the whole WAG-tree is sent
to and cached on the client. Upon an NN query, the client
looks up the WAG-tree and locates the snippet that contains the
query point. If the area of this sub-space is still smaller than
the user-specified privacy threshold 7, the client will locate

3For clarity of presentation, the figure does not show the weights of the
vertices.

the lowest-level ancestor node of this snippet whose sub-space
area just exceeds 7, and request all snippets rooted at this node.
In the sequel, we call all these snippets host snippets. The
client then joins the received host snippets into a single WAG
and applies the approximate MVWCC algorithm on it. The
complete records of the objects that appear in the result VWCC
are requested in the second phase. Note that throughout the
procedure, the client does not send its location or the privacy
threshold 7 to the server.

F. WAG-Tree Construction and Maintenance

The construction of the WAG-tree follows a top-down
recursive fashion. For each node, the algorithm maintains
objects whose Voronoi cells in the whole space overlap this
sub-space. Since each such object is the nearest neighbor of
some point in this sub-space, it is essentially the range nearest
neighbor (RNN) of this sub-space [16]. Obviously, any RNN
of a child node must be an RNN of its parent, as the child
sub-space is contained by the parent sub-space. As such, by
initially setting the entire object dataset as the RNNs of the
root node, we can recursively compute the RNNs of a child
node among the RNNSs of its parent. The recursive procedure
terminates and then we build the WAG snippet with the current
sub-space and RNNs, when a certain criterion is met. For
example, in order to reduce I/O cost when accessing a WAG
snippet, we can set the criterion as “the WAG snippet can
fit into one page”. We can also set the criterion to achieve
other objectives, such as “the sub-space area is larger than
a sufficiently large threshold” so that most client requests
only one snippet per query. To build a WAG snippet, we
adopt Fortune’s algorithm for Voronoi diagram generation [5].
Additionally, each object has also a boolean flag is Border. An
object is a border object if its Voronoi cell touches the border
of the sub-space. This flag is used to adapt the WAG-tree to
kNN queries (see Section IV). Algorithm 3 shows the pseudo-
code of the construction process. To initiate the construction,
we simply call this algorithm with parameters R = D (the
entire object dataset), T' = root, and a termination condition
F.

Algorithm 3 WAG-Tree Construction

Input: R: the set of RNNs
T': the root node of tree
' the termination condition
Output: T": the WAG-tree rooted at T’
Procedure:
1: if F(T) is true then
build WAG snippet using R;
else
partition 7" into 4 quadrants 1, t2,t3,t4;
for each t; do
compute the RNN set R; from R;
call WAG-Tree-Construct(Ri,t;, F);

A

As for maintenance, the key idea is to maintain the RNN set
for each WAG-tree node and WAG snippet. When an object
o is inserted, we traverse the WAG-tree bottom up starting
from the leaf node n that contains o. We check all WAG
snippets rooted at n for whether it should include o as its
RNN and rebuild those that do. Then we traverse from n
to n’s parent node and repeat this process. It is noteworthy
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that if an intermediate node does not include o as its RNN,
none of snippets rooted at it need to be rebuilt. This serves as
an efficient pruning method. The traversal keeps upwards to
visit n’s ancestors until the current ancestor node no longer
includes o as its RNN. Algorithm 4 shows the pseudo-code
for object insertion in a recursive fashion. To initiate the
maintenance, we first rebuild wag_o, the WAG snippet where
o is located, and then call this algorithm with parameters o,
T = n, and T = wag_o. It is noteworthy that the third
parameter T’ serves as a switch for the algorithm: if it is
null, the algorithm only rebuilds WAG snippets rooted at T’
(with recursive pruning); otherwise, after the rebuilding, the
algorithm also traverses upwards to 7’s parent and continues
the rebuilding.

Algorithm 4 WAG-Tree Maintenance on Object Insertion

Input: o: the object being inserted

T': the node of tree root

T': the child node from which T is traversed
Output: T": the updated WAG-tree rooted at T’
Procedure:
1: for each child node E of T except T do
2:  recalculate R, the RNN set of F;
3: if R is updated then
4 if £ is a WAG snippet then
5: rebuild WAG snippet of E;
6: else
7
8
9

: call WAG-Tree-Maintain(o, E, null);
: if T” is not null AND at least one R is updated then
call WAG-Tree-Maintain(o, T.parent,T');

The procedure for o being removed is similar except that
the pruning is based on whether o was an RNN of a node.
If it was, the RNN set of this node is recomputed from the
RNN sets of its child nodes. The correctness is guaranteed by
the fact that an RNN of a parent node must be an RNN of
at least one child node. It is noteworthy that, the WAG-tree
index does not store any WAG snippet or any RNN set, so no
object update will invalidate this index. As such, any object
update is transparent to the client.

