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Abstract

Deep neural networks have made huge progress in the
last few decades. However, as the real-world data often ex-
hibits a long-tailed distribution, vanilla deep models tend
to be heavily biased toward the majority classes. To ad-
dress this problem, state-of-the-art methods usually adopt a
mixture of experts (MoE) to focus on different parts of the
long-tailed distribution. Experts in these methods are with
the same model depth, which neglects the fact that different
classes may have different preferences to be fit by models
with different depths. To this end, we propose a novel MoE-
based method called Self-Heterogeneous Integration with
Knowledge Excavation (SHIKE). We first propose Depth-
wise Knowledge Fusion (DKF) to fuse features between dif-
ferent shallow parts and the deep part in one network for
each expert, which makes experts more diverse in terms of
representation. Based on DKF, we further propose Dynamic
Knowledge Transfer (DKT) to reduce the influence of the
hardest negative class that has a non-negligible impact on
the tail classes in our MoE framework. As a result, the clas-
sification accuracy of long-tailed data can be significantly
improved, especially for the tail classes. SHIKE achieves
the state-of-the-art performance of 56.3%, 60.3%, 75.4%
and 41.9% on CIFAR100-LT (IF100), ImageNet-LT, iNatu-
ralist 2018, and Places-LT, respectively. The source code is
available at https://github.com/jinyan-06/SHIKE.

1. Introduction

Deep learning has made incredible progress in visual
recognition tasks during the past few years. With well-
designed models, e.g., ResNet [18], and Transformer [57],
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Figure 1. Comparison of test accuracy of a ResNet-32 model with
two shallow branches and a deep branch. The model is jointly
trained on CIFAR100-LT with an imbalance factor of 100. Only
the highest accuracy among the three branches is shown for each
class.

deep learning techniques have outperformed humans in
many visual applications, like image classification [32], se-
mantic segmentation [17, 42], and object detection [50, 52].
One key factor in the success of deep learning is the avail-
ability of large-scale datasets [13,55,70], which are usually
manually constructed and annotated with balanced train-
ing samples for each class. However, in real-world ap-
plications, data typically follows a long-tailed distribution,
where a small fraction of classes possess massive samples,
but the others are with only a few samples [5,12,26,41,44].
Such imbalanced data distribution leads to a significant ac-
curacy drop for deep learning models trained by empirical
risk minimization (ERM) [56] as the model tends to be bi-
ased towards the head classes and ignore the tail classes to
a great extent. Thus, the model’s generalization ability on
tail classes is severely degraded.

The most straightforward action for long-tailed recog-
nition often focuses on re-balancing the learning process
from either a data processing [3, 27, 46] or cost-sensitive
perspective [12, 28, 71]. Recently, methods proposed for
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long-tailed data have drawn more attention to representa-
tion learning. For example, the decoupling strategy [27] is
proposed to deal with the inferior representation caused by
re-balancing methods. Contrastive learning [11,26] special-
izes in learning better and well-distributed representations.
Among them, the methods that achieve state-of-the-art per-
formance are usually based on a mixture of experts (MoE),
also known as multi-experts. Some MoE-based methods
prompt different experts to learn different parts of the long-
tailed distribution (head, medium, tail) [4, 10, 39, 61], while
some others were designed to reduce the overall model’s
prediction variance or uncertainty [33, 60].

Unlike traditional ensemble learning methods that adopt
independent models for joint prediction, the MoE-based
methods for long-tailed learning often adopt a multi-branch
model architecture with shared shallow layers and exclu-
sive deep layers. Thus, the features generated by different
experts are actually from the model with the same depth,
although the methods force them to be diverse from various
perspectives. Recently, self-distillation [64] is proposed to
enable shallow networks to have the ability to predict cer-
tain samples in the data distribution. This brings us to a
new question: can we integrate the knowledge from shal-
low networks into some experts in MoE to fit the long-tailed
data in a self-adaptive manner regardless of the number of
samples? With this question, we conduct a quick experi-
ment to reveal the preference of the deep neural network
on different classes in long-tailed data. A ResNet-32 model
with branches directly from shared layers is adopted. Each
branch contains an independent classifier after feature align-
ment, and all classifiers are re-trained with balanced soft-
max cross entropy [49]. Fig. 1 shows the highest accuracy
among the three branches for each class. We can clearly
observe that shallow parts of the deep model are able to
perform better on certain tail classes. This implies that dif-
ferent parts of the long-tailed distribution might accommo-
date the network differently according to the depth. Thus
the shallow part of the deep model can provide more useful
information for learning the long-tailed distribution.

