
The VLDB Journal (2006) 15(1): 21–39
DOI 10.1007/s00778-004-0146-0

REGULAR PAPER

Baihua Zheng · Jianliang Xu · Wang-Chien Lee ·
Dik Lun Lee

Grid-partition index: a hybrid method for nearest-neighbor queries
in wireless location-based services

Received: 27 May 2003 / Accepted: 1 October 2004 / Published online: 22 July 2005
c© Springer-Verlag 2006

Abstract Traditional nearest-neighbor (NN) search is based
on two basic indexing approaches: object-based indexing
and solution-based indexing. The former is constructed
based on the locations of data objects: using some distance
heuristics on object locations. The latter is built on a pre-
computed solution space. Thus, NN queries can be reduced
to and processed as simple point queries in this solution
space. Both approaches exhibit some disadvantages, espe-
cially when employed for wireless data broadcast in mobile
computing environments.

In this paper, we introduce a new index method, called
the grid-partition index, to support NN search in both on-
demand access and periodic broadcast modes of mobile
computing. The grid-partition index is constructed based on
the Voronoi diagram, i.e., the solution space of NN queries.
However, it has two distinctive characteristics. First, it di-
vides the solution space into grid cells such that a query
point can be efficiently mapped into a grid cell around which
the nearest object is located. This significantly reduces the
search space. Second, the grid-partition index stores the ob-
jects that are potential NNs of any query falling within the
cell. The storage of objects, instead of the Voronoi cells,
makes the grid-partition index a hybrid of the solution-based
and object-based approaches. As a result, it achieves a much
more compact representation than the pure solution-based
approach and avoids backtracked traversals required in the
typical object-based approach, thus realizing the advantages
of both approaches.

B. Zheng (B)
Singapore Management University, 469 Bukit Timah Road,
Singapore 259756
E-mail: bhzheng@smu.edu.sg

J. Xu
Hong Kong Baptist University, Kowloon Tong, Hong Kong

W.-C. Lee
The Penn State University, University Park, PA 16802, USA

D. L. Lee
Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong

We develop an incremental construction algorithm to ad-
dress the issue of object update. In addition, we present
a cost model to approximate the search cost of different
grid partitioning schemes. The performances of the grid-
partition index and existing indexes are evaluated using both
synthetic and real data. The results show that, overall, the
grid-partition index significantly outperforms object-based
indexes and solution-based indexes. Furthermore, we ex-
tend the grid-partition index to support continuous-nearest-
neighbor search. Both algorithms and experimental results
are presented.

Keywords Nearest-neighbor search · Continuous-nearest-
neighbor search · Index structure · Location-dependent
data · Wireless broadcast

Edited by R. Guting

1 Introduction

Location-dependent information services (LDISs) refer to
services that answer queries based on where the queries
are issued. Due to the popularity of personal digital devices
and advances in wireless communication technologies, LD-
ISs have received a lot of attention from both the indus-
trial and academic communities [12, 17]. In its report “IT
Roadmap to a Geospatial Future” [17], the Computer Sci-
ence and Telecommunications Board (CSTB) predicted that
LDISs would usher in the era of mobile/pervasive computing
and reshape the mass media, marketing, and various other
aspects of our society in the decade to come.

A very important class of problems in LDISs is nearest-
neighbor (NN) search. An example of NN search is: “Show
me the nearest restaurant.” A lot of research has been carried
out on how to solve the NN search problem in the traditional
domain of spatial databases [16, 20, 25] and research areas
involving high-dimensional spaces such as multimedia
databases and OLAP [1, 4, 5, 7, 15, 27]. In contrast to these
efforts, in this paper we study the NN search problem in
wireless environments, which are most attractive to LDIS

22 B. Zheng et al.

users [12]. Data access in wireless environments has unique
characteristics that are different from those of traditional
disk-based environments. In addition to the traditional on-
demand access supported by point-to-point communication,
periodic broadcast is an alternative to disseminating data to
mobile users (see Sect. 2.1 for a detailed discussion of these
two data access modes). Traditional disk-based indexing
techniques can be employed to speed up query processing
for on-demand access, while periodically broadcasting
the index along with the data can guide the clients to
intelligently listen to useful data only. Moreover, disks
support random access, whereas the access in periodic
broadcast is sequential. In addition, mobile and disk-based
environments have different performance requirements,
i.e., mobile clients are concerned not only with access
latency but also with energy consumption [9, 10, 26].
This calls for the development of new index and search
techniques. On the other hand, we shall focus ourselves on
a low-dimensional space because most, if not all, LDISs are
based on a two-dimensional space.

Although people are more familiar with point-to-point
wireless connections, satellite-based broadcast has been
used for many years by companies such as Hughes Network
System to provide broadband data services. Broadcast dis-
semination has also been adopted by Microsoft Smart Per-
sonal Objects Technology (SPOT) to send timely, location-
aware information to customers via the DirectBand network.
This demonstrates the industrial interest as well as commer-
cial feasibility of broadcast methods for large-scale data de-
livery. Data broadcast allows simultaneous access of data by
an arbitrary number of mobile clients at a constant cost, thus
increasing the flexibility and scalability of the system. It is
efficient in terms of power and resource consumption be-
cause broadcast is an inherent capability of wireless com-
munication and does not require sophisticated protocols for
channel setup and data exchange, making it very suitable for
resource-constrained mobile environments. An additional
benefit of broadcast is that clients can fetch any desirable
information from the broadcast channel without revealing to
the server their specific queries. For example, in the context
of this paper, the user can retrieve the nearest objects from
a broadcast channel without needing to send the server de-
tails of his physical location. Thus, the privacy of the user
is protected. These benefits motivate us to investigate in this
paper the NN problem in both wireless broadcast and point-
to-point environments.

Most of the existing studies on NN search are based on
indexes that store the locations of the indexed objects, e.g.,
the well-known R-tree [16]. We call them object-based in-
dexes. Recently, Berchtold et al. proposed a method for NN
search based on indexing the precomputed solution space
[1]. We refer to this as a solution-based index. Both object-
based indexes and solution-based indexes have advantages
and disadvantages. For example, object-based indexes incur
a low storage overhead, but they rely on backtracking to ob-
tain query results. Backtracking is not a major constraint
for random-access media (e.g., disks), but it is a serious
problem for sequential-access media (e.g., wireless chan-

nels with data broadcast; see Sect. 2.2 for details). Solution-
based indexes overcome the backtracking problem by an-
swering an NN query in a single linear scan of the index.
As such, they work well for sequential-access media. Nev-
ertheless, since the solution space typically consists of com-
plex shapes (e.g., polygons), the solution-based index gen-
erally has a larger index size than that of the object-based
index. Finally, solution-based indexes are tailored for partic-
ular types of queries. They are expected to be incorporated
in a spatial DBMS to provide efficient support for popular
types of queries such as NN search. This is analogous to re-
lational DBMSs that support both the hash index for efficient
equality match and B+-tree for more general queries.

In a previous paper, we proposed a novel grid-partition
index that combines the strengths of object-based indexes
and solution-based indexes [28]. The basic idea is as fol-
lows. First, the solution space of NN queries is partitioned
into disjoint grid cells. For each grid cell, all of the possi-
ble NNs for an arbitrary query point within the cell are in-
dexed. This approach effectively shrinks the initial search
space to a grid cell by quickly locating the grid cell con-
taining the query point. Moreover, since the object locations
(rather than the complex shapes of solution space) are in-
dexed, the index size is small. Three partitioning algorithms
– fixed partition, semiadaptive partition, and adaptive parti-
tion – were developed. In this paper, we extend the previous
work in the following aspects:

– A new index construction algorithm based on Delaunay
triangulation is proposed to support incremental update
of the index. The method described in [28] was directly
based on the Voronoi diagram, and update issues were not
addressed.

– A cost model is derived to approximate the grid-partition
index’s performance in terms of index search cost.

– An extensive simulation is conducted to compare the per-
formance of the grid-partition index with representative
object-based and solution-based indexes in both air index-
ing and traditional disk indexing environments, whereas
only an air indexing environment was considered in [28].
In addition, this paper includes more datasets and perfor-
mance metrics to provide a thorough comparison between
the grid-partition index and other indexes.

– A continuous-nearest-neighbor search algorithm is devel-
oped based on the grid-partition index. The experimental
performance results are presented.

The rest of this paper is organized as follows. Section 2
provides the background for supporting NN search on air
and analyzes the constraints of existing index structures.
Section 3 introduces the basic idea of the grid-partition in-
dex, together with an incremental index construction ap-
proach, the NN search algorithm, and the cost model. A per-
formance evaluation of the grid-partition index is presented
in Sect. 4. Section 5 extends the usage of the grid-partition
index to solve the continuous-nearest-neighbor problem in
wireless environments. Finally, we conclude the paper with
a roadmap of future work in Sect. 6.

Grid-partition index 23

2 Background

The goal of our study is to address the NN search issue in
mobile computing environments in which the data are de-
livered via wireless networks. In what follows, first we de-
scribe two typical mobile data dissemination approaches in
wireless networks and their performance concerns. Then we
review existing index structures for NN queries.

2.1 Mobile data dissemination and performance metrics

LDISs are very attractive in a mobile and wireless environ-
ment, where mobile clients enjoy unrestricted mobility and
ubiquitous information access [12]. There are basically two
approaches to disseminating location-dependent data to mo-
bile clients:

– On-demand access A mobile client submits a request,
which consists of a query and the query’s issuing location,
to the server. The server returns the result to the mobile
client via a dedicated point-to-point channel.

