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GPU Computing

GPU ARCHITECTURE

GPU is a SIMD parallel many-core architecture

text
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Figure: Block Diagram of GeForce 780
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GPU Computing

GPU MEMORY HIERARCHY

Table: GPU Various Memory Spaces1

Memory Type Location Cached Lifetime
Register R/W on-chip no per-thread
Shared Memory R/W on-chip no per-block
Constant Memory R off-chip yes host allocation
Texture Memory R off-chip yes host allocation
Local Memory R/W off-chip yes per-thread
Global Memory R/W off-chip yes2 host allocation

Memory accesses have long been the bottleneck of further
performance enhancement.

1Sorted by their normal accessing time in ascending order
2Cached local/global memory accesses are for devices of compute capacity 2.0

above only
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GPU Computing

TARGET STRUCTURE

Study GPU Memory hierarchy
The most popular three:

1 Shared memory
2 Global memory
3 Texture memory

Characteristics including:
1 Memory access latency
2 Unknown cache mechanism
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P-Chase Benchmark

REVIEW: CACHE STRUCTURE
Cache: fast back-up memory space
Set-associative, LRU
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The organization of traditional 3-set set-associative 

cache (in word order): assume the cache size is 48 byte, 

i.e. 12 words, and each cache line contains 2 words. 

6 lines

Figure: Typical Set-Associative CPU Cache Addressing

Background & Motivation 8 of 30



Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

P-Chase Benchmark

P-CHASE BENCHMARK
P-Chase: stride memory access

Pseudo code
for(i=0;i<iteration;i++)

i=A[i];

Initialization
for(i=0;i<array size;i++)

A[i]=(i+stride)% array size;

Memory access process

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

array: A, array size: 24, stride: 2, iteration: 12

cache miss: stride ≥ cache line size; array size > cache size

cache hit: stride < cache line size; array size ≤ cache size

Average memory access time reflects the cache structure!
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P-Chase Benchmark

P-CHASE BENCHMARK
P-Chase: stride memory access

Pseudo code
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Initialization
for(i=0;i<array size;i++)
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Memory access process
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P-Chase Benchmark

LITERATURE REVIEW
cache line size: 32 bytes

Figure: Kepler Texture L1 Cache
(result of Saavedraet1992 )

cache line size: 128 bytes

Figure: Kepler Texture L1 Cache
(result of Wong2010 )

Cache line sizes are contradictory!
Average memory latency hides some details
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P-Chase Benchmark

MOTIVATION

Hardware is upgraded
I Global memory was not cached
I Memory access time was much longer
I ...

Traditional P-Chase bases on CPU cache model
I GPU cache could be different
I Observe every latency rather than average one

Fine-grained benchmark
Record time consumption of every array element’s access time
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Design

DESIGN

Storage: shared memory
I On-chip, write is prompt
I 48 KB per SM

Declare two spaces
1 s tvalue: current

element access time
2 s index: index for next

memory access

Timing: clock()
Store the value after it is
used!

Pseudo Code
global void KernelFunction(){
shared unsigned int s tvalue [ ] ;
shared unsigned int s index [ ] ;

for ( k = 0 ; k < iterations ; k++) {
start time = clock( ) ;
j = my array [ j ] ;
// store the element index
s index [ k ]= j ;
end time = clock ( ) ;
// store the element access latency
s tvalue [ k ] = end time-start time ;
}

}
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Methodology

DIRECTIONS

Flowchart of applying our fine-grained benchmark:

Get cache size from user manual or 

footprint experiment

Overflow the cache with 

one element

Get the cache line size from 

cache miss pattern

Increase array size. Every 

increment equals cache line size

Get the first cache set

Get the last cache set

...

Get the second cache set
Get: 

Cache associativity

Memory mapping

stage 1

stage 2

Also get cache 

replacement policy

Two stages
1 stride = 1 element, array size = cache size + 1 element
2 stride = 1 cache line, array size = cache size + 1:n cache lines
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Shared Memory

BANK CONFLICT I
Normal memory latency: ∼ 50 clock cycles
Shared memory is organized as memory banks

Bank conflict:
I Two or more threads in the

same warp visit memory
spaces belong to the same
shared memory bank

I Stride memory access

Pseudo code

data = threadIdx.x * stride;

0

32

1 2 31

63

32 banks

4 byte

stride = 2, 2-way bank conflict

thread ID

0

16

1

17

2

18

15

31

Figure: 2-way Shared Memory Bank Conflict
Caused By Stride Memory Access
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Shared Memory

BANK CONFLICT II
Bank conflict latency is much longer
Memory requests are sequentially executed!
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Figure: Bank Conflict Memory Latency of Fermi
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Shared Memory