Driven by the observation above, we propose a novel
MoE-based method called Self-Heterogeneous Integration
with Knowledge Excavation (SHIKE). SHIKE adopts an
MoE-based model consisting of heterogeneous experts
along with knowledge fusion and distillation. To fuse the
knowledge diversely, we first introduce Depth-wise Knowl-
edge Fusion (DKF) as a fundamental component to incor-
porate different intermediate features into deep features for
each expert. The proposed DKF architecture can not only
provide more informative features for experts but also opti-
mize more directly to shallower layers of the networks by
mutual distillation. In addition, we design Dynamic Knowl-
edge Transfer (DKT) to address the problem of the hard-
est negatives during knowledge distillation between experts.

DKT elects the non-target logits with large values to re-
form non-target predictions from all experts to one grand
teacher, which can be used in distilling non-target predic-
tions to suppress the hardest negative, especially for the tail
classes. DKT can fully utilize the structure of MoE and di-
versity provided by DKF for better model optimization. In
this paper, our contributions can be summarized as follow:

• We propose Depth-wise Knowledge Fusion (DKF) to
encourage feature diversity in knowledge distillation
among experts, which releases the potential of the
MoE in long-tailed representation learning.

• We propose a novel knowledge distillation strategy
DKT for MoE training to address the hardest negative
problem for long-tailed data, which further exploits the
diverse features fusing enabled by DKF.

• We outperform other state-of-the-art methods on four
benchmarks by achieving performance 56.3%, 60.3%,
75.4% and 41.9% accuracy for CIFAR100-LT (IF100),
ImageNet-LT, iNaturalist 2018, and Places-LT, respec-
tively.

2. Related work

Long-tailed Visual Recognition. Long-tailed visual
recognition aims at improving the accuracy of the tail
classes with the least influence on the head classes. Re-
sampling is the most common practice in early methods for
long-tailed learning, which mainly focuses on balancing the
data distribution during model training [6, 27, 43, 59, 63].
In terms of model optimization, re-weighting aims to re-
balance classes in the way of adjusting loss value for differ-
ent classes during training [15, 23, 40, 47, 49, 65, 71]. Data
augmentation enables balanced training by means of either
transferring the information from the head classes to the tail
classes [29, 58] or generating data for the tail classes using
prior [63] or estimated statistics [37].

Some other methods adopt logit adjustment to calibrate
data distribution by post-hoc shifting the logit based on la-
bel frequencies in order to obtain a large margin between
classes [23, 35, 36, 44, 48, 65]. As the re-balancing methods
usually promote the accuracy of tail classes at the cost of
harming the head classes, decoupled training [27] and con-
trastive learning methods [11, 72] are proposed to learn the
better representation for long-tailed learning.

More recently, methods based on the mixture of experts
(MoE) have been explored to improve performance by in-
tegrating more than one model in the learning framework.
The basic idea is to make the experts focus on different
parts of the long-tailed data. BBN [69] is proposed to use
a two-branched to learn the long-tailed distribution and the
balanced distribution simultaneously along with a smooth
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transition between them. BAGS [39] and LFME [61] re-
duce the related imbalance ratio by dividing the long-tailed
distribution into several sub-groups with several experts fit-
ting on them. ACE [4] and ResLT [10] allow experts to be
skilled at different parts of the long-tailed distribution and
to complement each other. RIDE [60] and TLC [33] utilize
several experts to learn the long-tailed distribution indepen-
dently. Thus, the predictions of all experts are gradually
integrated to reduce the overall model variance or uncer-
tainty. NCL [34] adopts several complete networks to learn
the long-tailed distribution individually and collaboratively
along with self-supervised contrastive strategy [11].