– Periodic broadcast Data are periodically broadcast on a
wireless channel open to the public. After a mobile client
receives a query from its user, it tunes into the broadcast
channel to receive the data of interest based on the query
and its current location.

On-demand access is particularly suitable for light-
loaded systems when contention for wireless channels and
server processing is not severe. However, as the number of
users increases, the system performance deteriorates rapidly.
Compared with on-demand access, broadcast is a more scal-
able approach since it allows simultaneous access by an ar-
bitrary number of mobile clients.

Access efficiency and energy conservation are two criti-
cal issues for mobile clients. Access efficiency refers to how
fast a request is satisfied, while energy conservation is con-
cerned with reducing a mobile client’s energy consumption
when it accesses the data of interest. In the literature, two
performance metrics, access latency and tuning time, are
used to measure access efficiency and energy conservation,
respectively [9, 10]:

– Access latency The time elapsed between the moment
when a query is issued and the moment when it is sat-
isfied.

– Tuning time The time a mobile client stays active to re-
ceive the requested data.

While access efficiency is is constantly addressed in
most system and database research, energy conservation is
very critical due to the limited battery capacity on mobile
clients, which ranges from only a few hours to about half
a day under continuous use. Moreover, only a modest im-
provement in battery capacity of 20–30% is expected over
the next few years [10]. To facilitate energy conservation, a
mobile device typically supports two operation modes: ac-
tive mode and doze mode. The device normally operates in

active mode; it can switch to doze mode to save energy when
the system becomes idle.

With on-demand access, query processing is the same as
in traditional client-server mode, except that the query and
result are transferred via a wireless network. The client tun-
ing time (for sending the query and receiving the result) is
independent of query processing strategies. Hence, the focus
of this paper with respect to on-demand access is to employ
disk indexing on the server to expedite query processing. It is
understood that disk I/O rather than CPU is the performance
bottleneck for most disk-based database applications. There-
fore, the design objective is to minimize the index search
cost in terms of the number of index pages accessed during
query processing (since indexes are accessed in the unit of
page). However, the improvement of query latency due to
an index structure comes at the cost of storing and maintain-
ing the index on disk. Fortunately, as disk storage is getting
cheaper and bigger, the index storage overhead is not a major
concern.

With data broadcast, clients listen to a broadcast channel
to retrieve data based on their queries and hence are respon-
sible for query processing. Without any index information, a
client has to download all data objects to process NN search,
which will consume a lot of energy since the client needs to
remain active during a whole broadcast cycle. A solution to
this problem is air indexing [10]. The basic idea is to broad-
cast an index before data objects (see Fig. 1 for an example).
Thus, query processing can be performed over the index in-
stead of actual data objects. As the index is much smaller
than the data objects and is selectively accessed to perform
a query, the client is expected to download less data (hence
incurring less tuning time and energy consumption) to find
the NN. In fact, the tuning time is proportional to the index
search cost in terms of the number of index pages accessed
during the search. The disadvantage of air indexing, how-
ever, is that the broadcast cycle is lengthened (to broadcast
additional index information). As a result, the access latency
would worsen. It is obvious that the larger the index size, the
higher the overhead in access latency.

An important issue in air indexing is how to multiplex
data and index on the sequential-access broadcast channel.
Figure 1 shows the well-known (1, m) scheme [10], where
the index is broadcast in front of every 1

m fraction of the
dataset. To facilitate the access of index, each data page
includes an offset to the beginning of the next index. The

......Previous
Broadcast

Next
Broadcast

Data_1 Data_2 Data_m

1 2 3 m

: Index Segment : Data Segment

Broadcast Cycle

Fig. 1 Air indexing in wireless broadcast environments

24 B. Zheng et al.

general access protocol for processing NN search involves
the following steps:

– Initial probe: The client tunes into the broadcast channel
and determines when the next index is broadcast.

– Index search: The client tunes into the broadcast channel
again when the index is broadcast. It selectively accesses
a number of index pages to find out the NN object and
when to download it.

– Data retrieval: When the page containing the NN object
arrives, the client downloads it and retrieves the NN.

In general, low index search cost and small index size
cannot be achieved simultaneously. To correlate the index
search cost and index size, we present a flexible performance
measure, indexing efficiency (denoted by η). It is defined as
the ratio of the reduced index search cost to the enlarged in-
dex size against a naive scheme, where each index segment
stores the locations of all the objects and a client needs to
conduct an exhaustive search to find its NN object. Formally,
the indexing efficiency metric is defined as:

η(i) = ((Tnaive − Ti)/Tnaive)
α

((Si − Snaive)/Snaive)
, (1)

where Ti is the average index search cost of an index i , Si is
the size of index i , and α is a constant parameter to weigh the
importance of the saved search cost and the index overhead.
The setting of α could be adjusted for different application
scenarios. The larger the value of α, the more important the
index search cost compared with the index size. This metric
will be used as a performance guideline to tune the tradeoff
between the index search cost and index size in constructing
the grid-partition index.

To summarize this section, for on-demand access, the
objective of disk indexing is to reduce the latency of query
processing; for data broadcast, the objective of air indexing
is to trade access latency for tuning time. Although the ulti-
mate performance objectives are different in these two sce-
narios, they are essentially determined by the index size (for
access latency in air indexing) and the index search cost in
terms of index page accesses during query processing (for
query latency in disk indexing and tuning time in air index-
ing). Therefore, the goal of this paper is to design new index
structures that minimize the index search cost and index size
for NN search. In addition, we require the indexes to support
efficient NN search on sequential-access broadcast channels.

2.2 Indexes for NN queries

According to the information indexed, the existing index
structures for NN search can be classified into two cate-
gories: object-based indexes and solution-based indexes. A
running example consisting of four objects in search space
A is introduced to illustrate the basic ideas of these indexes
(Fig. 2a).

o1

o2

o3

o4

a

o1

o2

o3

o4

P1

P2

P3

P4

b

Fig. 2 A running example. a Object distribution. b Voronoi diagram

2.2.1 Object-based indexes

The indexes in this category are built upon the locations of
data objects. The representative is R-tree [6], where objects
are indexed using minimal bounding rectangles (MBRs).
Most of the other indexes in the category were derived from
R-tree. The MBRs for the objects in the running example
and the corresponding R-tree index are shown in Fig. 3,
given that the node fan-out is two. If the objects to be in-
dexed are all available, a packing algorithm, such as the
Hilbert sort [11] or STR [13], can be used to build the index
so that both the index size and index search cost are reduced
by improving the page occupancy.

To perform NN search, a branch-and-bound approach is
used to traverse the index tree. At each step, a heuristic is ap-
plied to choose the next branch to traverse. At the same time,
information is collected to prune the future search space.
Various search algorithms differ in terms of the searching or-
der and the metrics used to prune the branches [3, 8, 16]. For
example, suppose that there are two query points, q1 and q2,
as shown in Fig. 3a. For query point q1, after accessing the
root, it visits R2 first since it is closer to R2 than R1. In R2,
the NN of q1 is o4. Hence, it records the current minimum
distance, dist(q1, o4). Because dist(q1, o4) is shorter than the
minimum distance from q1 to R1, the search is stopped here.
Similarly, for query point q2, first it examines the root and
then R2. Next, it examines R1 since the current minimum
distance, dist(q2, o2), is longer than the minimum distance
from q2 to R1.

o 2o 1 o 3 o 4

R2R1

R1 R2Root

To Data Buckets

b

o1

o2

o3

o4

1R

2R
q2

q1

a

Fig. 3 R-tree index for the running example. a MBR structures.
b R-tree index

Grid-partition index 25

R1R2 R1R21o 3o 2o 4o 1o 3o 2o 4o

Broadcast Cycle

Data Data

a b
R1R2 R1R21o 3o 2o 4o 1o 3o 2o 4o

Broadcast Cycle

Data Data

Fig. 4 Sequential access on a wireless broadcast channel. a Branch-and-bound search. b Sequential search

As illustrated, an NN search for R-trees dynamically tra-
verses the MBRs according to the given query point. This
introduces two major weaknesses. First, since such a search
relies on the heuristic to gradually prune the search space,
the performance really depends on whether the heuristic has
pruning power. A foreseeable effect is the great variance
of the search performance. Second, the branch-and-bound
search approach involves a lot of backtracking, which works
well for random-access disks only but not for sequential-
access broadcast channels.

Let us consider an example. Suppose that the index tree
in our running example is broadcast once in a preorder
traversal in a broadcast cycle (Fig. 4a). If we preserve the
search order for q2 (i.e., first the root, followed by R2, fol-
lowed by R1) based on the original R-tree search algorithm,
a significant access delay is incurred. This is because after
accessing R2, we have to wait for the next broadcast to ac-
cess R1 since R1 has already been broadcast in the current
cycle (as illustrated by the second arc in Fig. 4a). Such a de-
lay is incurred for every inconsistency between the search-
ing order and the broadcasting order of MBRs. Therefore,
the branch-and-bound search approach is inefficient in ac-
cess latency. Alternatively, we may just access R1 and R2
sequentially (Fig. 4b). However, this method is not the best
in terms of the tuning time since unnecessary accesses may
be incurred. For example, accessing R1 for q1 is a waste of
tuning time.

