Benchmarking the Memory Hierarchy
of Modern GPUs

In 11th IFIP International Conference on
Network and Parallel Computing

Xinxin Mei, Kaiyong Zhao, Chengjian Liu, Xiaowen Chu

CS Department, Hong Kong Baptist University

September 19, 2014

OUTLINE

@ Background & Motivation
@ GPU Computing
@ P-Chase Benchmark

e Fine-grained Benchmark
@ Design
@ Methodology

© Experimental Results
@ Shared Memory
@ Global Memory
@ Texture Memory

e Conclusion

Background & Motivation

OUTLINE

@ Background & Motivation

Background & Motivation
@00

GPU Computing

GPU ARCHITECTURE

GPU is a SIMD parallel many-core architecture

‘ Stream Multiprocessor (SM) * 12

‘ DPU P 64‘ Shared Memory/ ‘

L1 Data Cache

‘ SFU

*32

Read Only Data Cache

JC

‘ L2 Cache |

J

M DRAM H DRAM H DRAM ”

Figure: Block Diagram of GeForce 780

GPU Computing

GPU MEMORY HIERARCHY

Table: GPU Various Memory Spaces’

Memory \ Type Location Cached Lifetime
Register R/W on-chip no per-thread
Shared Memory R/W on-chip no per-block
Constant Memory R off-chip yes host allocation
Texture Memory R off-chip yes host allocation
Local Memory R/W off-chip yes per-thread
Global Memory R/W off-chip yes? host allocation

'Sorted by their normal accessing time in ascending order
2Cached local/global memory accesses are for devices of compute capacity 2.0

above only

ained Benchmark

GPU Computing

GPU MEMORY HIERARCHY

Table: GPU Various Memory Spaces’

Memory \ Type Location Cached Lifetime

Register R/W on-chip no per-thread

Shared Memory R/W on-chip no per-block

Constant Memory R off-chip yes host allocation

Texture Memory R off-chip yes host allocation

Local Memory R/W off-chip yes per-thread

Global Memory R/W off-chip yes? host allocation
Memory accesses have long been the bottleneck of further
performance enhancement. J

'Sorted by their normal accessing time in ascending order
2Cached local/global memory accesses are for devices of compute capacity 2.0

above only

Background & Motivation
ooe

GPU Computing

TARGET STRUCTURE

Study GPU Memory hierarchy
The most popular three:

@ Shared memory

@ Global memory

© Texture memory

Characteristics including:
@ Memory access latency
© Unknown cache mechanism

v

Background & Motivation
[leJele]

P-Chase Benchmark

REVIEW: CACHE STRUCTURE

Cache: fast back-up memory space
Set-associative, LRU

Data: The organization of traditional 3-set set-associative
cache (in word order): assume the cache size is 48 hyte,
-l i.e. 12 words, and each cache line contains 2 words.
2-3 Set Word
s Memory address = - 2 “ 1 “ 0 ‘
6 lines
6-7 2-Way Set-Associative Cache
8-9 Set 0 Set1 Set 2
10-11 Way 0: 01 23 4-5
- Way 1: 6-7 8-9 10-11

Figure: Typical Set-Associative CPU Cache Addressing

round & Motivation
[Jele}

ned Benchmark

P-Chase Benchmark

P-CHASE BENCHMARK
P-Chase: stride memory access

Pseudo code

for(i=0;i<iteration;i++)
i=Ali];

Initialization
for(i=0;i<array_size;i++)

Ali]=(i+stride)% array _size;

Memory access process

0 (1 2|1 3|4 |5 (6|7 |8]|9([10[11(12[13 |14 15|16 |17 18|19 |20 |21

22 | 28

array: A, array_size: 24, stride: 2, iteration: 12
@ cache miss: stride > cache line size; array_size > cache size

@ cache hit: stride < cache line size; array_size < cache size

round & Motivation
[Jele}

ned Benchmark

Conclusion

P-Chase Benchmark

P-CHASE BENCHMARK
P-Chase: stride memory access

Pseudo code

for(i=0;i<iteration;i++)
i=Ali];

Initialization
for(i=0;i<array_size;i++)

Ali]=(i+stride)% array _size;

Memory access process

0 (1 2|1 3|4 |5 (6|7 |8]|9([10[11(12[13 |14 15|16 |17 18|19 |20 |21

22 | 28

array: A, array_size: 24, stride: 2, iteration: 12
@ cache miss: stride > cache line size; array_size > cache size

@ cache hit: stride < cache line size; array_size < cache size

v

Average memory access time reflects the cache structure!