Knowledge Distillation. Knowledge Distillation (KD)
[22] is originally proposed to transfer knowledge from a
large teacher model to a small student model by using
soft labels output from the large model as targets. There
are two main KD directions: logit-based KD and feature-
based KD. Logit-based KD methods [7, 16, 30, 45, 67] di-
rectly use the output of the teacher model as supervision
to guide the student model, while feature-based KD meth-
ods [1, 13, 20, 21, 25, 30, 51, 53, 54, 62] is designed to match
the intermediate features between the teacher model and the
student model. Recently, self-distillation has been proposed
to utilize the idea of knowledge distillation for better and
more efficient model optimization [64]. It treats the deep
model as the teacher model to transfer knowledge directly
to shallow layers viewed as student models.

3. Methodology
In this section, we introduce the proposed SHIKE in de-

tail, which aims to enhance knowledge transfer in MoE.
SHIKE contains two novel components named Depth-wise
Knowledge Fusion (DKF) and Dynamic Knowledge Trans-
fer (DKT). DKF aggregates knowledge diversely from ex-
perts with different model depths, and DKT is specifically
designed for transferring knowledge among diverse experts.
The overall structure is shown in Fig. 2.

3.1. Preliminaries

We denote {xi, yi}Ni=1 as all data points in the train-
ing set, where each sample xi has a corresponding label
yi ∈ {1, ..., C}. The size of the training set is N =∑C

c=1 nc, where nc represents the number of training data
in class c. Given a set of long-tailed data, the number of
training data decreases according to the class indices, i.e.,
n1 > n2 > ... > nC . Long-tailed learning aims to build a
deep model on such long-tailed data by treating each class
equally important.

We suppose a deep neural network parameterized by θ
contains M experts. Usually, the network architecture of
MoE makes the first several layers shared for all experts
and the last few layers exclusive for each expert. Without

loss of generality, we take ResNet [19] as an example. We
denote the shared layers of a ResNet model as S stages for
M experts. Only the last stage is adopted as the exclusive
parameter for each expert. For expert m, we denote the
parameters of its exclusive stage as θmS+1, which is then fol-
lowed by a linear layer parameterized as φm. Given a data
x, the intermediate features fs from stage s (1 ≤ s ≤ S) of
the shared network are calculated by

fs = θs ◦ · · · ◦ θ2 ◦ θ1(x). (1)

The operation ◦ indicates function composition: h ◦ g(x) =
h(g(x)). After the shared network, the output logits gener-
ated by expert m are calculated by:

zm = φm(fmS+1), (2)

where fmS+1 = θmK+1 (fS) represents the exclusive features
extracted by expert m, and fS represents the features ex-
tracted by the last shared stage of the network. In this MoE
framework, we denote exclusive features fmS+1 as high-level
features and their preceding features fs, s = 1, ..., S, as in-
termediate features. During training, the cross-entropy loss
can be calculated for each expert after obtaining the softmax
probabilities. For model inference, the logits are summed
up among all experts for each class, and the class with the
maximum one is regarded as the MoE model prediction.

3.2. Depth-Wise Knowledge Fusion

Knowledge distillation is a commonly adopted opti-
mization strategy for MoE methods in long-tailed learn-
ing [34, 38, 60, 61]. However, these methods mainly focus
on distillation from logits rather than intermediate features.
In the field of knowledge distillation, most state-of-the-art
methods mainly take a feature-based manner where inter-
mediate feature plays an essential part [51, 62]. This is a
lack of considering the intermediate features, especially in
MoE-based methods where all experts often share the same
part of the network. It has been shown in Fig. 1 that features
from different depths of the network can provide compara-
tive performance towards different parts of long-tailed dis-
tribution: deep features exhibit promising performance on
the head classes while shallow features can be more effec-
tive for some tail classes.

Therefore, to fully utilize the intermediate features dur-
ing knowledge distillation in an MoE framework, we pro-
pose Depth-wise Knowledge Fusion (DKF) to aggregate
features from different depths of a shared network with the
high-level features extracted from each expert. For simpli-
fication, we assume the number of experts M is less than
or equal to the number of shared stages, namely M ≤ S so
that each expert can utilize the intermediate features from a
unique depth in the network. Then, we can assign M sets of
intermediate features among fs, s = 1, ..., S to each expert.
As different intermediate features have different sizes, one
expert cannot simply concatenate or multiply them with the
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Figure 2. The structure of the proposed SHIKE. Each expert in MoE fuses the features from its own exclusive layers (deep features) and
ones from the shared layers (intermediate features). The fused features are then used for mutual and dynamic knowledge distillation for
better model optimization.

assigned features fs directly. Therefore, we add several con-
volution layers for downsampling according to the depth of
the intermediate features, achieving feature alignment be-
tween fs and high-level features fmS+1 extracted by expert
m. Suppose the intermediate features after alignment are
f̂s. In DKF, we propose to fuse the intermediate features
with high-level features by multiplication and then trans-
form them into logits by φm:

zm = φm
(
f̂s ⊗ fmS+1

)
, (3)

where ⊗ is the Hadamard product. As shown in Fig. 2, the
intermediate features from a stage are assigned to an expert
and aggregated with the high-level features of this expert.