Vector-approximation file (VA-File) is another represen-
tative index for NN search [24], which was proposed for effi-
cient similarity search in high-dimensional spaces. The basic
idea is to assign b j bits to represent the j th dimension, i.e.,
by dividing the space along the j th dimension into 2b j par-
titions, each containing about the same number of objects.
The server records a set of marks (m j [1], . . . , m j [2b j]) to
capture the partitioning coordinates in the j th dimension.
Therefore, the original d-dimensional space is divided into
2b cells, with b equal to

∑d
j=1 b j , and each cell is repre-

sented by a b-bits vector. Since an object falls into one and
only one cell, it can be associated with the cell’s vector. With
such a flat structure, VA-File reduces the index size and ex-
pedites the sequential scan, which is unavoidable when the
number of dimensions exceeds 10 [23, 24]. Nevertheless, as
a space partitioning method, it performs much worse than
R-tree in low-dimensional spaces, where the sequential scan
is often not needed. Therefore, R-tree is employed in this
paper as a representative of location-based indexes.

Another object-based index structure related to ours is
the grid file, which was originally designed for multikey file
access [14]. The basic ideas behind the grid file and our pro-
posed grid-partition index are different. In the grid file, the
space is partitioned into grid cells according to the objects’

distribution, and each grid cell indexes only the objects in-
side its cell. By contrast, in our proposed index, the space is
partitioned into grid cells based on the solution space, and
each object might be associated with several grid cells. A
grid cell actually indexes all the objects that are potential
NNs of query points inside the cell. The objective of our
grid-partition index is to efficiently solve NN search in mo-
bile computing environments.

2.2.2 Solution-based indexes

An object-based index is a generic index structure that sup-
ports various spatial operations such as joins besides NN
search, and solution-based indexes are constructed for serv-
ing specific types of queries. Motivated by the observation
that the performance of object-based indexes for NN search
decreases as the dimension of space increases, solution-
based indexes have been proposed to build an index based
on the precomputed solution space [1]. For an NN search,
the solution space can be represented by the Voronoi dia-
gram (VD) [2]. Let O = {o1, o2, . . . , on} be a set of points.
V(oi), the Voronoi cell (VC) for oi , is defined as the set of
points q in the space such that dist(q, oi) < dist(q, o j), ∀
j �= i . That is, V(oi) consists of the set of points for which
oi is the NN. The VD for the running example is depicted in
Fig. 2b, where P1, P2, P3, and P4 denote the VCs for four
objects, o1, o2, o3, and o4, respectively.

Given the VD solution space, the index is constructed
over the VCs. The NN search problem is thus reduced to
the problem of searching the VC in which a query point
is located. The original idea of indexing the solution space
introduced in [1] was for similarity search in multimedia
databases, i.e., for the NN search under high-dimensional
spaces. Besides suggesting the idea of indexing the solution
space for the first time, the major contribution of [1] was
to propose an approximation scheme for the VCs that could
be very complex in the high-dimensional space and design a
decomposition technique to improve the search performance
under high-dimensional spaces. However, as we mentioned
in Sect. 1, this paper will focus on a low-dimensional space,
under which the advantages of the previous idea of indexing
the solution space might not be appreciated. On the other
hand, our recently proposed D-tree can be used to index VCs
in low-dimensional spaces and shows a better performance
than other existing indexes [26].1 As such, D-tree is used
as the representative for solution-based indexes to compare
against the proposed grid-partition index.

The objective of a D-tree is to index any given solution
space, like VD for NN search and the map of delivery areas

1 Note that D-tree was proposed for supporting general point-
location queries and was not limited to VC searching.

26 B. Zheng et al.

P2

q1

1

4v

2v

1v

6v

5v

3v

P5 P6

P4

P3P

a

P1 P2 P4P3

V5V4V1 V3

V2 V3 V4 V6Y

X X

b

Fig. 5 D-tree index for the running example. a Divisions in the exam-
ple. b D-tree structure

for ZIP code queries. The basic idea of D-tree is to index re-
gions in the solution space based on the divisions that form
the boundaries of the regions (VCs are the corresponding
regions for NN search). To construct the index, D-tree re-
cursively partitions a space into two subspaces until each
space contains only one region. Consider our running exam-
ple: first, polyline pl(v2, v3, v4, v6) partitions the original
space into left subspace and right subspace (denoted by P5
and P6, respectively); next, pl(v1, v3) and pl(v4, v5) further
partition P5 into P1 and P2, and P6 into P3 and P4. Figure 5
depicts the D-tree structure for the running example.

We use an example to illustrate the point query algo-
rithm with D-tree. Suppose the query point is q1, as shown
in Fig. 5a. The search starts at the root and goes to the
right child node since q1 is to the right of the partition line
pl(v2, v3, v4, v6). Next, it follows the right pointer to ac-
cess P4 since q1 is again to the right of the partition line
pl(v4, v5). By then, we know the NN to q1 is o4 as P4 is the
VC of o4.

Compared with object-based indexes, search algorithms
based on solution-based indexes do not bring any backtrack-
ing and hence are suitable for sequential-access media such
as wireless channels. However, instead of indexing the po-
sitions of objects, it has to index all the VCs of the objects,
which definitely enlarges the index size. Since index infor-
mation also occupies wireless channels and hence has also
been regarded as an important performance metric, existing
solution-based indexes might not be the best choice for NN
search under mobile devices.

3 A grid-partition index

As mentioned in the previous sections, both object-based in-
dexes and solution-based indexes for NN search have cer-
tain advantages and disadvantages. An object-based index
has a small size, since it only indexes the necessary informa-
tion, i.e., the position information of objects. However, it re-
quires lots of backtracking in the whole search process, and
hence the index search cost under sequential-access broad-
cast mode could be high. On the other hand, a solution-based
index generally avoids the backtracking problem by map-
ping the NN search problem into a point location query.
Consequently, it achieves a good search performance for
sequential-access broadcast. However, it indexes the VCs (in

the shape of polygons) rather than data objects that can be
represented by points directly, thus resulting in a large index
size.

In the following subsections, we introduce the structure
of the grid-partition index, which is a hybrid of object-based
and solution-based indexes. The goal is to combine the ad-
vantages of both indexes. The grid-partition index starts with
the solution space, but instead of indexing the VCs, it stores
the object locations in the index. The next several sections
describe the grid-partition index in detail.

3.1 Basic idea

In object-based indexes, each NN search starts with the
whole search space and gradually limits the space based on
some knowledge gathered during the search. We have ob-
served that an essential problem affecting the search per-
formance is the large overall search space. Therefore, we
attempt to reduce the search space for a query at the very be-
ginning by partitioning the space into disjoint grid cells. For
each grid cell, we index all the objects that could be NNs of
at least one query point inside the grid cell.

Definition 1 An object is associated with a grid cell if and
only if it is the NN of some query point inside the grid cell.

As explained in our previous work [28], the Voronoi di-
agram (VD) mentioned in the last section can be used to
conceptually illustrate the idea of associating objects with
grid cells. Given a VD, an object is the NN only to the query
points located inside its VC. For instance, in Fig. 2b, object
o1 is the NN only to the query points inside P1. Therefore,
for any query point inside a grid cell, only the objects whose
VCs overlap with this grid cell form the candidate set of its
NNs.

Given an NN query, first we locate the grid cell in which
the query point lies, then search the answer based on ob-
jects associated with that grid cell only. Since each grid cell
only covers a limited part of the search space, the number
of objects associated with each grid cell is expected to be
much smaller than the number of all available objects in the
original space. Thus, if we can quickly locate the grid cell,
the search space for an NN query will be greatly reduced.
Therefore, the overall search performance can be improved.
Figure 6a shows a possible grid partition for our running ex-
ample. The whole space is divided into four grid cells: G1,

o1

o4

o2

o3

G1 2G G3 G4

gx

Sx

Sy
gy

x1

a b

o 1 o 2
o 1 o 4 o 3 o 4o 3o 3o 3

o 2 o 2

G2 G4G31G

xS xg yg

To Data Buckets

upper-level index

lower-level index

Fig. 6 Fixed grid partition for the running example. a Grid partition.
b Index structure

Grid-partition index 27

G2, G3, and G4. Grid cell G1 is associated with objects o1
and o2, since their VCs, P1 and P2, overlap with G1; like-
wise, grid cell G2 is associated with objects o1, o2, o3, and
so on. If a given query point is in grid cell G1, the NN can
be found among the objects associated with G1 (i.e., o1 and
o2), instead of among the whole set of objects.

The index structure for the proposed grid-partition index
consists of two levels. The upper-level index is built upon
the grid cells, and the lower-level index is built upon the ob-
jects associated with each grid cell. The upper-level index
maps a query point to the corresponding grid cell, while the
lower-level index facilitates the access to the objects associ-
ated with each grid cell. The advantage is that once the query
point is located in a grid cell, its NN is definitely among
the objects associated with that grid cell, thereby prevent-
ing any backtracking operations and enabling a single linear
access of the upper-level index for any query point. In addi-
tion, to reduce the search space as much as possible and to
avoid backtracking operations in the lower-level index, we
try to control the size of each grid cell such that its associ-
ated objects can fit into one page. Thus, for each grid cell,
a simple index structure (i.e., a list of object-pointer pairs)
is employed. In case the index for a grid cell cannot fit into
one page, it is sequentially allocated to a number of pages.
In each grid cell, the list of object-pointer pairs is sorted
along the dimension (hereafter called the sorting dimension)
in which the grid cell has the largest span. For example, in
Fig. 6a, the associated objects for grid G2, o1, o3, and o2 are
sorted according to the y-dimension. The purpose of this ar-
rangement is to speed up the NN detection procedure, as we
will see in Sect. 3.3.

3.2 Associating objects to grid cells

In the last subsection, we explained how to associate objects
with grid cells using the VD. However, if there are updates
on object locations, we have to reconstruct the VD from
scratch and reestablish the association relationships between
objects and grid cells. To address the update issue, we pro-
pose an incremental technique based on the Delaunay trian-
gulation (DT) for associating objects with grid cells.

