
Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Benchmarking the Memory Hierarchy
of Modern GPUs

In 11th IFIP International Conference on
Network and Parallel Computing

Xinxin Mei, Kaiyong Zhao, Chengjian Liu, Xiaowen Chu

CS Department, Hong Kong Baptist University

September 19, 2014

1 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

OUTLINE

1 Background & Motivation
GPU Computing
P-Chase Benchmark

2 Fine-grained Benchmark
Design
Methodology

3 Experimental Results
Shared Memory
Global Memory
Texture Memory

4 Conclusion

2 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

OUTLINE

1 Background & Motivation
GPU Computing
P-Chase Benchmark

2 Fine-grained Benchmark
Design
Methodology

3 Experimental Results
Shared Memory
Global Memory
Texture Memory

4 Conclusion

Background & Motivation 3 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

GPU Computing

GPU ARCHITECTURE

GPU is a SIMD parallel many-core architecture

text

L2 Cache

ALU * 192

DPU * 64

SFU * 32

Tex * 16

Shared Memory/

L1 Data Cache

Read Only Data Cache

DRAM

Stream Multiprocessor (SM) * 12

DRAM DRAM...

Figure: Block Diagram of GeForce 780

Background & Motivation 4 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

GPU Computing

GPU MEMORY HIERARCHY

Table: GPU Various Memory Spaces1

Memory Type Location Cached Lifetime
Register R/W on-chip no per-thread
Shared Memory R/W on-chip no per-block
Constant Memory R off-chip yes host allocation
Texture Memory R off-chip yes host allocation
Local Memory R/W off-chip yes per-thread
Global Memory R/W off-chip yes2 host allocation

Memory accesses have long been the bottleneck of further
performance enhancement.

1Sorted by their normal accessing time in ascending order
2Cached local/global memory accesses are for devices of compute capacity 2.0

above only
Background & Motivation 5 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

GPU Computing

GPU MEMORY HIERARCHY

Table: GPU Various Memory Spaces1

Memory Type Location Cached Lifetime
Register R/W on-chip no per-thread
Shared Memory R/W on-chip no per-block
Constant Memory R off-chip yes host allocation
Texture Memory R off-chip yes host allocation
Local Memory R/W off-chip yes per-thread
Global Memory R/W off-chip yes2 host allocation

Memory accesses have long been the bottleneck of further
performance enhancement.

1Sorted by their normal accessing time in ascending order
2Cached local/global memory accesses are for devices of compute capacity 2.0

above only
Background & Motivation 6 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

GPU Computing

TARGET STRUCTURE

Study GPU Memory hierarchy
The most popular three:

1 Shared memory
2 Global memory
3 Texture memory

Characteristics including:
1 Memory access latency
2 Unknown cache mechanism

Background & Motivation 7 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

P-Chase Benchmark

REVIEW: CACHE STRUCTURE
Cache: fast back-up memory space
Set-associative, LRU

0-1

2-3

4-5

6-7

8-9

10-11

Set 0 Set 1 Set 2

0-1

6-7

2-3

8-9

4-5

10-11

34

Set Word

Memory address =

Data:

2-Way Set-Associative Cache

2 1 0

Way 0:

Way 1:

The organization of traditional 3-set set-associative

cache (in word order): assume the cache size is 48 byte,

i.e. 12 words, and each cache line contains 2 words.

6 lines

Figure: Typical Set-Associative CPU Cache Addressing

Background & Motivation 8 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

P-Chase Benchmark

P-CHASE BENCHMARK
P-Chase: stride memory access

Pseudo code
for(i=0;i<iteration;i++)

i=A[i];

Initialization
for(i=0;i<array size;i++)

A[i]=(i+stride)% array size;

Memory access process

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

array: A, array size: 24, stride: 2, iteration: 12

cache miss: stride ≥ cache line size; array size > cache size

cache hit: stride < cache line size; array size ≤ cache size

Average memory access time reflects the cache structure!

Background & Motivation 9 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

P-Chase Benchmark

P-CHASE BENCHMARK
P-Chase: stride memory access

Pseudo code
for(i=0;i<iteration;i++)

i=A[i];

Initialization
for(i=0;i<array size;i++)

A[i]=(i+stride)% array size;

Memory access process

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

array: A, array size: 24, stride: 2, iteration: 12

cache miss: stride ≥ cache line size; array size > cache size

cache hit: stride < cache line size; array size ≤ cache size

Average memory access time reflects the cache structure!
Background & Motivation 10 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

P-Chase Benchmark

LITERATURE REVIEW
cache line size: 32 bytes

Figure: Kepler Texture L1 Cache
(result of Saavedraet1992)

cache line size: 128 bytes

Figure: Kepler Texture L1 Cache
(result of Wong2010)

Cache line sizes are contradictory!
Average memory latency hides some details

Background & Motivation 11 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

P-Chase Benchmark

MOTIVATION

Hardware is upgraded
I Global memory was not cached
I Memory access time was much longer
I ...