To fully use the diverse features in DKF, we can apply
knowledge distillation between any two experts to make
them learn from each other. As each expert in MoE of-
ten has the same architecture located in the deepest position
of the network, it can be guaranteed that each expert can
play the role of either a teacher or a student. This enables
mutual knowledge distillation between any two experts and
provides a perfect opportunity for experts to aggregate dif-
ferent depths of knowledge:

Lmu =

M∑
j=1

M∑
k ̸=j

KL(pj |pk), (4)

where pj and pk represent the softmax probabilities of class
j and k, respectively. This guarantees the knowledge trans-
ferring comprehensively between any two experts.

Feature fusion with mutual knowledge distillation in this
way has two main advantages: (1) It dynamically fuses in-
termediate information from different depths of the network

with semantic information from experts, which implicitly
assigns different preferences of long-tailed distribution to
experts without intuitive severance. (2) With more low-
level information being aggregated, logit-based knowledge
distillation can be more effective since each expert’s output
has more diversity corresponding to different depths of the
model.

3.3. Dynamic Knowledge Transfer

The effectiveness of knowledge distillation largely relies
on the non-target logits, i.e., the logits do not belong to the
target class y, which provides similar semantic information
in addition to the target logit. It is especially useful for long-
tailed learning because the target logits of samples in the
tail classes are usually relatively small during training such
that the non-target logits can provide a comparable amount
of information with the target label. With DKF, the non-
target logits of different experts are more diverse because
each expert can extract features with different semantic in-
formation due to different model depths. However, one cir-
cumstance during knowledge distillation may happen under
long-tailed distribution that needs to be taken into consider-
ation carefully. The model will be biased towards the head
classes such that some samples in the tail classes will have
high prediction confidence on the head classes, especially
when they share similar semantic features. The non-target
classes with high confidence logits are called hard negative
classes [34,40]. It is dangerous to conduct knowledge distil-
lation if the experts have a consensus on the hardest negative
class, which may be a head class, for the tail class samples
because the misleading information may be transferred.
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Based on the analysis above, we propose Dynamic
Knowledge Transfer (DKT) to address the issue of the
hardest negative class during knowledge distillation with
the proposed DKF. In addition to using the logits of all
classes by the cross-entropy loss, DKT considers only non-
target predictions from all experts and dynamically elects
a teacher among them to handle the hardest negative class.
For a sample x with label y, its corresponding output logits
of expert m is zm = [zm1 , zm2 , ..., zmC ]. Following [68], we
first decouple the logits into a target logit zmy and non-target
logits [zmI1 , z

m
I2
, ..., zmIC−1

], where I = [I1, I2, ..., IC−1]
stores the index of non-target classes. After logits decou-
pling, we introduce the non-target set to a new knowledge
distillation problem with C − 1 classes. The average log-
its of all experts can be calculated for each non-target class
[z̄I1 , z̄I2 , ..., z̄IC−1

], where

z̄Ii =
1

M

M∑
m=1

zmIi , (5)

for i = 1, ..., C − 1. We can thus identify maxi{z̄Ii}
among all non-target classes as the consensus hardest nega-
tive class, which is believed as the hardest negative class by
joint prediction of MoE. To effectively suppress the logit of
consensus hardest negative class through softmax suppres-
sion, a teacher who can comprehensively utilize the non-
target knowledge is needed. Specifically, DKT chooses the
maximum non-target logit among all experts denoted as ẑIi :