The DT is the straight-line dual of the VD [2]. In the DT,
the vertices are objects themselves, and every segment con-
necting two objects represents some relationship between
those two objects, which satisfies the following property:

Property 1 Two objects are directly connected in the DT if
and only if their VCs share a common edge.

Figure 7a shows seven objects (o1 through o7), their VCs
(represented by dashed polygons), and the DT (represented
by solid triangles). One important property of the DT is that
the circumcenter of any triangle is one of the endpoints in
the VD. As in Fig. 7a, point a in the VD is the circumcen-
ter of triangle �o1o2o3. Based on this property, we develop
an algorithm (Algorithm 1) to select the objects associated
with a grid cell. The algorithm assumes that the DT is pre-
processed and maintained in some data structure.

o1

o2

o3

o4

o5

o6

o7

a

b

c

d

e

f

g

R

a b

i

h

f

e

d

c

b

a

o

7o

6o
5o

4o

3o

2o

1o

8

Fig. 7 Object association based on DT. a DT example. b DT after
insertion of os

The algorithm works as follows. The objects inside the
grid cell are definitely associated with this grid cell (lines 1–
4). If there are no objects inside the given grid cell, the NNs
to the four endpoints of the grid cell are selected as seed
objects (lines 5–7). After obtaining these seed objects, we
check their adjacent objects in a greedy manner (lines 8–
24). If one edge of the adjacent object’s VC overlaps with
the grid cell, it is selected. For each newly added object, its
adjacent objects are also checked. The counter associated
with each object is used for update operations, as will be
explained later in this subsection.

Let us consider an example. Suppose that the grid cell is
R in Fig. 7a. The four objects o2, o5, o6, and o7 are inside R
and hence are selected as the objects associated with the grid
cell. Next, we check the adjacent objects of o2, namely, ob-
jects o1 and o3. For o3, the two triangles that have segment
o2o3 as the common edge are �o1o2o3 and �o2o3o5, which
have points a and c as their circumcenters, respectively. Seg-
ment ac overlaps with R. Thus, object o3 is also an associ-
ated object of R. For o1, the corresponding ray emanating
from a does not overlap with R. Thus, o1 is not selected.
Similar operations are performed on unmarked adjacent ob-
jects of o5, o6, o7, and o3. Finally, objects o2 through o7 are
identified as the associated objects of grid cell R.

We now show the correctness of Algorithm 1.

Theorem 1 An object is selected by Algorithm 1 to asso-
ciate with a grid cell if and only if it is an NN of the grid
cell.

Proof If a VC overlaps with a grid cell, at least one of the
VC’s edges should be inside the cell. Now suppose that the
algorithm does not select all of the objects associated with
the cell. Without loss of generality, let us assume that the set
of objects selected by the algorithm is A, and those that are
neighbors but not selected are denoted by B. According to
the definitions of object-grid association, the VCs of A and
B together should cover the grid cell.

We next prove that the VCs of A and B are not con-
nected in the VD as follows. Suppose they are connected;
from Property 1, there must be two objects, o1 from A, and
o2 from B, connected in the DT. In this case, according to
the algorithm, when checking the adjacent neighbors of o1,
o2 should have been selected, which is a contradiction.

Since the VCs of A cannot cover the whole cell (other-
wise A is the complete solution), and the VCs of A and B

28 B. Zheng et al.

Algorithm 1 Selecting associated objects for a grid cell

Input: grid cell, locations of objects, and their DT;
Output: associated objects of this grid cell;
Procedure:
1: for each object oi do
2: initialize count(oi) = 0; mark(oi) = 0;
3: if oi is inside the input grid cell then insert it into a queue Q
4: end for
5: if Q is empty then
6: find nearest objects of the endpoints of the grid cell, and insert them into Q
7: end if
8: while Q is not empty do
9: pop the first object oi into the queue
10: for each object o j adjacent to oi do
11: obtain the triangles that have segment o j oi as one edge
12: if there are two such triangles �1 and �2 then
13: let c1 be the circumcenter of �1 and c2 be the circumcenter of �2
14: else
15: there is only one triangle �
16: let c1 be the circumcenter of � and c3 be the outermost point on the per-

pendicular bisector of segment o j oi
17: end if
18: if segment c1c2 or ray −−→c1c3 overlaps with the grid cell then
19: count(oi)++
20: if mark(o j) != 1 then insert it into Q
21: end if
22: end for
23: mark(oi) = 1
24: end while
25: return all the objects with count > 0

are not connected in the VD, they cannot cover the whole
cell. This contradicts our previous claim that the VCs of A
and B together cover the grid cell. Thus the original assump-
tion does not hold, and we prove that all the objects that are
NNs of the grid cell are selected.

Next, we are going to prove that only the objects that are
NNs of the grid cell will be selected. For any object selected
by Algorithm 1, at least one edge of its VC overlaps with
the grid cell. By definition of VC, this object must be an
NN of some point lying in the grid cell. Therefore, any
object selected by Algorithm 1 must be an NN of the grid
cell. �

Object updates will result in insertion and deletion of
some edges in the DT. An incremental algorithm with a time
complexity of O(log(n)) can be employed to update the DT
when objects are deleted, inserted, or modified [2]. In what
follows, we describe the operations of changing the associ-
ated objects of a grid cell in accordance with edge insertion
or deletion in the DT.

– Insertion When edge e is inserted in the DT, first we
calculate the circumcenter(s) of the triangle(s) having e
as an edge. If there are two such triangles, a segment
is constructed by connecting their circumcenters. Other-
wise, there is only one triangle; we construct a ray ema-
nating from its circumcenter. Then we can obtain the grid
cells that overlap the segment or the ray. The object(s) of
the segment or the ray should be added to those grid cells
if they are not associated with them, and their counters
for those grid cells are increased by 1.

– Deletion When an edge is deleted, the circumcenter(s)
of its related triangle(s) can be obtained as in insertion.
If the corresponding segment or ray overlaps with a grid
cell, the counter(s) of the object(s) for that cell will be
decreased by 1. If the counter reaches 0, the object is
removed from the corresponding grid cell.
Figure 7b provides an example of the insertion opera-

tion, where a new object o8 is added. Using the incremental
update algorithm for the DT, the affected edges can be ob-
tained. Specifically, dash–dot edges o4o8, o5o8, and o6o8 are
added, and edge o4o6 is deleted. For edge o4o6, the corre-
sponding ray extending from circumcenter g does not over-
lap with R. Hence, no action is needed. For newly added
edge o5o8, the corresponding segment hi overlaps with R.
Hence, object o8 is added. The same test can be carried out
for the other two edges.

3.3 Nearest-neighbor search

With the grid-partition index, an NN query is answered by
executing the following three steps: (1) locating the grid
cell, (2) detecting the NN, and (3) retrieving the data. The
first step locates the grid cell in which the query point lies.
The second step obtains all the objects associated with that
grid cell and detects the NN by comparing their distances to
the query point. The final step retrieves the data to answer
the query. In what follows, we describe an efficient algo-
rithm for detecting the NN object for a query point inside
a grid cell. This procedure works for all the proposed grid-
partition approaches.

Grid-partition index 29

o6

2o

o7

dis = 6 dis = 7dis_sd = 7.5dis_sd = 8 dis = 7

o
3

5

o
1 o

4

o o8 o9

query point

135
stopstop

2 4

a

Step Object Checking dis sd cur dis min dis

1 o6 1 7 7
2 o7 4 7 7
3 o5 4 6 6
4 o8 7.5 stop
5 o4 8 stop

b

Fig. 8 An example for detecting NN

In a grid cell, given a query point, the sorted associated
objects are broken down into two lists: one list consists of the
objects with coordinates smaller than the query point in the
sorting dimension, and the other list consists of the remain-
ing objects. To detect the NN, the objects in the two lists are
checked alternately. Initially, the current shortest distance
min dis is set to be infinite. At each checking step, let cur dis
be the distance between the object c being checked and the

query point q , i.e.,
√

(xc − xq)2 + (yc − yq)2; min dis is up-
dated if cur dis < min dis. Let dis sd denote the distance be-
tween the current object and the query point along the sort-
ing dimension, i.e., |xc − xq | or |yc − yq |. The checking
process continues until dis sd > min dis. The correctness
can be justified as follows. For the current object, cur dis
≥ dis sd, and hence we have cur dis > min dis if dis sd >
min dis. For the remaining objects in the list, their dis sds
are even longer, and thus it is impossible for them to have a
distance shorter than min dis.

Figure 8a gives an example in which nine objects that are
associated with the grid cell (denoted by the solid-line rect-
angle) are sorted according to the x-dimension over which
the cell has a larger span. Given a query point as shown in
the figure, the nine objects are broken into two lists, with
one containing o1 to o6 and the other containing o7 to o9.
The algorithm proceeds to check these two lists alternately,
i.e., in the order of o6, o7, o5, o8, · · · , and so on. Figure 8b
shows the intermediate results for each step. In the first list,
the checking stops at o4 (step 5), since its distance to the
query point in the x-dimension (i.e., 8) is already longer than
min dis (i.e., 6). Similarly, the checking stops at o8 (step 4)
in the second list. As a result, only five objects rather than
all nine objects are evaluated. The improvement is expected
to be significant when the width and height of the grid cell
differ considerably.

