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GPU Computing

GPU ARCHITECTURE

GPU is a SIMD parallel many-core architecture

‘ Stream Multiprocessor (SM) * 12

‘ DPU P 64‘ Shared Memory/ ‘

L1 Data Cache

‘ SFU

*32

Read Only Data Cache

JC

‘ L2 Cache |

J

M DRAM H DRAM H DRAM ”

Figure: Block Diagram of GeForce 780
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GPU MEMORY HIERARCHY

Table: GPU Various Memory Spaces’

Memory \ Type Location Cached Lifetime
Register R/W  on-chip no per-thread
Shared Memory R/W  on-chip no per-block
Constant Memory R off-chip yes host allocation
Texture Memory R off-chip yes host allocation
Local Memory R/W  off-chip yes per-thread
Global Memory R/W  off-chip yes? host allocation

'Sorted by their normal accessing time in ascending order
2Cached local/global memory accesses are for devices of compute capacity 2.0

above only
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GPU Computing

GPU MEMORY HIERARCHY

Table: GPU Various Memory Spaces’

Memory \ Type Location Cached Lifetime

Register R/W  on-chip no per-thread

Shared Memory R/W  on-chip no per-block

Constant Memory R off-chip yes host allocation

Texture Memory R off-chip yes host allocation

Local Memory R/W  off-chip yes per-thread

Global Memory R/W  off-chip yes? host allocation
Memory accesses have long been the bottleneck of further
performance enhancement. J

'Sorted by their normal accessing time in ascending order
2Cached local/global memory accesses are for devices of compute capacity 2.0

above only
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GPU Computing

TARGET STRUCTURE

Study GPU Memory hierarchy
The most popular three:

@ Shared memory

@ Global memory

© Texture memory

Characteristics including:
@ Memory access latency
© Unknown cache mechanism

v
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P-Chase Benchmark

REVIEW: CACHE STRUCTURE

Cache: fast back-up memory space
Set-associative, LRU

Data: The organization of traditional 3-set set-associative
cache (in word order): assume the cache size is 48 hyte,
-l i.e. 12 words, and each cache line contains 2 words.
2-3 Set  Word
s Memory address = - 2 “ 1 “ 0 ‘
6 lines
6-7 2-Way Set-Associative Cache
8-9 Set 0 Set1 Set 2
10-11 Way 0: 01 23 4-5
- Way 1: 6-7 8-9 10-11

Figure: Typical Set-Associative CPU Cache Addressing
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P-Chase Benchmark

P-CHASE BENCHMARK
P-Chase: stride memory access

Pseudo code

for(i=0;i<iteration;i++)
i=Ali];

Initialization
for(i=0;i<array_size;i++)

Ali]=(i+stride)% array _size;

Memory access process

0 (1 2|1 3|4 |5 (6|7 |8]|9([10[11(12[13 |14 15|16 |17 18|19 |20 |21

22 | 28

array: A, array_size: 24, stride: 2, iteration: 12
@ cache miss: stride > cache line size; array_size > cache size

@ cache hit: stride < cache line size; array_size < cache size
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P-Chase Benchmark

P-CHASE BENCHMARK
P-Chase: stride memory access

Pseudo code

for(i=0;i<iteration;i++)
i=Ali];

Initialization
for(i=0;i<array_size;i++)

Ali]=(i+stride)% array _size;

Memory access process

0 (1 2|1 3|4 |5 (6|7 |8]|9([10[11(12[13 |14 15|16 |17 18|19 |20 |21

22 | 28

array: A, array_size: 24, stride: 2, iteration: 12
@ cache miss: stride > cache line size; array_size > cache size

@ cache hit: stride < cache line size; array_size < cache size

v

Average memory access time reflects the cache structure!