Traditional P-Chase bases on CPU cache model
I GPU cache could be different
I Observe every latency rather than average one

Fine-grained benchmark
Record time consumption of every array element’s access time

Background & Motivation 12 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

OUTLINE

1 Background & Motivation
GPU Computing
P-Chase Benchmark

2 Fine-grained Benchmark
Design
Methodology

3 Experimental Results
Shared Memory
Global Memory
Texture Memory

4 Conclusion

Fine-grained Benchmark 13 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Design

DESIGN

Storage: shared memory
I On-chip, write is prompt
I 48 KB per SM

Declare two spaces
1 s tvalue: current

element access time
2 s index: index for next

memory access

Timing: clock()
Store the value after it is
used!

Pseudo Code
global void KernelFunction(){
shared unsigned int s tvalue [] ;
shared unsigned int s index [] ;

for (k = 0 ; k < iterations ; k++) {
start time = clock() ;
j = my array [j] ;
// store the element index
s index [k]= j ;
end time = clock () ;
// store the element access latency
s tvalue [k] = end time-start time ;
}

}

Fine-grained Benchmark 14 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Methodology

DIRECTIONS

Flowchart of applying our fine-grained benchmark:

Get cache size from user manual or

footprint experiment

Overflow the cache with

one element

Get the cache line size from

cache miss pattern

Increase array size. Every

increment equals cache line size

Get the first cache set

Get the last cache set

...

Get the second cache set
Get:

Cache associativity

Memory mapping

stage 1

stage 2

Also get cache

replacement policy

Two stages
1 stride = 1 element, array size = cache size + 1 element
2 stride = 1 cache line, array size = cache size + 1:n cache lines

Fine-grained Benchmark 15 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

OUTLINE

1 Background & Motivation
GPU Computing
P-Chase Benchmark

2 Fine-grained Benchmark
Design
Methodology

3 Experimental Results
Shared Memory
Global Memory
Texture Memory

4 Conclusion

Experimental Results 16 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Shared Memory

BANK CONFLICT I
Normal memory latency: ∼ 50 clock cycles
Shared memory is organized as memory banks

Bank conflict:
I Two or more threads in the

same warp visit memory
spaces belong to the same
shared memory bank

I Stride memory access

Pseudo code

data = threadIdx.x * stride;

0

32

1 2 31

63

32 banks

4 byte

stride = 2, 2-way bank conflict

thread ID

0

16

1

17

2

18

15

31

Figure: 2-way Shared Memory Bank Conflict
Caused By Stride Memory Access

Experimental Results 17 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Shared Memory

BANK CONFLICT II
Bank conflict latency is much longer
Memory requests are sequentially executed!

0 2 4 8 16 32
0

200

400

600

800

1,000

1,200

Stride / #-Way Bank Conflict

M
em

or
y

la
te

nc
y

(c
lo

ck
cy

cl
es

)

Figure: Bank Conflict Memory Latency of Fermi

Experimental Results 18 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Shared Memory

BANK CONFLICT III
Kepler outperforms Fermi in terms of avoiding shared memory
bank conflict by introducing 8-byte mode shared memory bank

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

50

100

150

200

250

300

350

400

450

500

stride

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

4−byte mode
8−byte mode

Figure: Memory Latency of Kepler Shared Memory

Experimental Results 19 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Global Memory

GLOBAL MEMORY: AN OVERVIEW I
Global memory access

I Kepler: cached in L2 data cache
I Fermi: cached in L1 and L2 data cache, L1 can be disabled
I Two levels of TLB

Memory latency exhibition
Use our fine-grained benchmark with specialized initialization

Experimental Results 20 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Global Memory

GLOBAL MEMORY: AN OVERVIEW II

pattern1 pattern2 pattern3 pattern4 pattern5 pattern6
0

200

400

600

800

1,000

1,200

1,400

M
em

or
y

la
te

nc
y

(c
lo

ck
cy

cl
es

)

Kepler Fermi: cache in L1 Fermi: cache in L2

Figure: Global Memory Access Latencies

Table: Global Memory Access Patterns

Pattern Data cache TLB
1 hit L1 hit
2 hit L1 miss, L2 hit
3 hit L2 miss
4 miss L1 hit
5 miss L2 miss
6 miss L2 miss a

apage table “miss”: switch between tables

Experimental Results 21 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Global Memory