3.4 Cost models

In our previous work [28], we proposed three basic ap-
proaches to partitioning the search spaces into grid cells,

namely, fixed partition (FP), semiadaptive partition (SAP),
and adaptive partition (AP). The basic ideas are briefly sum-
marized as follows. FP divides the search space into fixed-
size grid cells and hence is very simple for implementation.
However, it does not take into account the distribution of ob-
jects and their VCs. Thus, it is not easy to utilize the index
pages efficiently, especially when the objects’ distribution is
nonuniform. SAP adopts the fixed-size partition along one
dimension while keeping the partition along the other di-
mension dynamic. It allows the grid cells to expand or shrink
according to the objects’ distribution. AP adaptively parti-
tions the space using a kd-tree-like partition method. It re-
cursively partitions the search space into two complemen-
tary subspaces such that the number of objects associated
with each subspace is nearly the same. The partitioning pro-
cess stops when the objects associated with each subspace
could be fitted into one page. Please refer to [28] for the de-
tailed partitioning schemes.

In this subsection, we derive the cost model of the grid-
partition index under three partitioning approaches. In gen-
eral, search cost and size are two basic measures of an index.
Since the index size can be easily obtained when an index is
built, we only derive the search cost in terms of the num-
ber of page accesses. We start by defining some notations in
Table 1.

Generally, the search cost consists of the costs incurred
while searching the upper-level index and the lower-level
index:

T = Tu + Tl =
ng∑

i=1

pi (ti + si). (2)

The parameter si is a constant when an index is con-
structed, and pi could be approximated by the ratio of the
grid cell’s area to the area of the original search space. We
only need to analyze ti for different partition schemes. For
the FP scheme, we obtain ti in Eq. 3, assuming the page

Table 1 Definition of notations

Notation Definition

sp page capacity
N number of objects
ng number of grid cells
ns number of strips (for SAP)
pi query probability in grid cell i
(ni,1, . . . , ni,mi) path in upper-level index from root to the leaf

pointing to grid cell i (for AP)
si size of lower-level index for grid cell i

(in terms of # pages)
ti cost of locating cell i in upper-level index

(in terms of # pages)
ti, j average search cost from the root to node ni, j

(in terms of # pages)
Tu search cost of upper-level index (in terms

of # pages)
Tl search cost of lower-level index (in terms

of # pages)

30 B. Zheng et al.

capacity is larger than the overhead for the header:

ti =
{

1 if grid cell i is on the first index page;

2 otherwise.
(3)

For the SAP scheme, we have ti in Eq. 4, assuming the
page capacity is larger than the overhead for the header in
the first upper-level index page or the discriminators in the
extra index nodes:

ti =

1 if the strip for grid cell i is on the first
index page and contains only 1 grid cell;

2 if the strip for grid cell i is on the first
index page and grid cell i is on the first
page of the extra node, or if it is not
on the first index page but only contains

1 grid cell;
3 if the strip for grid cell i is on the first

index page but grid cell i is not on the
first page of the extra node, or if it is
not on the first index page but grid cell

i is on the first page of the extra node;
4 otherwise.

(4)

For the AP scheme, the index search cost for a node ni, j
is denoted by ti, j . Thus we have ti = ti,mi , which is obtained
recursively:

ti, j =

1 if j = 1;

ti, j−1 if ni, j and ni, j−1 are on the
same page;

ti, j−1 + 1 otherwise.

(5)

4 Performance evaluation

This section presents the performance comparison of the
proposed grid-partition index to the existing indexes for NN
search. Both synthetic and real data are used in the eval-
uation. For synthetic data, a series of UNIFORM datasets
is generated by randomly distributing the points (up to
1M points) in a square Euclidean space; several SKEWED

a b

Fig. 9 Datasets for performance evaluation. a UNIFORM dataset.
b REAL dataset

datasets are also generated following the Zipf distribution,
where the skewness parameter θ is varied from 0.0 to 0.9.
The REAL dataset contains more than 100,000 postal ad-
dresses in three metropolitan areas (New York, Philadelphia,
and Boston).2

We compare the grid-partition index to typical solution-
based indexes and object-based indexes. For solution-based
indexes, it was shown in [26] that D-tree outperforms other
existing index structures. As such, D-tree is employed to in-
dex the solution space for an NN search. It is referred to as
solution-based index in later discussions. For object-based
indexes, we evaluate the NN search algorithm based on R-
tree, which is denoted as object-based index. Since all the
objects are available before the index is built, the STR pack-
ing scheme [13] is employed to build an R-tree to optimize
the performance.

We evaluate the indexes in both air indexing and disk
indexing application scenarios. In data broadcast, D-tree
can be broadcast in either depth-first or breadth-first order.
They have the same performance. However, as explained in
Sect. 2, the R-tree-based NN search algorithm does not work
well for air indexing as it would cause an extremely large ac-
cess latency. We make the following revision to improve its
access latency. No matter where the query is issued, the in-
dex pages are accessed sequentially, while branches that are
guaranteed to fail are pruned according to the mindist- and
minmaxdist-based heuristics as in the original algorithm (see
[16] for details). In addition, R-tree is broadcast in depth-
first order to reduce access latency. Although width-first or-
der has been proved more efficient, it asks the client to main-
tain a queue to remember the distance information between
the query point and all the nodes at the same level. There-
fore, the client must have enough memory space to keep
all this necessary information. Since this requirement can-
not be guaranteed for small portable clients, we adopt the
width-first order to traverse the R-tree. In a traditional disk
indexing environment, the best-first ordering search is em-
ployed to process NN queries, which selects the next node
to search the NN from the set of MBRs in all nodes visited
rather than from those in the current node only [8].

In the data broadcast scenario, for simplicity, a flat
broadcast scheduler is employed (i.e., data objects are broad-
cast in a round-robin manner). To multiplex the index and
data on the broadcast channel, we employ the (1, m) inter-
leaving technique (see Sect. 2.1 for details). The optimal
value of m depends on the index size. It is calculated for
each index structure separately based on the technique pre-
sented in [10].

The system parameters are set as follows. In each page,
two bytes are allocated for the page ID. Two bytes are used
for one pointer and four bytes are used for one coordi-
nate. The page capacity is varied from 128 bytes to 8 KB.3

2 Spatial Datasets: http://www.rtreeportal.org/
spatial.html

3 For disk storage, the page capacity is normally assumed in the or-
der of 1 KB [16, 27]; for the wireless channel, the page capacity is
normally assumed in the order of 100 bytes [9, 10].

Grid-partition index 31

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 64 128 256 512 1024 2048

In
de

x
Si

ze
 (

Pa

ge
s)

Page Capacity (Bytes)

Alpha = 0.0
Alpha = 1.0

Alpha = 50.0
Alpha = Infinity

a b

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 64 128 256 512 1024 2048

Pa

ge
 A

cc
es

se
s

Page Capacity (Bytes)

Alpha = 0.0
Alpha = 1.0

Alpha = 50.0
Alpha = Infinity

Fig. 10 Performance under different settings of α (UNIFORM (N=10,000), FP). a Index size. b Index search cost

In what follows, we first discuss the indexing efficiency
metric; then, since the air indexing and disk indexing sce-
narios have different access characteristics in various as-
pects (e.g., access modes, performance goals, and page ca-
pacities), we report their respective experimental results.
In the air indexing scenarios, the page capacity is set to
256 bytes by default, while in the disk indexing scenar-
ios, it is set to 4 KB. The results to be reported were
obtained for 1,000,000 randomly generated queries on
a PC with a Pentium 4, 1.8-GB CPU and 1 GB main
memory.

4.1 Indexing efficiency metric

The metric of indexing efficiency has been used in the FP
and SAP grid partition schemes in order to determine the
best grid partition. This subsection evaluates the effect of
parameter α in the metric, which, set to a nonnegative num-
ber, weighs the importance of the saved page accesses and
the index overhead.

Figure 10 shows the performance for the UNIFORM
(N = 10,000) dataset when the FP partition scheme is
employed. Similar results are obtained for the SAP scheme
and/or other datasets. From the results we can observe that
the value of α has a significant impact on the performance,
especially for small page capacities. In general, the larger
the value of α, the better the index search cost and the worse
the index size since a larger value of α assigns more weight
to reduce search cost. As expected, the best index size is
achieved when α is set to 0, and the best search cost is
achieved when α is set to infinity. The setting of α can be
adjusted based on requirements of the applications and sys-
tems. In the disk indexing scenario, the index size is not a
big concern and the search cost is more important. There-
fore, α is set to infinity to optimize the search cost. In the
air indexing scenario, the index size is also important as it
affects the access latency. Thus, the value of α is set to 1 in
order to strike a balance between index size and index search
cost.

4.2 Performance in the air indexing scenarios

This subsection evaluates the indexes in an air indexing en-
vironment, where both index size (transferred to access la-
tency) and index search cost (transferred to tuning time) are
concerned with index structure performance. In what fol-
lows, we first report the results in terms of tuning time and
access latency and then evaluate the indexes’ adaptiveness
to skewed object distributions.

4.2.1 Tuning time

As explained in Sect. 2.1, in wireless broadcast envi-
ronments, improving the index search cost saves tuning
time and hence power consumption and connection costs.
Figure 11 shows the tuning times of different indexes.
For UNIFORM datasets, the performance is evaluated
under different dataset sizes with the default page ca-
pacity of 256 bytes; for REAL datasets, it is evaluated
with different page capacities varying from 128 bytes to
512 bytes.