IV. EXTENSIONS TO KNN AND OTHER QUERY TYPES

In this section, we extend 2PASS beyond NN query. First,
we will show how to evaluate KNN queries, followed by the
generalization to service allocation queries. Finally, we extend
2PASS to achieve objectives other than minimizing the object
number.

A. Extension to kNN Query

1) Server-Side Extension: Given a general kNN query,
since WAG considers the first NN only, the rest kNNs (k > 1)
of the query point ¢ may not appear in the host WAG snippet(s)
the client requests. As such, it is the server’s responsibility
to return all snippets (in addition to the requested ones) that
may contain kNN results. The following theorem shows that
a subgraph of the WAG of the whole space can serve as the
boundary for such snippets.

Theorem 4.1: Any k-nearest-neighbor of ¢ must be within
k — 1 hops away from the nearest neighbor of ¢ in the WAG.
The proof is straightforward if the following lemma is true.

reverse index

Sy S3 Object | Snippets
S1 01 |S4S6S
4| ss A1 4,96, 97
o —|
Sg @i S7 @ G before consolidation
O Joined snippets
during consolidation

(a) Ilustration of Lemma 4.2

(b) Consolidation

Fig. 7. Extension to kNN

Lemma 4.2: In a Voronoi diagram, the line from ¢ to its
k-th (K > 2) nearest neighbor p, denoted as ¢p, must cross
only the Voronoi cells of the £ nearest neighbors.

Proof: We prove this by mathematical induction. For k =
2, if the lemma is not true, then let v denote the point through
which gp enters the Voronoi cell of p (see Fig. 7(a)), and let p’
denote the object adjacent to p, i.e., the object whose Voronoi
cell shares « on its border with p. By assumption, p’ is neither
the NN or the second NN, so p’ must be farther to ¢ than p.
However, since [qp| = [qu| + [ap| = [qa| + |up’| > [qp], p' is
closer to ¢ than p, which leads to a contradiction.

If for k < 4, this lemma is true, then it must also be true
for £ = ¢ + 1. Otherwise, gp must cross at least the Voronoi
cell of one object which is not a j-th NN where j < i. Let p’
denote this object. If p’ is adjacent to p, then it is the same
as when k = 2 and there will be a contradiction on whether
p’ is closer to ¢ than p. However, even if p’ is adjacent to
t # p, the same contradiction appears sooner or later. If ¢ is
a j-th NN (j < i), then the contradiction appears already. So
t cannot be a j-th NN. Using this reasoning, we can further
deduce that for the object next to ¢, then next next to ¢, ...,
none of them can be a j-th NN. Since the segment of gp is
finite, finally the reasoning can reach the object whose next
is p. Since this object cannot be a j-th NN either, we have a
contradiction exactly the same as when k = 2. [ ]

This theorem shows that for kNN queries, it is sufficient to
return the WAG snippets which contain objects that are within
k — 1 hops away from some object in the host snippet(s). To
achieve this, we maintain a WAG G that is initially joined by
all host snippet(s). Then we traverse objects in G in a breadth-
first order and stop when all £—1 hops of objects from the host
snippet(s) are traversed. More specifically, we use a first-in-
first-out queue to store objects whose adjacent objects in G are
yet to be traversed. Each object in the queue is also assigned
a hop value. Initially, all objects in the host snippet(s) are
enqueued with hop = 0. We repeatedly dequeue the top object
and enqueue its adjacent objects that are not traversed yet with
an increment of their hop values. The algorithm terminates
when the hop value of the top object is k. During the traversal,
when a border object is dequeued, since this object may also
appear in other WAG snippets, a “consolidation” process is
needed to join all these snippets into G. To facilitate this
process, we build a reverse index for WAG snippets that keeps
track of, for each object, the snippets where it appears. Finally,
the server sends all WAG snippets that are accessed and joined
into G to the client. Fig. 7(b) illustrates this process. Snippets
are denoted by s; and initially the host snippet is s7, i.e.,
G = {s7}. When border object o; is dequeued, the reversed
index is accessed and snippets s4 and sg, which are not in G,
are loaded and joined.
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Fig. 8. Narrowing Down Client Location

2) Client-Side Extension: In the first phase of 2PASS,
besides the host snippet(s), the client must also provide the
value of k to the server. However, by knowing the genuine
k, the server further knows that the second, third, ..., k-th
nearest neighbors are among the requested objects. This may
help the server narrow down the possible client location in
the cloaked region. Fig. 8 shows an example where k = 2,
a, b, c are the requested objects, and thus the cloaked region
is their Voronoi cells. In the Voronoi cell of ¢, however, the
shaded area cannot be the client location, because otherwise
if the client queried from this area the second NN would be
either d or e, which conflicts with the fact that only a, b, c are
requested. In fact, this area can be obtained from the Voronoi
diagram that excludes object c. Similarly, in Voronoi cells of
a and b, there are also areas that cannot be the client location.