)

Background & Motivation
[e]e] o]

P-Chase Benchmark

LITERATURE REVIEW

cache line size: 32 bytes cache line size: 128 bytes

220

ey
H
L ——T]
—a
cy (clockcyces)
] g
=
L §

10
£ i 1
E:m
5 g
3 cache size
50 il 120
e et e v
120
o
> a4 s 6 7 8 o bom o » oo om oo 7w
2 t

122 123
Array size (KB) : -byte stride

Figure: Kepler Texture L1 Cache .
Figure: Kepler Texture L1 Cache

result of Saavedraet1992

() (result of Wong2010)

Cache line sizes are contradictory!
Average memory latency hides some details J

Background & Motivation

oooe

P-Chase Benchmark

MOTIVATION

@ Hardware is upgraded

» Global memory was not cached
» Memory access time was much longer
> ..

@ Traditional P-Chase bases on CPU cache model

» GPU cache could be different
» Observe every latency rather than average one

Fine-grained benchmark
Record time consumption of every array element’s access time J

Fine-grained Benchmark

OUTLINE

@ Fine-grained Benchmark

Fine-grained Benchmark
o
Design

DESIGN
@ Storage: shared memory Pseudo Code
» On-chip, write is prompt __global__ void KernelFunction(){
» 48 KB per SM _shared__ unsigned int s_tvalue [] ;
Declare two spaces _shared__ unsigned int s_index [] ;
o tvalue: t for (k=0 ; k < iterations ; k++) {
s-lvalue: current. start time = clock() ;
element access time j=my.array[j1;
@ s.index: index for next // store the element index
memory access s-index [k]=];
S end_time = clock () ;
@ Timing: clock() // store the element access latency
Store the value after it is s_tvalue [k | = end_time-start_time ;
used! } }

Fine-grained Benchmark
[]
Methodology

DIRECTIONS
Flowchart of applying our fine-grained benchmark:

Also get cache
replacement policy

Get cache size from user manual or
footprint experiment

‘ Get the cache line size from |
> cache miss pattern

Overflow the cache with /‘ ‘ Get the first cache set | -
one element) e
‘ Get the second cache set Get: -
- > Cache associativity

Memory mapping

Increase array size. Every
increment equals cache line size

—
)4751&99 1 Get the last cache set | -/

+ N
stage 2 q

Two stages

@ stride = 1 element, array size = cache size + 1 element
© stride = 1 cache line, array size = cache size + 1:n cache lines

Experimental Results

OUTLINE

© Experimental Results

Experimental Results
(1 1]

Shared Memory

BANK CONFLICT |

@ Normal memory latency: ~ 50 clock cycles

@ Shared memory is organized as memory banks
Bank conflict:

stride = 2, 2-way bank conflict

» Two or more threads in the abye
same warp visit memory
spaces belong to the same -
shared memory bank

thread ID

I

31|15

[=1
[=1=]
[E1~]

63|31

» Stride memory access

~
32 banks

Pseudo code
data = threadldx.x * stride; J

Figure: 2-way Shared Memory Bank Conflict
Caused By Stride Memory Access

Experimental Results
(1 1]

Shared Memory

BANK CONFLICT Il

Bank conflict latency is much longer
Memory requests are sequentially executed! J

_1,200F 1
(%]

ycle
f=}
S
)

T

©

o

o
T

600 |-

400 -

200 |-

Memory latency (clock cycl

Il Il Il
024 8 16 32

0

Stride / #-Way Bank Conflict

Figure: Bank Conflict Memory Latency of Fermi

Experimental Results
(1 1]

Shared Memory

BANK CONFLICT I

@ Kepler outperforms Fermi in terms of avoiding shared memory
bank conflict by introducing 8-byte mode shared memory bank

Latency (clock cycles)
N
u
S

T
I 4-byte mode
[8-byte mode

ol

ikl

LRl ehed kL gD

6 8 10121416182022242628303234363840424446485052545658606264

stride

Figure: Memory Latency of Kepler Shared Memory

Experimental Results
00000

Global Memory

GLOBAL MEMORY: AN OVERVIEW |

@ Global memory access
» Kepler: cached in L2 data cache
» Fermi: cached in L1 and L2 data cache, L1 can be disabled
» Two levels of TLB

@ Memory latency exhibition
Use our fine-grained benchmark with specialized initialization

Global Memory

GLOBAL MEMORY: AN OVERVIEW I

1400 g Kepler 00 Fermi: cacheinLi 00 Fermi:cacheinl2 |

1,200 |- R
2 Table: Global Memory Access Patterns
21,000 _ |
3 Pattern | Data cache | TLB
2™] 1 hit LT hit
2 600 i 2 hit L1 miss, L2 hit
g 3 hit L2 miss
2 00} — 4 miss L1 hit