Note that the proposed grid-partition index (with differ-
ent grid-partition approaches) substantially outperforms the
existing indexes in most cases. In particular, the improve-
ment of the proposed index over the object-based index is
over a factor of 10 on average. Of the three grid-partition ap-
proaches, the SAP gives the best performance in most cases.
The main reason for this is that the SAP approach adapts bet-
ter to the object distributions and their solution space com-
pared to the FP, while it has a simpler data structure for the
higher-level index (i.e., the index used for locating grid cells)
compared to the AP. As a result, in most cases, the SAP ac-
cesses one or two pages to locate grid cells and another one
to detect the NN.

It is interesting to note that the FP deteriorates signifi-
cantly with increasing database size. When the dataset size
exceeds 100,000, it even works worse than the solution-
based index (Fig. 11a).4 This can be explained as follows.

4 However, as we shall show in Sect. 5.2.2, the large size of solution-
based indexes diminishes its competitiveness.

32 B. Zheng et al.

2

4

8

16

32

64

128

256

1000 3000 10000 30000 100000

P

ag
e

A
cc

es
se

s

Dataset Size

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

a b

2

4

8

16

32

64

128

256

128 256 512

P

ag
e

A
cc

es
se

s

Page Capacity (Bytes)

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

Fig. 11 Tuning time in air indexing environments. a UNIFORM dataset. b REAL dataset

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

1000 3000 10000 30000 100000

V
ar

ia
nc

e
of

 P
ag

e
A

cc
es

se
s

Dataset Size

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

a b

 1

 16

 256

 4096

 65536

 128 256 512

V
ar

ia
nc

e
of

 P
ag

e
A

cc
es

se
s

Page Capacity (Bytes)

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

Fig. 12 Variance of tuning time in air indexing environments. a UNIFORM dataset. b REAL dataset

Recall that we set the parameter of α in indexing efficiency
to 1 in air indexing, which means that the index size and in-
dex search cost have equal weights in deciding the final grid
cell size. When the database grows, the index overhead is in-
creased. Hence, to achieve the best indexing efficiency, the
index search cost is sacrificed a little bit to render a smaller
index size.

We also evaluate the variance of tuning time in Fig. 12.
The object-based index has the worst variance since it re-
lies on a branch-and-bound search algorithm. The solution-
based index can provide a competitive performance since the
underlying D-tree was designed to be a balanced tree. The
grid-partition index has the best overall performance (less
than 4 for most cases). Of the three partition approaches, as
expected, the FP achieves a quite good performance for the
UNIFORM datasets but a poor performance for the skewed
REAL dataset; both the SAP and AP have small variance for
both types of datasets.

4.2.2 Access latency

This subsection evaluates the indexes in terms of access la-
tency. As explained in Sect. 2.1, the access latency is deter-

mined by the index size. The larger the index size, the worse
the access latency. The result is shown in Fig. 13, where the
latency is normalized to the average latency without any in-
dex (i.e., half the time needed to broadcast all objects in the
dataset).

We can see that the solution-based index gives the worst
performance because of its largest index size, which is
caused by the fact that it indexes the VCs (polygons) rather
than the objects. It is also clear that the object-based index
provides the best performance since there is no object dupli-
cation and we use the packing algorithm to ensure full usage
of each page when constructing an R-tree index. However,
as we saw in the last subsection, its search performance is
not good enough to be a practical index for NN search in
wireless broadcasting environments. The performance of the
grid-partition index is not bad. Compared to the object-based
index, they introduce only a small latency overhead (within
10% in most cases) due to object duplication in different grid
cells. Given its superior performance in tuning time, there is
no doubt that it is the best index overall. Of the three par-
tition approaches, the AP works worse than the other two
due to the large overhead in maintaining the paged kd-tree
structure.

Grid-partition index 33

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

1000 3000 10000 30000 100000

N
or

m
al

iz
ed

 A
cc

es
s

L
at

en
cy

Dataset Size

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

a b

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 128 256 512

N
or

m
al

iz
ed

 A
cc

es
s

L
at

en
cy

Page Capacity (Bytes)

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

Fig. 13 Access latency in air indexing environments. a UNIFORM dataset. b REAL dataset

 2

 4

 8

 16

 32

 64

 128

 256

0.0 0.3 0.6 0.9

P

ag
e

A
cc

es
se

s

Skewness Parameter alpha

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

a b

 1

 16

 256

 4096

 65536

0.0 0.3 0.6 0.9

V
ar

ia
nc

e
of

 P
ag

e
A

cc
es

se
s

Skewness Parameter alpha

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

Fig. 14 Performance for datasets of different skewness levels in air indexing environments (page size = 256). a Average tuning time. b Variance
of tuning time

4.2.3 Effect of object distributions

We now evaluate the robustness of the proposed index with
respect to various object distributions, which are simulated
by the skewness parameter θ as mentioned in the very be-
ginning of this section. The higher the value of θ , the more
skewed the object distribution. As shown in Fig. 14a, the av-
erage tuning time of all indexes is almost not affected by the
value of θ . However, Fig. 14b shows that the variance is re-
ally affected. As explained in Sect. 4.1, the page occupancy
with the FP approach is not uniform especially for highly
skewed datasets, since it does not consider the object dis-
tribution when partitioning the grid. Hence, with increasing
skewness the variance of the FA increases dramatically. The
other grid partition approaches and indexes are not affected
very much. This implies that they are able to adapt to differ-
ent object distributions.

To summarize, compared to the solution-based index, the
proposed grid-partition index achieves a much shorter access
latency and a better tuning time in most cases; compared to
the object-based index, the proposed index improves the tun-
ing time, on average, by over a factor of 10 while maintain-
ing a slightly worse access latency. Therefore, the proposed
grid-partition index strikes a better balance between tuning
time and access latency.

4.3 Performance in the disk indexing scenarios

In on-demand access, disk indexing can be employed to im-
prove the efficiency of query processing on the server. This
subsection evaluates the access latencies of the indexes. As
the disk space is not an important concern, the primary per-
formance goal in this scenario is to optimize the query la-
tency. Thus, in deciding the grid partition for the FP and
SAP approaches, the value of α in indexing efficiency is set
to infinity to allocate the entire weight to the saved index
search cost.

4.3.1 Access latency

Figure 15 shows the average query latency, which includes
the disk I/O cost as well as the CPU cost. The improve-
ment of the grid-partition index over the other two indexes
is significant. The solution-based index has the worst perfor-
mance. This is partly because its relatively large index size
increases the depth of the tree and, hence, worsens the in-
dex search performance. Since random access is possible in
the on-demand access environment, the object-based index
now works better than the solution-based index, but still falls
behind the proposed grid-partition index.

34 B. Zheng et al.

 16

 32

 64

10000 30000 100000 300000 1000000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
il

li
se

co
nd

)

Dataset Size

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

a b

 16

 32

 64

 128

 2048 4096 8192

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
il

li
se

co
nd

s)

Page Capacity (Bytes)

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

Fig. 15 Access latency in disk indexing environments. a UNIFORM dataset. b REAL dataset

 2

 3

 4

 5

 6

 7

 8

10000 30000 100000 300000 1000000

P

ag
e

A
cc

es
se

s

Dataset Size

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

a b

 2

 4

 8

 16

 2048 4096 8192

P

ag
e

A
cc

es
se

s

Page Capacity (Bytes)

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

Fig. 16 Index search cost in disk indexing environments. a UNIFORM dataset. b REAL dataset

To obtain more insights into disk I/O cost and CPU cost,
we show in Fig. 16 the index search cost in terms of the
number of page accesses. As can be seen, the relative per-
formance of the various indexes is the same as that shown in
Fig. 15. This implies that the I/O cost (i.e., index search cost)
dominates the CPU cost in the overall access latency for all
indexes. As observed in the experiments, the disk I/O delay
accounts for more than 90% of the overall latency, which is
consistent with the previous studies.

Of the three grid-partition approaches, the FP provides
the best performance in this scenario. This is mainly because
we set α to infinity to give full weight to the index search
cost. Consequently, the FP constructs the index in such a
way that the objects associated with each grid cell can fit into
one page, though the average page occupancy might be low.
As such, any NN query can be answered by accessing two or
three index pages (one or two for the upper-level index and
another one for the lower-level index).

4.3.2 Effect of object distributions

As in the air indexing scenario, we evaluate the robustness
of indexes in terms of adaptiveness to various object distri-
butions. As shown in Fig. 17, the grid-partition index out-
performs the existing indexes consistently. In particular, the
FP-based grid-partition index achieves the best performance

in all cases. Its improvement is 70% over the solution-based
index and about 50% over the object-based index.

To summarize, the grid-partition index offers the best ac-
cess latency with various datasets in a disk indexing sce-
nario. The performance improvement over the solution-
based index and the object-based index reaches a factor
of 4. Since the index search cost is the only concern in this
experiment, the FP approach performs better than the SAP
and AP approaches.

5 Continuous-nearest-neighbor search

We have shown the superiority of the grid-partition in-
dex for NN search; this section discusses the answering
of continuous-nearest-neighbor search (CNN) on the grid-
partition index. A CNN search retrieves the NN for every
point on a given line segment that a mobile client may tra-
verse (Definition 2) [18, 21]. An example of CNN search is
“finding the nearest gas stations along the route from my cur-
rent location to Boston on Highway I-93.”5 Since it is natu-
ral for mobile clients to issue queries while they are mov-
ing, such CNN queries have many important applications
in mobile computing. Sistla et al. were the first to identify

5 While a route may not be a line segment, it can be decomposed
into multiple line segments.

Grid-partition index 35

16

32

64

0.0 0.3 0.6 0.9

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
ill

io
ns

ec
on

ds
)

Skewness Parameter alpha

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

a b

2

4

8

0.0 0.3 0.6 0.9

Pa

ge
 A

cc
es

s

Skewness Parameter alpha

Solution-based Index
Object-based index

Grid-Partition Index (FP)
Grid-Partition Index (SAP)

Grid-Partition Index (AP)

Fig. 17 Performance for datasets of different skewness levels in disk indexing environments (page size = 4K). a Access latency. b Index search
cost

the CNN problem. Since then, it has received considerable
attention thanks to the continuously rapid development of
location-based services and mobile computing technologies
[19, 21, 22].