ẑIi = max
m=1,...,M

{zmIi }, (6)

for i = 1, ..., C − 1. The large values of the maximum
non-target logits can effectively suppress the value of the
consensus hardest negative logit after softmax on the C − 1
non-target classes. Taking advantage of the diversity in
DKF, high values may appear on different non-target logits
with different experts. Therefore, the maximum non-target
logits can dynamically suppress the consensus hardest neg-
ative logit after softmax among C − 1 non-target classes.
Combining the consensus hardest negative with the maxi-
mum non-target logits, we can form a set of non-target log-
its called grand teacher:

zTIi =

{
z̄Ii , i = argmaxj{z̄Ij},
ẑIi , otherwise,

(7)

for i = 1, ..., C − 1. Note that the grand teacher is only
for suppressing the hardest negative class within non-target
classes while the target class is not involved. After electing
the grand teacher, non-target knowledge distillation is per-
formed between it and each expert. The non-target proba-
bilities for grand teacher and students are calculated by the
following formulation:

p̃TIi =
exp(zTIi)∑C−1

i=1 exp(zTIi)
, p̃mIi =

exp(zmIi )∑C−1
i=1 exp(zmIi )

, (8)

for i = 1, ..., C − 1 and m = 1, ...,M . Therefore, the

knowledge distillation for non-target logits among SHIKE’s
experts can be formulated as:

Lnt =

M∑
m=1

KL(p̃T |p̃m). (9)

For a particular sample, the hardest negative of its corre-
sponding outputs may vary not only among experts but also
along the training process. DKT can dynamically choose
the hardest negative among experts and reduce its probabil-
ity without affecting the target logit.

3.4. Overall Training Paradigm

SHIKE adopts a decoupled training scheme that opti-
mizes the feature extractor and classifier separately, as it has
been shown that class-balanced joint training strategies for
long-tailed data may hurt representation learning [27, 69].
For feature extractor training, we adopt both mutual knowl-
edge distillation loss Lmu in Eq. (4) by DKF and non-target
knowledge distillation loss Lnt in Eq. (9) by DKT. Mean-
while, to preserve the information from the original distri-
bution untouched for representation learning, vanilla cross-
entropy loss Lce is also applied for each expert. There-
fore, the above three loss functions during the representa-
tion learning stage are assembled as a whole optimization
objective:

L = Lce + αLnt + βLmu, (10)

where α and β are trade-off hyperparameters. For classi-
fier training, the goal is to train a balanced classifier with
the feature extractor frozen. We utilize the balanced soft-
max cross entropy (BSCE) [49] as the loss function Lbsce

to simply optimize a new classifier for each expert:

Lbsce = −
M∑

m=1

log

(
ny exp (z

m)∑C
j=1 nj exp

(
zmj
)) . (11)

Knowledge distillation is not considered in the stage of clas-
sifier re-training as it will encourage classifiers to be similar,
which is harmful to experts to make joint predictions.

4. Experiments
4.1. Datasets

CIFAR-100-LT is a subset of the original CIFAR-
100 [31] with long-tailed distribution. The imbalance fac-
tor of CIFAR-100-LT can be set at 50 or 100, where 100
means that the largest class contains 100 times of samples
than the smallest class. The validation set remains the same
as the original CIFAR-100 with 10,000 samples in total.
ImageNet-LT is also a subset of the original ImageNet [13],
which is first proposed in [41]. It has an imbalance factor of
256 following Pareto distribution with a power value of 0.6.
With 1,000 classes in total, the training set and test set con-
tain 115.8K samples and 50K samples, respectively. iNat-
uralist 2018 [55] is a large-scale real-world dataset. It is
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Method Year
CIFAR100-LT
100 50

Single model
Focal Loss [40] 2017 42.3 -
OLTR [41] 2019 43.4 -
LDAM-DRW [5] 2019 44.4 -
τ -norm [27] 2020 45.4 -
cRT [27] 2020 45.6 -
BALMS [49] 2020 50.7 -
LADE [23] 2021 45.4 50.5
GCL [36] 2022 48.7 53.6
Weight Balancing [2] 2022 53.6 57.7
Contrastive & Hybrid methods
BALMS+BatchFormer [24] 2022 51.7 -
PaCo [11] 2021 51.9 56.0
PaCo+BatchFormer [24] 2022 52.4 -
BCL [72] 2022 52.0 56.6
MoE-based methods
RIDE (3E) [60] 2021 48.3 -
ResLT (3E) [10] 2022 45.3 50.0
TLC (4E) [33] 2022 50.1 -
NCL (S) [34] 2022 53.3 56.8
NCL (3N) [34] 2022 54.2 58.2
Ours (3E) - 56.3 59.8

Table 1. Comparison results on CIFAR100-LT with imbalance fac-
tor of 100 and 50.

extremely imbalanced with 437.5K samples from 8,142 cat-
egories. Places-LT is created from the large-scale dataset
Places [70] with 184.5K samples from 365 categories.