To prevent from this, the client should replace &£ with
a larger k' value when sending it to the server. This is
subsequently called k-promotion. There are several criteria
for a good k-promotion algorithm. First, by knowing &', the
server should not know the genuine k. Second, furthermore by
knowing k', the probability of &k being small values (such as
1,2,3,---) must not be negligible, otherwise the server can
infer that the second, third, --- nearest neighbors are very
likely to be among the requested objects, based on which the
server may be able to narrow down the possible client location.
Last, k&’ should not be far from k so that not many unnecessary
WAG snippets are requested due to k-promotion. As such,
we devise a randomized k-promotion algorithm that promotes
k =i with ¥’ = 5 with exponentially decreasing probability
as j increases. More specifically, the promotion probability
P(jli) = 20=9=D+M (5 > j 4 M), where M is a constant
called promotion degree, denoting the minimum promotion.
This is a valid probability function because for any ¢, the sum
of probabilities of promoting it to every possible j is 1, i.e.,
D isien P = 1.

Randomized k-promotion satisfies the aforementioned crite-
ria. First, for any &’ = j, the genuine k can be any integer from
1 to 7 — M. Second, when observing k' = j, the probability
of k=1iis

o P(’L,]) . P(Z')z(ifj71)+1\,[ P(’L')Q(i*j*l)JrM
PG TR (D)
Here P(1) = P(i = 1), and we assume P(i) is

ever-decreasing, that is, in practice the user prefers kNN
queries with smaller k; by this assumption, P(j) =
>i<icjn P(i) * P(jli) < P(1). As such, the higher is M,
the more non-negligible of £ being small values. Last, for any
k = i, the expected value of j, E(j|i) is
E(jliy= Y iP(ilj) =i+ M+1.
J>i+M

That is, on average, the algorithm promotes k£ by only M + 1.
The second and third criteria also show that M is a tradeoff
between the effectiveness and cost of the randomized k-
promotion algorithm.

The second phase of 2PASS is almost the same as the NN
case, except that all the genuine kNN objects, instead of just
the genuine NN object 0*, must be in the VWCC. As such, in
Algorithm 1 that computes the approximate MVWCC, a multi-
root k-MST approximation algorithm should be used instead
of a single-root k-MST algorithm.

B. Query Generalization

2PASS can be generalized to a wide range of queries or
location-based services other than kNN. For example, it can
be used to answer “service allocation” queries. In a service
allocation problem, each data object (e.g., restaurant, gas
station) has a corresponding service area, which is disjoint
from those of the others. The query is to find the data object
that services the query point. Indeed, NN is a special case of
service allocation problem if we consider the Voronoi cell as
the service area. Similar consideration can be applied to k-
farthest-neighbor queries. All existing 2PASS techniques can
thus be applied to service allocation queries except for the
WAG construction algorithm, where no more Voronoi diagram
needs to be computed, and instead the service area of each
object is read directly from external input.

The 2PASS approach can be generalized to applications
with objectives other than minimizing the number of requested
objects. So far, we minimize this number because we assume
that each object has the same data size. However, this approach
can still work if the sizes are different and the objective is to
minimize the total size of requested objects. The only change
needed is the approximate MVWCC algorithm (Algorithm 1).
Instead of assigning a unit weight to each edge (u,v) in the
graph G’, we should set the weight to the size of object u or v.
To be fair with both objects, we set the weight of edge (u, v) to
the size of u and the weight of (v, u) to the size of v, and thus
makes G’ a directed graph. In addition, the direction of edges
that connect primary vertices and auxiliary vertices should be
from the former to the latter with zero weight. Finally, a k-
MST approximation algorithm for a directed graph should be
used instead of that for an undirected graph.