5 miss L2 miss
200p] 6 miss L2 miss @
0 T T T T

pattern1 pattern2 pattern3 pattern4 pattern5 pan‘erne
.) 4page table “miss”: switch between tables
Figure: Global Memory Access Latencies

Experimental Results
[ejele] I] lelelele]

Global Memory

GLOBAL MEMORY: AN OVERVIEW Il

Observations

@ Big gap between pattern1 and pattern2 of Fermi: cached in L1
— Both L1 TLB and L2 TLB are off-chip

@ Differences between enable/disable L1 of Fermi
= Cached in L1 brings some extra time consumption

© Kepler outperforms Fermi in terms of

i cache miss penalty
i L1/L2 TLB miss penalty
i memory latency (when they both cache in L2)

© Kepler page table needs context switch
(only 512 MB of page entries are activated)

Experimental Results
(ele]e] Jo]

Global Memory

FERMI L1 DATA CACHE

@ Fermi L1 data cache structure 3
» cache size: 16 KB
» cache line size: 128 byte
» set associative: 4-way, 32-set

@ Cache addressing:

. Way | | Way | | Way | | Way
non-conventional o [l 1|l 2|3
» One “hot” cache way is - WS < || s
more frequently replaced i% % ﬁlé § o
» Replacement probability: 2llel 8|8
1111
(5:2:575)

Figure: Fermi L1 Data Cache
Structure

3This is the default setting. The Fermi L1 data cache can be configured as 48 KB,
and the corresponding way number is 6.

Experimental Results
0000e

Global Memory

TLB

@ The page size of both Fermi and Kepler are 2 MB (by brute force

experiments)

@ The TLB structure of Fermi and Kepler is the same

@ L1 TLB: 16 entries,
fully-associative

@ L2 TLB: 65 entries,
set-associative
Non-uniform sets

1 “big” set: 17 entries
6 normal sets: 8 entries

[Seto | 17 entries | R

Set 1
Set2
Set 3 > s

4 | 8entries

w (v
o ||
- ||+ ||~
wv

8 entries

Sets)

Figure: TLB Structure of Fermi & Kepler

Texture Memory

TEXTURE MEMORY: AN OVERVIEW

@ Memory latency

Experimental Results

[]}

Table: Texture Memory Access Latency of Fermi & Kepler

Device .Texture cgche . .Global cqche .
L1 hit | L1 miss, L2 hit | L1 hit | L1 miss, L2 hit

Fermi 240 470 116 404

Kepler 110 220 - 230

—> Fermi texture memory management is expensive!
@ The same L2 cache, TLB with global memory
@ Different L1 cache: 12 KB, 32-byte cache line, 4 sets

Experimental Results
oe

Texture Memory

TEXTURE L1 CACHE
2D spacial locality optimized texture L1 cache addressing

Data:

o7 Set Word
515 Memory address= [BJF[6[5] 40 |
1623
24-31 4-Set Texture L1 Cache:
3230
w047 Set 0 Set1 Set 2 Set3
07 3239 6471 96-103
8-15 40-47
384 lines 4622 4855
2431 5663 8895 120-127
128135
126135 96 lines
3064-3071 2068-2075 | 3000-3007 | 3032-3039 | 3064-3071

Figure: Fermi & Kepler Texture L1 Cache Addressing
For the typical set-associative mapping, 5-6th bits define the cache set, but here 7-8th bits

instead. It looks like a 128-byte, 24-way conventional set-associative cache.

Conclusion

OUTLINE

0 Conclusion

Conclusion

SUMMARY

@ Study memory hierarchy of current GPU: Fermi and Kepler

@ Expose detailed GPU memory features

» Latency of shared memory bank conflict

Latency of Fermi/Kepler global memory accesses
Structure of Fermi L1 data cache

Structure of Fermi/Kepler TLBs

Latency of Fermi/Kepler texture memory accesses
Structure of Fermi/Kepler texture L1 cache
Structure of Kepler read-only data cache

vV VY vy VY VY

“This is an open-source project. The testing files are at
http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html.
More technical details can be found in our submitted paper.

http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html

Conclusion

Conclusions
@ GPU cache design is much different from CPU’s
© Fermi and Kepler outperform old architecture

Contributions
@ Design a benchmark with some novelty
@ Unveil unknown GPU cache characteristics

	Background & Motivation
	GPU Computing
	P-Chase Benchmark

	Fine-grained Benchmark
	Design
	Methodology

	Experimental Results
	Shared Memory
	Global Memory
	Texture Memory

	Conclusion