BANK CONFLICT III
Kepler outperforms Fermi in terms of avoiding shared memory
bank conflict by introducing 8-byte mode shared memory bank
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Figure: Memory Latency of Kepler Shared Memory
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Global Memory

GLOBAL MEMORY: AN OVERVIEW I
Global memory access

I Kepler: cached in L2 data cache
I Fermi: cached in L1 and L2 data cache, L1 can be disabled
I Two levels of TLB

Memory latency exhibition
Use our fine-grained benchmark with specialized initialization
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Global Memory

GLOBAL MEMORY: AN OVERVIEW II
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Kepler Fermi: cache in L1 Fermi: cache in L2

Figure: Global Memory Access Latencies

Table: Global Memory Access Patterns

Pattern Data cache TLB
1 hit L1 hit
2 hit L1 miss, L2 hit
3 hit L2 miss
4 miss L1 hit
5 miss L2 miss
6 miss L2 miss a

apage table “miss”: switch between tables
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Global Memory

GLOBAL MEMORY: AN OVERVIEW III

Observations
1 Big gap between pattern1 and pattern2 of Fermi: cached in L1

=⇒ Both L1 TLB and L2 TLB are off-chip

2 Differences between enable/disable L1 of Fermi
=⇒ Cached in L1 brings some extra time consumption

3 Kepler outperforms Fermi in terms of

i cache miss penalty
ii L1/L2 TLB miss penalty
iii memory latency (when they both cache in L2)

4 Kepler page table needs context switch
(only 512 MB of page entries are activated)
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Global Memory

FERMI L1 DATA CACHE
Fermi L1 data cache structure 3

I cache size: 16 KB
I cache line size: 128 byte
I set associative: 4-way, 32-set

Cache addressing:
non-conventional

I One “hot” cache way is
more frequently replaced

I Replacement probability:
( 1

6 , 1
2 , 1

6 , 1
6 )
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Figure: Fermi L1 Data Cache
Structure

3This is the default setting. The Fermi L1 data cache can be configured as 48 KB,
and the corresponding way number is 6.
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Global Memory

TLB

The page size of both Fermi and Kepler are 2 MB (by brute force
experiments)
The TLB structure of Fermi and Kepler is the same

1 L1 TLB: 16 entries,
fully-associative

2 L2 TLB: 65 entries,
set-associative

Non-uniform sets
1 “big” set: 17 entries
6 normal sets: 8 entries

Set 0

Set 1

17 entries

8 entries

Set 2 8 entries

Set 3 8 entries

Set 4 8 entries

Set 5 8 entries

Set 6 8 entries

7 sets

Figure: TLB Structure of Fermi & Kepler
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Texture Memory

TEXTURE MEMORY: AN OVERVIEW

Memory latency
Table: Texture Memory Access Latency of Fermi & Kepler

Device Texture cache Global cache
L1 hit L1 miss, L2 hit L1 hit L1 miss, L2 hit

Fermi 240 470 116 404
Kepler 110 220 – 230

=⇒ Fermi texture memory management is expensive!
The same L2 cache, TLB with global memory
Different L1 cache: 12 KB, 32-byte cache line, 4 sets
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Texture Memory

TEXTURE L1 CACHE
2D spacial locality optimized texture L1 cache addressing
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Set Word

Memory address =

Data:

4-Set Texture L1 Cache:

96 lines

384 lines

Figure: Fermi & Kepler Texture L1 Cache Addressing
For the typical set-associative mapping, 5-6th bits define the cache set, but here 7-8th bits

instead. It looks like a 128-byte, 24-way conventional set-associative cache.
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SUMMARY

1 Study memory hierarchy of current GPU: Fermi and Kepler

2 Expose detailed GPU memory features 4

I Latency of shared memory bank conflict
I Latency of Fermi/Kepler global memory accesses
I Structure of Fermi L1 data cache
I Structure of Fermi/Kepler TLBs
I Latency of Fermi/Kepler texture memory accesses
I Structure of Fermi/Kepler texture L1 cache
I Structure of Kepler read-only data cache

4This is an open-source project. The testing files are at
http://www.comp.hkbu.edu.hk/˜chxw/gpu_benchmark.html.
More technical details can be found in our submitted paper.

Conclusion 28 of 30

http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html


Background & Motivation Fine-grained Benchmark Experimental Results Conclusion

Conclusions
1 GPU cache design is much different from CPU’s
2 Fermi and Kepler outperform old architecture

Contributions
1 Design a benchmark with some novelty
2 Unveil unknown GPU cache characteristics
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