V. SECURITY DISCUSSIONS

In this section, we discuss the security aspect of the 2PASS
solution. In particular, we identify several threat models from
the server (i.e., the adversary) that might compromise the loca-
tion privacy of the client. Then we show how 2PASS addresses
these threats. The discussions in this section will be reinforced
by the results of security test in Section VI-B. Throughout
this section, we assume that the server knows not only the
dataset but also the client-side 2PASS algorithm, including
the approximate MVWCC algorithm and its embedded k-MST
algorithm. Other than that, we assume for simplicity that the
server has no more background knowledge about the user.
The objective of the server is to narrow down the client’s
location from the cloaked region, i.e., the Voronoi cells of all
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requested objects. Meanwhile, we also assume that the client
hides several secret values from the server, including: (1) the
scaling factor A for the approximate MVWCC algorithm, and
(2) the promotion degree M for the k-promotion algorithm.
We argue that these values are safe from the adversary’s
speculation as they are completely random and on-the-fly from
the client device.

A. Reverse Engineering

The first threat is “reverse-engineering” of the genuine
NN object based on the set of requested objects and the
approximate MVWCC algorithm. Since the server knows this
algorithm and its output, i.e., the requested objects, it might
reverse engineer the input, i.e., the genuine NN object, by
enumerating every object o in the requested objects, executing
the MVWCC algorithm with o as the root, and comparing the
output with the set of requested objects. In this way, either
the genuine NN can be found or at least those objects whose
outputs are different from the set of requested objects can
be excluded from being the genuine NN. However, we argue
that the server lacks A as one of the dominating parameter
to execute the same MVWCC algorithm as the client. Since
A essentially decides the numbers of subsidiaries in the
constructed graph G’, the server cannot repeat the same result
without knowing A.

B. Probability Attack

Following the first threat, the second threat is the “pseudo-
randomness” of the genuine NN. Since the objective of 2PASS
is to minimize the bandwidth of requested objects, it tends
to choose objects with larger weights (e.g., larger Voronoi
cells) in the MVWCC algorithm. This may let the server
speculate that the query point is not uniformly distributed
in the cloaked region, i.e., this distribution is pseudorandom
instead of truly random. More specifically, the server may
speculate that objects with larger weights are more likely to be
“dummy objects” which are chosen merely for satisfying the
privacy threshold, whereas objects with smaller weights are
more likely to be the genuine NN. However, we argue that
2PASS has the following mechanisms to guard against such
threats.

o The scaling factor A, which is decided at the client
and hidden from the server, controls how weights are
converted to the numbers of subsidiaries in G’, so it
affects the output of the MVWCC algorithm. Even if an
object has a large weight, its corresponding number of
subsidiaries in G’ might still be zero if A is small enough.
In particular, if A is smaller than the inverse of the highest
weight in WAG G, G’ will contain no subsidiary at all. In
this case, the output of requested objects will not depend
on the weights anymore.

o 2PASS requires the cloaked region to be a single re-
gion. As such, the constituting Voronoi cells must be
connected, so they must form a connected component
in the WAG. This allows objects with smaller weights to
appear in the result VWCC if they are on the path from
the genuine object to objects of larger weights.

o Given a uniform distribution of query points, an object
with a larger weight naturally has a higher probability
of being the genuine NN. This fact undermines the
confidence of the speculation that large-weighted objects
are dummies.

« We adopt an approximate MVWCC algorithm, instead of
an optimal algorithm. So objects with smaller weights are
still possible to be included in the result VWCC due to
the non-optimality.

C. k Exposure

The third threat is guessing k out of the received k'
regarding kNN queries. Although the randomized k-promotion
algorithm is used to prevent such guess, the server might still
attempt to do so, even if the confidence of such guess is not
high. For example, by the promotion algorithm, £ is most
probably (with a probability of 50%) promoted to k + M. As
such, the server can simply guess k = k' — M. However, since
M is unknown, the server must also guess M with various
values, which dilutes the confidence of the guess of k.

Furthermore, we also argue that if the size of a WAG
snippet is small compared with that of an object, the client
can request a sufficiently large number of WAG snippets that
contain all genuine kNNs in the first phase. In this way, the
client no longer needs to send k’. To define “sufficiently large”
with respect to k, we need to know the distance between the
query point and the k-th nearest neighbor. The estimation of
this distance has been studied in a global dataset [7] or in
a local subset [29]. It is noteworthy that in this approach,
overestimation is always preferred to underestimation, because
failing to receive a WAG snippet that contains a genuine kNN
will lead to a second request of more WAG snippets.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of 2PASS
approach through extensive experiments. The object dataset we
use is a real dataset that contains 123,593 postal addresses in
New York, Philadelphia and Boston. For ease of presentation,
the coordinates of these objects are normalized to a unit
square. We compare 2P ASS with the existing approach for
privacy-aware kNN search, i.e., cloaked-region based kRNN
[16], [23], [19], denoted by Range. While the cloaked region
in 2PASS is implied by the Voronoi cells of the requested
objects, the Range approach first explicitly prepares a cloaked
region that satisfies the granularity metric (i.e., a random
square of area 7 that encloses the genuine user location q),
and then it issues a k-range-nearest-neighbor (kRNN) query
with this region. In response, the server returns all kRNNs,
i.e., the k£ nearest neighbors of all points in this region.