4.2. Implementation Details

For CIFAR100-LT, we use ResNet-32 as the backbone.
AutoAugment [8] and Cutout [14] are adopted by follow-
ing [11, 49]. For ImageNet-LT, ResNet-50 and ResNeXt-
50 (32x4d) are adopted. Similarly, we use ResNet-50 and
ResNet-152 for iNaturalist 2018 and Places-LT. The above
four datasets are trained with learning rates of 0.05, 0.2,
0.025, and 0.02, respectively. All models are trained for
180 epochs except Places-LT with 30 epochs of fine-tuning
as it utilizes a pre-trained model. If not specified, we adopt
SGD optimizer with momentum 0.9, cosine schedule of de-
caying to 0, and weight decay of 5e-4 for all experiments.
RandAugment [9] is used for ImageNet-LT and iNaturalist-
2018 by following [34]. Also, during the classifier training
phase, the cosine learning rate scheduler restarts, and clas-
sifiers of experts are trained for 20 more epochs.

4.3. Main Results

All comparison results with other state-of-the-art meth-
ods for long-tailed learning are presented in Tab. 1-3. We
compare the proposed SHIKE with single model methods,
contrastive methods, hybrid methods and MoE-based meth-
ods. All of them are proposed for long-tailed data. Specific
settings for MoE-based models are marked in parentheses:

Method Year
ImageNet-LT iNat

R-50 RX-50 R-50
Single model
OLTR [41] 2019 - - 63.9
LDAM-DRW [5] 2019 - - 68.0
cRT [27] 2020 47.3 49.6 65.2
τ -norm [27] 2020 46.7 49.4 65.6
BALMS [49] 2020 50.1 - -
LA [44] 2021 - - 66.4
CAM [66] 2021 - - 70.9
GCL [36] 2022 54.9 - 72.0
Weight Balancing [2] 2022 - 53.9 70.2
Contrastive & Hybrid methods
SSD [38] 2021 - 56.0 -
PaCo [11] 2021 57.0 58.2 73.2
BCL [72] 2022 56.0 - 71.8
RIDE+BF [24] 2022 55.7 - 74.1
BALMS+BF [24] 2022 51.1 - -
MoE-based methods
BBN [69] 2020 48.3 49.3 66.3
RIDE (3E) [60] 2021 55.4 56.8 72.6
ACE [4] 2021 54.7 56.6 -
NCL (S) [34] 2022 57.4 58.4 74.2
NCL (3N) [34] 2022 59.5 60.5 74.9
Ours (3E) - 59.7 59.6 75.4

Table 2. Comparison results on ImageNet-LT and iNaturalist 2018
(iNat). R-50 and RX-50 are short for ResNet-50 and ResNeXt-50
(32x4d), respectively.

S for the single model, N for the full network, and E for the
expert. The best results are presented in bold.
CIFAR100-LT The comparison results on CIFAR100-LT
with the imbalance factor of 100 and 50 are shown in
Tab. 1. Note that the adopted ResNet-32 model has only
three stages, which provide two shared stages to generate
intermediate features for fusion and one exclusive stage for
each expert. In this case, we let two experts fuse with the
same shallowest intermediate features. We group the exist-
ing methods based on their types. SHIKE achieves better
performance within or out of MoE-based methods. For ex-
ample, it achieves 2.1% and 1.6% improvements over the
second-best method NCL (3N) on the imbalance factor of
100 and 50, respectively. Besides, it is worth noting that
in the previous state-of-the-art methods, NCL adopts three
complete networks as its experts, while SHIKE only utilizes
experts consisting of the last stage of the ResNet along with
one or two downsampling layers. Another advantage of the
proposed SHIKE is we only train it for 200 epochs, which is
less than the method following a contrastive learning strat-
egy that requires more epochs.
ImageNet-LT and iNaturalist 2018. We report over-
all Top-1 accuracy for ImageNet-LT and iNaturalist 2018
in Tab. 2. For a fair comparison, we use SHIKE to train
MoEs 200 epochs for both datasets. For ImageNet-LT,
SHIKE can perform better than all the competing meth-
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(a) Maximum class accuracy among experts. (b) Ratio of classes with the highest accuracy.