)
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P-Chase Benchmark

LITERATURE REVIEW

cache line size: 32 bytes cache line size: 128 bytes
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Figure: Kepler Texture L1 Cache .
Figure: Kepler Texture L1 Cache

result of Saavedraet1992
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Cache line sizes are contradictory!
Average memory latency hides some details J
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P-Chase Benchmark

MOTIVATION

@ Hardware is upgraded

» Global memory was not cached
» Memory access time was much longer
> ..

@ Traditional P-Chase bases on CPU cache model

» GPU cache could be different
» Observe every latency rather than average one

Fine-grained benchmark
Record time consumption of every array element’s access time J
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Fine-grained Benchmark
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Design

DESIGN
@ Storage: shared memory Pseudo Code
» On-chip, write is prompt __global__ void KernelFunction(){
» 48 KB per SM _shared__ unsigned int s_tvalue [ ] ;
Declare two spaces _shared__ unsigned int s_index [ ] ;
o tvalue: t for (k=0 ; k < iterations ; k++) {
s-lvalue: current. start time = clock( ) ;
element access time j=my.array[j1;
@ s.index: index for next // store the element index
memory access s-index [k]=];
S end_time = clock () ;
@ Timing: clock() // store the element access latency
Store the value after it is s_tvalue [ k | = end_time-start_time ;
used! } }
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DIRECTIONS
Flowchart of applying our fine-grained benchmark:

Also get cache
replacement policy

Get cache size from user manual or
footprint experiment

‘ Get the cache line size from |
> cache miss pattern

Overflow the cache with /‘ ‘ Get the first cache set | -
one element ) e
‘ Get the second cache set Get: -
- > Cache associativity

Memory mapping

Increase array size. Every
increment equals cache line size

—
)4751&99 1 Get the last cache set | -/

+ N
stage 2 q

Two stages

@ stride = 1 element, array size = cache size + 1 element
© stride = 1 cache line, array size = cache size + 1:n cache lines
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Shared Memory

BANK CONFLICT |

@ Normal memory latency: ~ 50 clock cycles

@ Shared memory is organized as memory banks
Bank conflict:

stride = 2, 2-way bank conflict

» Two or more threads in the abye
same warp visit memory
spaces belong to the same -
shared memory bank

thread ID

I

31|15

[=1
[=1=]
[E1~]

63|31

» Stride memory access

~
32 banks

Pseudo code
data = threadldx.x * stride; J

Figure: 2-way Shared Memory Bank Conflict
Caused By Stride Memory Access
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Shared Memory

BANK CONFLICT Il

Bank conflict latency is much longer
Memory requests are sequentially executed! J
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Figure: Bank Conflict Memory Latency of Fermi
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Shared Memory

BANK CONFLICT I

@ Kepler outperforms Fermi in terms of avoiding shared memory
bank conflict by introducing 8-byte mode shared memory bank

Latency (clock cycles)
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Figure: Memory Latency of Kepler Shared Memory
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Global Memory

GLOBAL MEMORY: AN OVERVIEW |

@ Global memory access
» Kepler: cached in L2 data cache
» Fermi: cached in L1 and L2 data cache, L1 can be disabled
» Two levels of TLB

@ Memory latency exhibition
Use our fine-grained benchmark with specialized initialization



Global Memory

GLOBAL MEMORY: AN OVERVIEW I

1400 g Kepler 00 Fermi: cacheinLi 00 Fermi:cacheinl2 |

1,200 |- R
2 Table: Global Memory Access Patterns
21,000 _ |
3 Pattern | Data cache | TLB
2™ ] 1 hit LT hit
2 600 i 2 hit L1 miss, L2 hit
g 3 hit L2 miss
2 00} — 4 miss L1 hit

5 miss L2 miss
200p ] 6 miss L2 miss @
0 T T T T

pattern1  pattern2  pattern3  pattern4  pattern5 pan‘erne
. ) 4page table “miss”: switch between tables
Figure: Global Memory Access Latencies
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Global Memory

GLOBAL MEMORY: AN OVERVIEW Il

Observations

@ Big gap between pattern1 and pattern2 of Fermi: cached in L1
— Both L1 TLB and L2 TLB are off-chip