We implement a database server in Java on a desktop
PC with Pentium D 3.0GHz CPU and 2GB RAM. We also
implement a kNN query client in Microsoft .NET Compact
Framework on a iPAQ hx2700 Pocket PC running Windows
Mobile 5.0 with Marvell PXA270 624MHz processor, 64
MB RAM, and 320MB ROM. The client connects to the
server through a 3G-equivalent network: 384kbps downlink
speed and 128kbps uplink speed. The query load consists
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Parameter Symbol Default Value

kNN query k 1

object size s 20KB

granularity threshold T or tau 0.0001

mean scaling factor A or Delta [1/Wmin |

k-promotion degree M 5

page size 4KB

max area of WAG snippet 0.0001
TABLE II

SIMULATION PARAMETER SETTINGS

of 1,000 queries that are uniformly distributed in the unit
square. We measure the following metrics: query response
time, number of requested objects, client/server CPU time, and
bandwidth consumption,* all of which are averaged over the
1,000 queries. In addition, we also design several families of
privacy attacks on 2P AS'S that aim to narrow down the client
location by speculating the genuine NN object of this client
(see Section VI-B for more details). We measure the success
rates of these attacks as security indicators of 2PASS. The
parameter settings are summarized in Table II.

A. Index Construction and Overall Performance

Fig. 9 shows the comparison between 2P ASS and Range
under default settings. For ease of comparison, we normalize
the results of 2PASS to 1 and show the ratios of Range.
To be fair, a WAG-tree index and an R-tree index are built
for them respectively. In particular, the termination condition
in WAG-tree construction is set as “the max area of a WAG
snippet is 0.0001”. As is shown in Fig. 9, the WAG-tree index
requires about 30 minutes to construct, almost 20 times longer
than the R-tree index. This is mainly due to the construction
of all WAGs by computing their Voronoi diagrams. However,
the resulted WAG-tree index is only 87KB, which is suitable
to cache on the client side during system initialization. This
index size is far smaller than 3.2MB of the R-tree index,’
because WAG-tree is merely a partition of the space, not a
partition of the objects. Even if we include all WAG snippets
stored at the server, the entire storage cost of 2PASS is 14.8
MB only, about three times larger than the R-tree index. This
cost is quite reasonable for such a large dataset.

As for query performance, the response time of Range is
about twice of 2PASS, which is mainly due to the more
number of objects it requests than 2P ASS. As a consequence,
Range also consumes about twice bandwidth than 2PASS.
To show how the object size (s) affects the bandwidth, we
vary s exponentially from 1.25KB to 1280KB, the range of a
typical web page size, and plot the bandwidth curve in Fig. 10.
Range outperforms 2PASS only when the object size is
extremely small (s=1.25KB). Starting from s=5KB, 2PASS
costs less than Range because the bandwidth overhead for
WAG snippets in the first phase is small and independent of
s. The performance gain is more evident as s increases and this
overhead is amortized by more bandwidth saved from object
request. To confirm this, in the same figure, we also plot the

“For 2P AS'S, the bandwidth consumption includes those incurred in both
phases.

5Since the ratio of index size far exceeds 2.5, the maximum x-axis value,
this ratio is not shown properly in Fig. 9.
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proportional bandwidth for WAG snippets. This overhead is
less than 10% when the object size is larger than 40KB. The
only metric in which Range always outperforms 2PASS in
Fig. 9 is the client CPU time, because the client simply issues a
range query in Range approach while 2PASS needs to execute
an additional approximate MVWCC algorithm (which involves
k-MST algorithm) in 2P ASS. However, since we keep the
graph that is fed into the k-MST algorithm small, by setting the
A value to only the inverse of the minimum vertex weight in
the WAG, even the CPU time for 2P ASS is just 120ms, which
only accounts for less than 10% of the total response time. We
also estimate the power consumption of CPU and bandwidth
for both approaches as follows. The power consumed by CPU
is estimated by its active power consumption (925 mW based
on the Marvell/Intel data sheet [18]) multiplied by the CPU
time. The power consumed by network bandwidth is estimated
based on the 3G energy model derived in [2], where the energy
spent to download/upload = KB data is 0.025x + 3.5 + 0.64¢
Joules. Here ¢ is the total time (in seconds) the 3G module is
in the high-power state, which is the transmission time plus
a 12.5-second tail time. From Fig. 9, we observe that even
though 2P AS'S consumes more energy for CPU computation,
its total power consumption is about 20% less than Range,
due to its less response time and bandwidth.