Figure 3. Preferences of different experts in SHIKE. (a) The highest accuracy among experts is shown for each class on the test set of
ImageNet-LT. (b) We calculate the ratio of class numbers that each expert is most skilled at within three divisions. The experiment is
conducted with ResNet-50 and the number of experts is set to 3.

Method Year
Places-LT

Many Med Few All
Single model
Focal Loss [40] 2017 41.1 34.8 22.4 34.6
OLTR [41] 2019 44.7 37.0 25.3 35.9
NCM [27] 2020 40.4 37.1 27.3 36.4
cRT [27] 2020 42.0 37.6 24.9 36.7
τ -norm [27] 2020 37.8 40.7 31.8 37.9
LWS [27] 2020 40.6 39.1 28.6 37.6
BALMS [49] 2020 41.2 39.8 31.6 38.7
LADE [23] 2021 42.8 39.0 31.2 38.8
DisAlign [65] 2021 40.4 42.4 30.1 39.3
GCL [36] 2022 - - - 40.6
Contrastive & Hybrid methods
LDAM+RSG [58] 2021 41.9 41.4 32.0 39.3
PaCo [11] 2021 37.5 47.2 33.9 41.2
MoE-based methods
LFME [61] 2020 39.3 39.6 24.2 36.2
NCL (S) [34] 2022 - - - 41.5
NCL (3N) [34] 2022 - - - 41.8
Ours (3E) - 43.6 39.2 44.8 41.9

Table 3. Comparison results on Places-LT. The results are shown
by different class divisions (Many, Medium, and Few) as well as
the overall accuracy (All).

ods, including NCL [34]. It is worth noting that NCL trains
its MoE for 400 epochs with contrastive training strategies.
Moreover, NCL adopts three whole networks as experts,
consuming more computational overhead for training. Our
method is less computationally expensive but still achieves
comparable or even better performance than NCL. We also
conduct an experiment with 400 epochs for ResNet-50 on
ImageNet-LT, achieving a performance of 60.3%.

Places-LT. As previous works consider the pre-trained
backbone of ResNet-152 as a whole, it is troublesome for
SHIKE to implement the model. To demonstrate the ef-
fectiveness of the proposed SHIKE, we keep the shared
part of the model fixed after loading the pre-trained pa-
rameters. Then, we only fine-tune the exclusive part within
experts and its corresponding downsampling layers, which

MoE DKF Lmu Lnt Acc
50.04

✓ 54.23
✓ ✓ 55.26
✓ ✓ ✓ 55.59
✓ ✓ ✓ 55.79
✓ ✓ ✓ 54.82
✓ ✓ ✓ ✓ 56.34

Table 4. Ablation study on the effects of different components in
the proposed SHIKE. The experiment is conducted on CIFAR100-
LT with an imbalance factor of 100.

are crucial for the proposed component DKF. The compar-
ison results are listed in Tab. 3. This experiment shows
that intermediate features from the pre-trained model can
also help to boost the overall performance on long-tailed
visual recognition. To further reveal the effectiveness of
SHIKE, we report the accuracy on three divisions of the
classes, namely many-shot classes (>100 training samples),
medium-shot classes (20∼100 training samples) and few-
shot classes (<20 training samples). In addition to achiev-
ing slightly higher performance than the state-of-the-art, we
find it more fascinating that SHIKE achieves 44.8% accu-
racy on the few-shot classes, which is more than 10% higher
than the runner-up 33.9% achieved by PaCo [11]. As a re-
sult, SHIKE has a more balanced test performance com-
pared to the contrastive learning methods.