@ Differences between enable/disable L1 of Fermi
= Cached in L1 brings some extra time consumption

© Kepler outperforms Fermi in terms of

i cache miss penalty
i L1/L2 TLB miss penalty
i memory latency (when they both cache in L2)

© Kepler page table needs context switch
(only 512 MB of page entries are activated)
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Global Memory

FERMI L1 DATA CACHE

@ Fermi L1 data cache structure 3
» cache size: 16 KB
» cache line size: 128 byte
» set associative: 4-way, 32-set

@ Cache addressing:

. Way | | Way | | Way | | Way
non-conventional o [l 1|l 2|3
» One “hot” cache way is - WS < || s
more frequently replaced i% % ﬁlé § o
» Replacement probability: 2llel 8|8
1111
(5:2:575)

Figure: Fermi L1 Data Cache
Structure

3This is the default setting. The Fermi L1 data cache can be configured as 48 KB,
and the corresponding way number is 6.
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Global Memory

TLB

@ The page size of both Fermi and Kepler are 2 MB (by brute force

experiments)

@ The TLB structure of Fermi and Kepler is the same

@ L1 TLB: 16 entries,
fully-associative

@ L2 TLB: 65 entries,
set-associative
Non-uniform sets

1 “big” set: 17 entries
6 normal sets: 8 entries

[ Seto | 17 entries | R

Set 1
Set2
Set 3 > s

4 | 8entries

w (v
o ||
- ||+ ||~
wv

8 entries

Sets )

Figure: TLB Structure of Fermi & Kepler
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TEXTURE MEMORY: AN OVERVIEW

@ Memory latency

Experimental Results

[ ]}

Table: Texture Memory Access Latency of Fermi & Kepler

Device .Texture cgche . .Global cqche .
L1 hit | L1 miss, L2 hit | L1 hit | L1 miss, L2 hit

Fermi 240 470 116 404

Kepler 110 220 - 230

—> Fermi texture memory management is expensive!
@ The same L2 cache, TLB with global memory
@ Different L1 cache: 12 KB, 32-byte cache line, 4 sets
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TEXTURE L1 CACHE
2D spacial locality optimized texture L1 cache addressing

Data:

o7 Set Word
515 Memory address=  [BJF[6[5] 40 |
1623
24-31 4-Set Texture L1 Cache:
3230
w047 Set 0 Set1 Set 2 Set3
07 3239 6471 96-103
8-15 40-47
384 lines 4622 4855
2431 5663 8895 120-127
128135
126135 96 lines
3064-3071 2068-2075 | 3000-3007 | 3032-3039 | 3064-3071

Figure: Fermi & Kepler Texture L1 Cache Addressing
For the typical set-associative mapping, 5-6th bits define the cache set, but here 7-8th bits

instead. It looks like a 128-byte, 24-way conventional set-associative cache.
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Conclusion

SUMMARY

@ Study memory hierarchy of current GPU: Fermi and Kepler

@ Expose detailed GPU memory features

» Latency of shared memory bank conflict

Latency of Fermi/Kepler global memory accesses
Structure of Fermi L1 data cache

Structure of Fermi/Kepler TLBs

Latency of Fermi/Kepler texture memory accesses
Structure of Fermi/Kepler texture L1 cache
Structure of Kepler read-only data cache

vV VY vy VY VY

“This is an open-source project. The testing files are at
http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html.
More technical details can be found in our submitted paper.


http://www.comp.hkbu.edu.hk/~chxw/gpu_benchmark.html

Conclusion

Conclusions
@ GPU cache design is much different from CPU’s
© Fermi and Kepler outperform old architecture

Contributions
@ Design a benchmark with some novelty
@ Unveil unknown GPU cache characteristics







	Background & Motivation
	GPU Computing
	P-Chase Benchmark

	Fine-grained Benchmark
	Design
	Methodology

	Experimental Results
	Shared Memory
	Global Memory
	Texture Memory

	Conclusion