B. Security Test on A

In Sections III and V, we show that the scaling factor A
controls how weights are converted into the numbers of sub-
sidiaries in the approximate MVWCC algorithm. Therefore, it
is not only a trade-off between the approximation ratio and
computational cost, but also affects how secure the 2PASS is
against privacy threats that aim to guess the genuine NN, i.e.,
the Voronoi cell where the client is located. To guarantee that
A is random and secret, throughout the experiments we use
a normal distribution for A and set its mean value, denoted
as A, to [1/wpin], Where Wy, is the minimum weight in
the WAG. This default setting (denoted as ) ensures that on
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average each primary vertex has at least one subsidiary. In
this subsection, we vary A with 1/8,1/4,1/2,1,2,4, 8 times
of § and measure the number of requested objects, the client
CPU time, and the success rates of three families of privacy
attacks, namely, reverse engineering attack (RE), probability
attack (PA), and random attack (rand). The first corresponds
to the attack model of Section V-A and attempts to guess the
genuine NN by repeating the approximate MVWCC algorithm
and comparing the result with the set of requested objects.
However, since A is unknown to the adversary, this attack
will use the largest A the client may choose, i.e., 89, to make
sure the weight conversion is accurate enough. If two or more
objects have the same MVWCC results, this attack breaks tie
by a random guess. For reference, we also show the RE attack
result when A is known to the adversary. The second family
of attacks correspond to the attack model of Section V-B and
guess the genuine NN based on the probabilities (i.e., weights)
of the requested objects, with a bias on lower-weighted objects.
Specifically, the probability of guessing o; is proportional to
w; /bias;. In particular, PA (linear) has a linear bias on the
weights, i.e., bias; = w;, while PA (quad) has a quadratic
bias on the weights, i.e., bias; = w?. The last random attack,
which serves as the benchmark, makes a random guess of the
genuine NN purely based on the probabilities (i.e., weights)
of the requested objects.

Fig. 11(a) shows the number of requested objects and
CPU time at the client side. As expected, the former metric
decreases while the latter increases as A grows. In fact,
the increase of CPU time is quite moderate until A > 26,
when it becomes sharp. On the other hand, the number of
requested objects does not change much in the range of
[16,26]. Fig. 11(b) shows the success rates of the three families
of privacy attacks. We observe that rand, PA (linear), and
PA (quad) have similar success rates which approximate the
inverse of the number of requested objects. This validates
our justification in Section V-B that 2PASS tries to retain
the uniformity of the genuine location (i.e., the query point)
inside a cloaked region. Nonetheless, we do notice that by
changing from in proportion to the weights (rand) to in
equal proportion (PA-linear), and to in inverse proportion to
the weights (PA-quad), the success rate increases, but within
a 7% bound. This shows that the probability attacks can
exploit the pseudo-randomness of the approximate MVWCC
algorithm — the more accurate of the weight conversion (i.c.,
the higher the A), the more successful the attack is. However,
the rate improvement tends to saturate when A becomes high,
which shows that the MVWCC algorithm has limited pseudo-
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randomness for the adversary to exploit. On the other hand, for
low A (< §), the rate improvement is hardly noticeable. We
also observe that the reverse engineering attack has a much
lower success rate. This is due to the unmatched A values
used at the client and adversary sides. In many cases, the
attack simply fails as the adversary cannot find any result
that exactly matches the set of requested objects. Even when
A = 84, i.e., the mean A at the client equals to A used at the
adversary, the success rate is still lower than that of random
guess, because the client-side A may still deviate from A due
to its randomness. For comparison, if the exact A is known
to the adversary, the success rate of RE improves by about
20%. This shows the effectiveness of having a secret A at
the client. To summarize, the unknown and random A poses a
great challenge for the adversary to guess the genuine NN from
the set of requested objects, either by exploiting the pseudo-
randomness or by reverse engineering. Furthermore, the result
also shows the feasibility of a moderate A (such as J) that
strikes a balance among the number of requested objects, CPU
time, and the security.