Definition 2 For a given query line segment from point s to
point e, denoted by se, CNN search returns an answer set
cnn(s, e) that contains data objects from the dataset D and
satisfies the following conditions:

∀p ∈ se, ∀o′ ∈ (D − cnn(s, e)), ∃o ∈ cnn(s, e)

such that dis(p, o′) ≥ dis(p, o).

Here, every object o in the answer set dominates a part of
the line segment, i.e., o is the NN of any query point lying on
that partial line segment. An illustrative example is depicted
in Fig. 18, where cnn(s, e) contains three objects, namely,
o1, o2, and o4. o1 dominates the shadowed line segment sp1,
i.e., o1 is the NN of any point lying on sp1. Similarly, o2
dominates p1 p2, and o4 dominates p2e. p1 and p2 are called
split points [22] since they are the points at which the NN
objects along the line segment change.

The first proposal to address the CNN problem appeared
in [19]. It employed a sampling technique to obtain an ap-
proximate answer. Given a query line segment, an NN query
can first be processed for the predefined sampling points. Al-
though the nearest objects found are local and are not neces-
sarily the real NN objects, a search range to bound the real

s
2

O1

O2

O3

O4

O5

p
1

p
e

Fig. 18 Example of CNN search

NN objects can be determined according to these local NN
objects. Consequently, its accuracy heavily depends on the
predefined sampling points on the query line.

Tao et al. carried out an in-depth study on CNN search
and devised two algorithms for CNN queries based on R-
tree [21, 22]. The first is based on the concept of time-
parameterized (TP) queries [21]. Treating a query line seg-
ment as the moving trajectory of a query point, the near-
est object to the moving query point is valid only for a lim-
ited duration. Consequently, CNN queries can be considered
as TP queries. In this case, a new TP query was issued to
retrieve the next nearest object once the valid time of the
current query expired, i.e., when a split point was reached.
While the TP approach avoids the drawbacks of sampling, it
is an incremental algorithm that needs to issue n NN queries
in order to obtain the final answer set, where n is the set
cardinality.

The second algorithm is based on some heuristics to
obtain the whole answer set within a single navigation of
an R-tree [22]. The main heuristic employs a metric of
mindist(E, q), i.e., the minimum distance between an MBR
E and a query point or query segment q . The algorithm
also maintains a list SL to record the split points found so
far, together with their NNs. The search starts from the root
and traverses the R-tree according to the following prin-
ciples: (i) when a leaf node is visited, SL is updated ac-
cordingly if some objects have shorter distances to the split
points than that of the recorded NN; (ii) for an intermedi-
ate node, it is visited only if the MBR contains a qualified
data point. The qualification conditions are twofold. First,
mindest(E, q) should be smaller than SLmax, i.e., the max-
imum distance between a split point and its NN. Second,
there must exist at least one split point si , si ∈ SL such that
distance(si , si .N N) > mindist(E, q).

5.1 Supporting CNN on the grid-partition index

Recall that the grid-partition index ensures that the NN to
a given query point q is associated with the grid cell con-
taining q . Consequently, the answers to a CNN query for a

36 B. Zheng et al.

eNN

sNN

s
m

e

Fig. 19 Example of midpoint for a given segment se

given line segment l must be associated with all of the grid
cells that overlap with l. There are two steps involved in the
search process of a CNN query based on the grid-partition
index. The first is to identify all the grid cells overlapping
with the given query segment and to retrieve all the objects
associated with these grid cells. Note that the segment can
be divided into several parts, with each part lying within
only one grid cell. Thus, the second step is to find the ex-
act answer set for each part within a single cell, which can
be achieved by Algorithm 2.

Before we explain Algorithm 2, we describe some func-
tions to be used. The function NN(q) returns the NN object
for the query point q , which is introduced in Sect. 3.3. The
function Spli t Point (se, NNs, NNe) finds the split point
along the query line segment se based on the two detected
NN objects, NNs and NNe. As shown in Fig. 19, the split
point is the intersection of the segment se and the bisector
of the segment NNsNNe.

The basic idea of Algorithm 2 is to employ a recursive
search algorithm similar to binary search. It first finds the
NNs of the endpoints of the query segment, namely, NNs
and NNe. If those two NNs are the same, the whole line
segment definitely falls within the VC of NNs , which can
be easily proven by the convexity of VCs. Therefore, the
CNN search process stops. Otherwise, the split point m is
determined based on NN Ns and NNe, and m’s NN, NNm , is
found. If NNm is equal to NNs (or NNe), then both NNs and
NNe must be the NN of m. This can be guaranteed by the
function SplitPoint. As a result, segment sm is dominated
by NNs and the segment me is within the VC of NNe. Thus,
the search is terminated. Otherwise, the search algorithm is
invoked again based on the segments sm and me. Suppose
the final answer set contains n objects; the client needs to
conduct O(n) NN searches to complete the query.

0

20

40

60

80

100

120

140

160

1000 3000 10000 30000 100000

P

ag
e

A
cc

es
se

s

Dataset Size

Object-based index
Grid-Partition Index (FP)

Grid-Partition Index (SAP)
Grid-Partition Index (AP)

a b

0

100

200

300

400

500

600

700

800

900

0.025 0.05 0.1 0.2 0.4

P

ag
e

A
cc

es
se

s

QueryLengthRatio

Object-based index
Grid-Partition Index (FP)

Grid-Partition Index (SAP)
Grid-Partition Index (AP)

Fig. 20 Tuning time for CNN search in air indexing scenarios (page size = 256B). a UNIFORM dataset. b REAL dataset

5.2 Simulation results

This subsection compares the proposed algorithm based on
the grid-partition index with the state-of-the-art algorithm
based on R-tree [22] for CNN search. The parameter settings
are similar to those used in Sect. 4. We use a new parameter
QueryLengthRatio to define the ratio of the length of query
line segment to the width of the search space. Due to the
reasons explained in Sect. 4, the depth-first order is used to
traverse an R-tree in an air indexing environment, whereas
the best-first order is used in the disk indexing environment.

5.2.1 CNN Search performance
in the air indexing scenarios

Figure 20a shows the tuning time under different UNI-
FORM datasets, with the page capacity set at 256 bytes and
QueryLengthRatio at 0.1. As in the case of NN search, by en-
abling CNN search via a single linear scan, the grid-partition
index improves the performance over R-tree remarkably. On
average, the grid-partition indexes with FP, SAP, and AP
outperform R-tree by 61%, 62%, and 74%, respectively. Of
these, SAP and SP provide a more stable performance than
FP throughout the datasets tested, which is consistent with
the results observed in Sect. 4.

Figure 20b plots the tuning time of different in-
dexes under the REAL dataset with the parameter Query
LengthRatio varying from 0.025 to 0.4. For all indexes
we can observe that the longer the query line segment, the
higher the tuning time. The grid-partition index outperforms
R-tree in all cases tested. In particular, the improvement
increases with a lengthening of the query segment. This
is because with a longer query segment, more NNs are
returned and, hence, more accumulative improvement can
be observed.

5.2.2 CNN search performance in the disk
indexing scenarios

We show in Fig. 21a the disk search performance under var-
ious UNIFORM datasets with the page capacity set at 4 KB

Grid-partition index 37

Algorithm 2 Finding NN Objects of a Segment

Input: a query segment se, the located grid cell i , the answer set result ;
Output: NNs of all the points along s̄e;

Procedure:
1: NNs = NN(s); NNe = NN(e);
2: result∪ = {NNs , NNe};
3: bf if NNe = NNs then
4: return result ;
5: end if
6: let m be the object returned by SplitPoint(se, NNs ,NNe);
7: NNm = NN(m);
8: if(NNm = NNs) or (NNm = NNe)then
9: return result ;
10: else
11: Finding NN Objects o f a Segment(sm, i, result);
12: Finding NN Objects o f a Segment(me, i, result);
13: end if

2

4

6

8

10

12

14

16

18

20

10000 30000 100000 300000 1000000

P

ag
e

A
cc

es
se

s

Dataset Size

Object-based index
Grid-Partition Index (FP)

Grid-Partition Index (SAP)
Grid-Partition Index (AP)

a b

0

5

10

15

20

25

30

35

40

45

0.025 0.05 0.1 0.2 0.4

P

ag
e

A
cc

es
se

s

QueryLengthRatio

Object-based index
Grid-Partition Index (FP)

Grid-Partition Index (SAP)
Grid-Partition Index (AP)

Fig. 21 Search time for CNN search in disk indexing scenarios (page size = 4096 bytes). a UNIFORM dataset. b REAL dataset

0

20

40

60

80

100

120

140

160

0.0 0.3 0.6 0.9

P

ag
e

A
cc

es
se

s

Skewness Parameter alpha

Object-based index
Grid-Partition Index (FP)

Grid-Partition Index (SAP)
Grid-Partition Index (AP)

a b

4

5

6

7

8

9

0.0 0.3 0.6 0.9

P

ag
e

A
cc

es
se

s

Skewness Parameter alpha

Object-based index
Grid-Partition Index (FP)

Grid-Partition Index (SAP)
Grid-Partition Index (AP)

Fig. 22 Performance for datasets of different skewness levels. a Air indexing scenarios (page size = 256 bytes). b Disk indexing scenarios (page
size = 4096 bytes)

and QueryLengthRatio at 0.1. Figure 21b shows the results
of different indexes under the REAL dataset with various
QueryLengthRatio settings.