4.4. Ablations and Model Validation

Ablation Studies on Components of SHIKE. Shown
in Tab. 4, the ablation study is conducted on CIFAR100-
LT with an imbalance factor of 100. Key components of
SHIKE are further subdivided into MoE, DKF, and two
loss functions Lmu and Lnt. MoE means whether the
method uses three experts or a single plain ResNet-32. All
experiments are conducted following a decoupled training
scheme, and accuracy is calculated on the balanced test set.
The accuracy for a single plain model without any com-
ponent is 50.04%, which acts as a baseline for ablation.
When applying the MoE architecture, the accuracy is signif-
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Figure 4. Probability distribution of the hardest negative class for
models trained on CIFAR100-LT with an imbalance factor of 100.
The result is counted on the test set of CIFAR100-LT to show the
effectiveness of suppressing the hardest negative class by DKT.

icantly boosted to 54.23%, which validates the effectiveness
of experts’ ensemble toward long-tailed learning. When ap-
plying DKF to MoE, the performance can be boosted by
around 1%. Based on DKF, the mutual knowledge distil-
lation loss Lmu and the non-target knowledge distillation
Lmt (DKT) can further improve the accuracy by 0.33% and
0.53%, respectively. When all the components are applied,
we achieve the highest accuracy of 56.34%, which is around
2% higher than the plain MoE model. An interesting obser-
vation is that if we do not apply DKF, all the other compo-
nents can only bring 0.59% improvement. This proves that
the DKF is the fundamental architecture in SHIKE, which
assigns more meaningful features to experts in MoE for fur-
ther knowledge distillation and model optimization.
Evaluation on the Hardest Negatives. The ablation
study in Tab. 4 has shown the effectiveness of DKT in terms
of accuracy. To further validate how DKT suppresses the
hardest negatives, we conduct an evaluation based on the
test set. A single model and the proposed SHIKE are uti-
lized, and both model’s classifiers are trained with BSCE
along with keeping the feature extractor fixed. As shown
in Fig. 4, we can see that the number of the hardest negatives
with large values is reduced, which indicates that SHIKE
can effectively alleviate the influence of hardest negatives
during knowledge distillation in MoE.
Evaluation on the Preference of Experts. To show the
preferences of experts for long-tailed distribution, an ex-
periment is conducted on the test set of ImageNet-LT, and
the experts are evenly assigned with three different levels
of intermediate features from shallow to deep accordingly.
Fig. 3 (a) shows the highest accuracy among experts for
each class. It can be observed that the diversity among the
three experts is quite high, where each expert performs well
in different classes that are distributed from head to tail of
the distribution. We also calculate the ratio of classes with
the highest accuracy among experts. From Fig. 3(b), we can
see that expert 1 and 3 with the shallowest and the deep-
est intermediate features performs better on few-shot divi-
sion. While expert 2, which is assigned by the middle in-

E Depth arrangement

1
A B C

54.10 54.75 55.84

2
A B B C A C

57.39 58.79 58.62

3
A B C
59.72

4
A B C A A B C B A B C C
59.83 59.90 59.77

Table 5. Ablation study on the effects of expert number in the
proposed SHIKE. The experiment is conducted on ImageNet-LT.

termediate features, follows a normal accuracy distribution
which is consistent with long-tailed distribution. Moreover,
for classes in the many-shot division, the shallowest fea-
ture is superior in helping expert to achieve higher perfor-
mance. In all, experts with different intermediate features
appear to have different preferences for long-tailed distri-
bution, which makes experts skilled at different parts of the
distribution.
Evaluation on the Number of Experts. To show the in-
fluence of the number of experts, we conduct an experiment
on ImageNet-LT by varying the number of experts from 1
to 4 and different depth combinations. As shown in Tab. 5,
letters from A to C represent depths from shallow to deep.
The overall accuracy of the ensemble generally rises along
with the increasing number of experts. Moreover, it shows
that as the number of experts grows, architectures with more
heterogeneous experts promote more.

5. Conclusion
We have proposed a Self-Heterogeneous Integration

with Knowledge Excavation (SHIKE) for long-tailed visual
recognition. The proposed SHIKE consists of Depth-wise
Knowledge Fusion (DKF) and Dynamic Knowledge Trans-
fer (DKT). DKF fuses the depth-wise intermediate features
with high-level features and thereby provides more infor-
mative features for experts to accommodate the long-tailed
distribution. DKT exploits the non-target knowledge among
diversified experts to reduce the hardest negative for repre-
sentation learning, which can further improve the perfor-
mance on the tail classes. Extensive experiments have been
conducted on four benchmarks and SHIKE achieved excel-
lent performance compared to state-of-the-art counterparts.
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