To further verify this, in the second set of experiments we
consistently use A = § and measure the CPU time and success
rates of RE, PA (quad) and rand under kNN queries where &
ranges from 1 to 5. To make a fair comparison, the adversary
also uses A = ¢ in the reverse engineering attack. Fig. 12(a)
shows the CPU time and success rates decomposed by the
number of requested objects, whereas Fig. 12(b) shows the
results decomposed by the ratio of the maximum weight to
the minimum weight of the requested objects. In Fig. 12(a),
the CPU time increases as the number of requested objects
increases, but it quickly becomes saturate as a larger k value
can in turn reduce the vertices to explore in the approximate
MVWCC algorithm (more on this in Section VI-E). On
the other hand, all success rates decrease as the number of
requested objects increases. Furthermore, the PA (quad) attack,
which performs the best in Fig. 11(b) (except for the RE
attack with known A), has its success rate drop faster than
the other two attacks when the number of requested objects
increases. This shows that it is increasingly difficult to exploit
pseudo-randomness when more privacy is required, probably
due to the connectivity requirement and the non-optimality of
the MVWCC algorithm.

In Fig. 12(b), we analyze the performance with regard
to various Wyae/Wmin ratios. As this ratio increases, the
spatial distribution of the objects becomes skew, so does the
distribution of their weights. The result shows that the CPU
time drops as the distribution becomes skew, because fewer
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objects are needed to reach the 7 threshold. On the other
hand, the success rates increase except for that of the random
attack. The reason is that as the weight distribution gets skew,
the MVWCC algorithm will expose more pseudo-randomness,
which can be exploited by PA and RE, but not the random
attack. Nonetheless, even for the PA (quad) attack, which
enjoys the most of the pseudo-randomness, the rate at the
most skew setting (i.e., 6) is less than 10% higher than its
overall success rate (ref. Fig. 11(b)). This figure gets as low
as 5% for the RE attack. All these results confirm that 2PASS
is efficient and secure with A = §, and it works best for high
privacy requirement and for little or moderate skewness.

C. Choice of k-Promotion Degree M

In Section IV, we propose a randomized k-promotion algo-
rithm to send a larger &’ to the server. In this algorithm, pa-
rameter M denotes the minimum possible difference between
k and k’. In this subsection, we evaluate impact of choice
of M on the 2PASS performance. Since M only affects the
performance in the first phase, we measure the bandwidth,
which is allocated for WAG transmission, in Fig. 13. The
bandwidth increases as M increases but it reaches saturation
point at M = 5. Even when M = 20, the bandwidth is
only two times higher than M = 0 and about one order of
magnitude higher than the bandwidth without k-promotion.
This is because even M (and thus k') increases, the traversal
of objects within k' — 1 hops away does not load and join
too many new WAG snippets. As such, the randomized k-
promotion algorithm costs moderate bandwidth, even when a
large M is set.

D. Evaluation of Approximate MVWCC Algorithm

In this subsection, we compare the performance of our
proposed approximate MVWCC algorithm (Algorithm 1) with
the naive algorithm (Section I1I-C) and a greedy algorithm that
always adds to the VWCC result the adjacent vertex that has
the maximum weight. Figs. 14(a) and 14(b) show the overall
response time of these algorithms and the success rates of
privacy attacks under various 7 settings. As is shown in the
figure, the response time of the naive algorithm is the lowest
for small 7 values, but the difference gap is negligible. On
the other hand, the approximate algorithm always outperforms
the greedy and naive algorithms for 7 > 0.0001, which is
due to the fact that the response time of the naive algorithm
is dominated by the high client CPU computation while the
greedy algorithm requests more objects than the other two.
As such, the approximate MVWCC algorithm strikes a good
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balance between the approximation ratio and computational
cost. Fig. 14(b) confirms this conclusion from another per-
spective —- the success rate of the PA (quad) attack, where
the approximate algorithm also sits in between that of the naive
and that of the greedy algorithm. The naive algorithm has the
highest success rate because it requests the fewest objects and
exhibits the most pseudo-randomness due to its optimality.
The approximate MVWCC algorithm, on the other hand, has
a lower success rate as a side effect.

E. Scalability

In this subsection, we compare 2PASS and Range ap-
proaches under various privacy threshold 7 and query pa-
rameter k settings. Fig. 15(a) shows the response time when
7 ranges from 0.000001 to 0.001. In all settings, 2PASS
outperforms Range by 20% to 70%. It is also noteworthy
that the performance gain of 2P AS'S increases as T increases,
which is mainly due to the number of requested objects:
the number for 2PASS increases linearly as 7 increases,
whereas the requested objects of Range are the range nearest
neighbors, whose number increases dramatically with the area
of the query range 7. Fig. 15(b) shows the success rates of
random and PA (quad) attacks on 2PASS. In all settings,
the rate of the latter is at most 60% more than the rate of the
former, which consistently shows 2P AS'S has limited pseudo-
randomness to exploit.