Recall that the best-first order is employed in the
R-tree-based search algorithm in the disk indexing scenar-
ios. This significantly improves the performance of R-tree
for CNN search. As a result, the R-tree now performs better
than the grid-partition index with FP but still worse than the
grid-partition indexes with SAP and AP. Note that this is in
contrast to our previous observation that the grid-partition

index with FP performs best for NN search (Sect. 4.3.1).
This could be explained as follows. As mentioned before,
the FP approach partitions the space as much as possible
such that the associated objects of each cell can be accom-
modated in a single page. Thus most of the NN queries need
to access only a single page in the lower-level index, which,
together with the simple hashing function in the upper-level
index, optimizes the performance for NN search. However,
for CNN search, as the FP approach has smaller grid cells,
many more cells need to be checked to find all NNs of a

38 B. Zheng et al.

given line segment. Consequently, the overall performance
of FP is not good for CNN search.

5.2.3 CNN search performance under various
object distributions

This set of experiments examines the impact of different ob-
ject distributions. We vary the skewness parameter θ from
0.0 to 0.9. The search performances for the air indexing
and disk indexing scenarios are plotted in Fig. 22a and b,
respectively. We can see that the relative performances of
different indexes are barely affected by the setting of skew-
ness level. For the air indexing scenarios, R-tree performs
the worst in almost all cases; the grid-partition indexes with
FP, SAP, and AP improve the performance by 15.1%, 64.7%,
and 79.8%, respectively. For the disk indexing scenarios, the
grid-partition indexes with SAP and AP consistently outper-
form R-tree.

6 Conclusion

NN search is a very important and practical application
among the promising LDIS applications. In this paper, we
have proposed an index, called the grid-partition index, to
address the NN search problem in mobile computing envi-
ronments. The grid-partition index combines the advantages
of existing index structures, such as the small size of the
object-based index and the fast search of the solution-based
index, to provide a flexible structure that is suitable for both
disk indexing and air indexing environments. An algorithm
was devised to associate all the potential objects with a grid
cell such that the maintenance cost is minimized for object
updates.

The performances of the grid-partition index and exist-
ing object-based and solution-based indexes were evaluated
using both synthetic and real datasets. The results showed
that the grid-partition index substantially outperforms both
the object-based and solution-based indexes. We summa-
rize the results as follows. For air indexing scenarios, the
grid-partition index outperforms the solution-based index in
terms of both tuning time and access latency; it also strikes
a better balance between tuning time and access latency
than does the object-based index. For disk indexing, the
grid-partition index offers a much better access latency than
the object-based and solution-based indexes. Furthermore,
we have extended the grid-partition index to support CNN
search.

In this paper, the grid-partition index was proposed to ef-
ficiently answer NN search. Moreover, the idea of the grid-
partition index can be applied to k-nearest-neighbor search,
where the challenge is how to efficiently associate all rel-
evant objects with a grid cell. We shall leave this issue to
a future study. In addition, we are examining a generalized
NN search such as finding the nearest hotel with a room rate
of less than $200.

Acknowledgements The authors would like to thank Profs. Sunil
Arya and Mordecai J. Golin, the editor Ralf Hartmut Güting, and
anonymous reviewers for their valuable comments and suggestions that
helped to improve the quality of this paper. The research was supported
in part by Wharton-SMU Research Center, Singapore Management
University (Grant Nos. C220/MSS3C101 and C220/T050011), grants
from the Research Grant Council, Hong Kong SAR, China (Grant
Nos. HKUST6179/03E and HKUST6225/02E). Jianliang Xu’s work
was supported by a grant from Hong Kong Baptist University (Grant
FRG/02-03/II-34). Wang-chien Lee’s work was supported in part by
the National Science Foundation under Grant IIS-0328881.

References

1. Berchtold, S., Keim, D.A., Kriegel, H.P., Seidl, T.: Indexing the
solution space: a new technique for nearest neighbor search in
high-dimensional space. IEEE Trans. Knowl. Data Eng. 12(1),
45–57 (2000)

2. Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Compu-
tational Geometry: Algorithms and Applications Chap. 7. Berlin,
Heidelberg, New York: Springer (1996)

3. Cheung, K.L., Fu, W.-C.: Enhanced nearest neighbour search on
the r-tree. SIGMOD Rec. 27(3), 16–21 (1998)

4. Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., Abbadi, A.E.: Ap-
proximate nearest neighbor searching in multimedia databases. In:
Proc. 17th IEEE Int. Conf. on Data Eng. (ICDE’01) (2001)

5. Goldstein, J., Ramakrishnan, R.: Contrast plots and p-sphere trees:
Space vs. time in nearest neighbor searches. In: Proc. 26th Int.
Conf. on Very Large Data Bases (VLDB’00), pp. 429–440, Cairo,
Egypt (2000)

6. Guttman, A.: R-trees: a dynamic index structure for spatial search-
ing. In: Proc. ACM SIGMOD Int. Conf. on Manage. of Data (SIG-
MOD’84), pp. 47–54 (1984)

7. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest
neighbor in high dimensional spaces? In: Proc. 26th Int. Conf. on
Very Large Data Bases (VLDB’00) (2000)

8. Hjaltason, Gı́.R., Samet, H.: Distance browsing in spatial
databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

9. Hu, Q.L., Lee, W.-C., Lee, D.L.: Power conservative multi-
attribute queries on data broadcast. In: Proc. 16th Int. Conf. on
Data Eng. (ICDE’00), pp. 157–166. San Diego (2000)

10. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on air: orga-
nization and access. IEEE Trans. Knowl. Data Eng. 9(3), 353–372
(1997)

11. Kamel, I., Faloutsos, C.: Hilbert r-tree: an improved r-tree us-
ing fractals. In: Proc. 20th Int. Conf. on Very Large Data Bases
(VLDB’94), pp. 500–509. Santiago de Chile, Chile (1994)

12. Lee, D.L., Lee, W.-C., Xu, J., Zheng, B.: Data management in
location-dependent information services. IEEE Pervas. Comput.
1(3), 65–72 (2002)

13. Leutenegger, S.T., Edgington, J.M., Lopez, M.A.: Str: a simple
and efficient algorithm for r-tree packing. In: Proc. 13th Int. Conf.
on Data Eng. (ICDE’97), pp. 497–506. Birmingham, UK (1997)

14. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file:
an adaptable, symmetric multikey file structure. ACM Trans.
Database Syst. 9(1), 38–71 (1984)

15. Pramanik, S., Li, J.: Fast approximate search algorithm for nearest
neighbor queries in high dimensions. In: Proc. 15th Int. Conf. on
Data Eng. (ICDE’99), p. 251 (1999)

16. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor
queries. In: Proc. 1995 ACM SIGMOD Int. Conf. on Manage. of
Data (SIGMOD’95), pp. 71–79 (1995)

17. Computer Science and Telecommunications Board. IT Roadmap
to a Geospatial Future. Washington, DC: National Academies
Press (2003)

18. Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and
querying moving objects. In: Proc. 13th Int. Conf. on Data Eng.
(ICDE’97), pp. 422–432. Birmingham, UK (1997)

Grid-partition index 39

19. Song, Z., Roussopoulos, N.: K-nearest neighbor search for mov-
ing query point. In: Proc. 7th Int. Symp. Spatial Temp. Databases
(SSTD’01), pp. 79–96. Los Angeles (2001)

20. Sproull, R.F.: Refinements to nearest-neighbor searching in k-
dimensional trees. Algorithmica 6(4), 579–589, (1991)

21. Tao, Y., Papadias, D.: Time parameterized queries in spatio-
temporal databases. In: Proc. 2002 ACM SIGMOD Int. Conf.
on Manage. of Data (SIGMOD’02), pp. 334–345. Madison, WI
(2002)

22. Tao,Y., Papadias, D., Shen, Q.: Continuous nearest neighbor
search. In: Proc. 28th Int. Conf. on Very Large Data Bases
(VLDB’02), Hong Kong (2002)

23. Weber, R., Blott, S.: An approximation based structure for sim-
ilarity search. Technical Report 24, ESPRIT Project HERMES
(No. 9141) (1997)

24. Weber, R., Schek, H., Blott, S.: A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces. In: Proc. 24th Int. Conf. on Very Large Data Bases
(VLDB’98), pp. 194–205. New York (1998)

25. Wilfong, G.T.: Nearest neighbor problems. In: Symp. on Compu-
tat. Geometry, pp. 224–233 (1991)

26. Xu, J., Zheng, B., Lee, W.-C., Lee, D.L.: Energy efficient index
for querying location-dependent data in mobile broadcast envi-
ronments. In: Proc. 19th IEEE Int. Conf. on Data Eng. (ICDE’03),
pp. 239–250. Bangalore, India (2003)

27. Yu, C., Ooi, B.C., Tan, K.-L., Jagadish, H.V.: Indexing the dis-
tance: an efficient method to KNN processing. Proc. 27th Int.
Conf. on Very Large Data Bases (VLDB’01), pp. 421–430. Rome
(2001)

28. Zheng, B., Xu, J., Lee, W.C., Lee, D.L.: Energy-conserving air in-
dexes for nearest neighbor search. In: Proc. 9th Int. Conf. on Ex-
tending Database Technol. (EDBT’04). Heraklion, Crete, Greece
(2004)