GLOBAL MEMORY: AN OVERVIEW III

Observations
1 Big gap between pattern1 and pattern2 of Fermi: cached in L1

=⇒ Both L1 TLB and L2 TLB are off-chip

2 Differences between enable/disable L1 of Fermi
=⇒ Cached in L1 brings some extra time consumption

3 Kepler outperforms Fermi in terms of

i cache miss penalty
ii L1/L2 TLB miss penalty
iii memory latency (when they both cache in L2)

4 Kepler page table needs context switch
(only 512 MB of page entries are activated)

Experimental Results 22 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Global Memory

FERMI L1 DATA CACHE
Fermi L1 data cache structure 3

I cache size: 16 KB
I cache line size: 128 byte
I set associative: 4-way, 32-set

Cache addressing:
non-conventional

I One “hot” cache way is
more frequently replaced

I Replacement probability:
(1

6 , 1
2 , 1

6 , 1
6)

Way
0

Lin
e 0

 – 3
1

Way
1

Lin
e 3

2
 – 6

3
Way

2

Lin
e 6

4
 – 9

5

Way
3

Lin
e 9

6
 - 1

2
7

32 sets

Figure: Fermi L1 Data Cache
Structure

3This is the default setting. The Fermi L1 data cache can be configured as 48 KB,
and the corresponding way number is 6.

Experimental Results 23 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Global Memory

TLB

The page size of both Fermi and Kepler are 2 MB (by brute force
experiments)
The TLB structure of Fermi and Kepler is the same

1 L1 TLB: 16 entries,
fully-associative

2 L2 TLB: 65 entries,
set-associative

Non-uniform sets
1 “big” set: 17 entries
6 normal sets: 8 entries

Set 0

Set 1

17 entries

8 entries

Set 2 8 entries

Set 3 8 entries

Set 4 8 entries

Set 5 8 entries

Set 6 8 entries

7 sets

Figure: TLB Structure of Fermi & Kepler

Experimental Results 24 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Texture Memory

TEXTURE MEMORY: AN OVERVIEW

Memory latency
Table: Texture Memory Access Latency of Fermi & Kepler

Device Texture cache Global cache
L1 hit L1 miss, L2 hit L1 hit L1 miss, L2 hit

Fermi 240 470 116 404
Kepler 110 220 – 230

=⇒ Fermi texture memory management is expensive!
The same L2 cache, TLB with global memory
Different L1 cache: 12 KB, 32-byte cache line, 4 sets

Experimental Results 25 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Texture Memory

TEXTURE L1 CACHE
2D spacial locality optimized texture L1 cache addressing

0-7

8-15

16-23

24-31

32-39

40-47

128-135

3064-3071

Set 0 Set 1 Set 2

0-7

8-15

16-23

24-31

128-135

32-39

40-47

48-55

56-63

2968-2975

64-71

Set 3

96-103

3000-3007 3032-3039 3064-3071

88-95 120-127

4-05678

Set Word

Memory address =

Data:

4-Set Texture L1 Cache:

96 lines

384 lines

Figure: Fermi & Kepler Texture L1 Cache Addressing
For the typical set-associative mapping, 5-6th bits define the cache set, but here 7-8th bits

instead. It looks like a 128-byte, 24-way conventional set-associative cache.

Experimental Results 26 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

OUTLINE

1 Background & Motivation
GPU Computing
P-Chase Benchmark

2 Fine-grained Benchmark
Design
Methodology

3 Experimental Results
Shared Memory
Global Memory
Texture Memory

4 Conclusion

Conclusion 27 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

SUMMARY

1 Study memory hierarchy of current GPU: Fermi and Kepler

2 Expose detailed GPU memory features 4

I Latency of shared memory bank conflict
I Latency of Fermi/Kepler global memory accesses
I Structure of Fermi L1 data cache
I Structure of Fermi/Kepler TLBs
I Latency of Fermi/Kepler texture memory accesses
I Structure of Fermi/Kepler texture L1 cache
I Structure of Kepler read-only data cache

4This is an open-source project. The testing files are at
http://www.comp.hkbu.edu.hk/˜chxw/gpu_benchmark.html.
More technical details can be found in our submitted paper.

Conclusion 28 of 30

http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Conclusions
1 GPU cache design is much different from CPU’s
2 Fermi and Kepler outperform old architecture

Contributions
1 Design a benchmark with some novelty
2 Unveil unknown GPU cache characteristics

Conclusion 29 of 30

Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Conclusion 30 of 30

	Background & Motivation
	GPU Computing
	P-Chase Benchmark

	Fine-grained Benchmark
	Design
	Methodology

	Experimental Results
	Shared Memory
	Global Memory
	Texture Memory

	Conclusion