Figs. 16(a) through 16(d) show the comparison when k
(for kNN) ranges from 1 to 50. Fig. 16(a) shows that the
number of requested objects of 2PASS is almost equivalent
to k£ while that of Range increases dramatically as k increases.
This is because the first phase of 2P AS'S already loads WAGs
that contain the index information for enough (more than k)
objects, so the requested objects in the second phase can be as
few as k if the privacy threshold is met. However, for Range
approach, the number of requested objects increases sharply
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because the kNNs of all points in the query range can be far
more than k. Fig. 16(b) is the direct consequence of Fig. 16(a),
where 2P ASS is consistently better than Range in all k
settings in terms of response time. Fig. 16(c) shows the CPU
time at the client side where Range has an extremely low cost
because all range query processing is at the server side. On
the other hand, 2P ASS requires a non-negligible CPU time
for the approximate MVWCC algorithm. However, in general,
the CPU cost decreases as k increases, because given 7, fewer
vertices need to be explored and added to the result VWCC to
count the total weight to 7. It is noteworthy, however, that there
is a sharp increase from k = 1 to k = 5, which we believe is
due to the multi-root k-MST algorithm that repeatedly tries
every root to find the best one to span. However, even at
its peak when k = 5, the CPU time is still less than 1.5
seconds, about one-third of the total response time. Fig. 16(d)
shows the success rates of random and PA (quad) attacks on
2PASS. As k increases, the difference between these two
rates drops. This is because the larger k, the more irregular of
the VWCC returned by the approximate algorithm, and hence
the less pseudo-randomness 2P ASS exhibits. As such, we
can conclude that 2PASS is a robust and consistently better
approach for secure nearest neighbor search under various
privacy threshold 7 and query parameter k settings.

VII. CASE STUDY: IGUIDE

We implement the 2PASS client in our existing iGuide
prototype system which provides location-based information
(such as ATM, cafe, and restaurant) to tourists [10]. iGuide
is a GPS-aware system, so the user is able to issue kNN
queries from his/her current position with a GPS-equipped
PDA. Fig. 17(a) shows the query dialog that allows the user to
specify the dataset, the granularity threshold 7, and the query
parameter k. Fig. 17(b) shows the query point (black dot),
requested objects (blue dots), and the corresponding Voronoi
cells, i.e., cloaked region (in bold lines). As a comparison,
we also show the requested objects by range nearest neigh-
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bor (Range) in Fig. 17(c), where the bold lines constitute
the query range (i.e., the cloaked region). The number of
requested objects in Range is 5, larger than 3 in 2PASS.
The underlying reason is illustrated in the same set of figures:
the cloaked regions in both figures must be no smaller than
7, however, since 2PASS is aware of the Voronoi cell of
each object, by applying the MVWCC algorithm it reduces the
number of requested objects. As the final note, in Fig. 17(d),
whichever approach (2PASS or Range) is applied, the user
is shown only the genuine nearest neighbor (red dot) from
his/her position.
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VIII. CONCLUSION

In this paper, we investigate the problem of privacy-aware
data access in location-based services. We propose an ap-
proach called 2PASS that allows the client to control what
objects to request in order to minimize their number while
not compromising location privacy of the user. The core
component of 2PASS is a lightweight WAG-tree index from
which the client can compute out the objects to request from
the server. Efficient client and server procedures of 2PASS
are discussed in detail. Although we use kNN queries as the
running type of service to introduce 2PASS, we show that
this approach can be generalized to many other location-based
services with various objectives.

As for future work, we plan to extend 2PASS beyond
the client-server model. Specifically, we are interested in a
client-anonymizer-server model where the trusted anonymizer
performs location cloaking for the client. 2PASS can therefore
be deployed at the anonymizier. By redefining the weights in
the WAG, 2PASS can be extended to support other privacy
metrics such as K-anonymity.
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We also plan to deploy our iGuide system in a larger
geographical area and conduct a large-scale user experience
survey on the usability of our 2PASS-based system. We also
plan to study the behavior of 2PASS when the client issues
a series of requests within a short period. There are two
contradicting implications. On one hand, a client-side cache
may add more indeterminacy to the client behavior and thus
makes the server speculation even more difficult. On the other
hand, the server might get extra information if it compares
the requested objects of two or more consecutive queries.
For example, at time ¢ = 0 the client requests, among other
objects, object o, but at time ¢ = 1 second, the client requests
neither o nor any object whose Voronoi cell is reachable from
the cell of o within this second. As such, the server can confirm
that o is a dummy object in the ¢ = 0 request and can be
removed from speculation. Therefore, the client needs a more
consistent object selection algorithm than the approximate
MVWCC to ensure no shrinking of cloaked region during
continuous service requests.
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