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ABSTRACT

This paper studies a new challenging problem in face recog­
nition (FR) with single sample per person (SSPP), i.e., SSPP 
FR with a contaminated gallery (SSPP-CG FR), where the 
gallery is contaminated by variations. In SSPP-CG FR, the 
popular generic learning methods will suffer serious perfor­
mance degradation because the applied prototype plus varia­
tion (P+V) model is not suitable in such scenarios. The rea­
sons are twofold: 1) The contaminated gallery samples yield 
bad prototypes to represent the persons; 2) The generated 
variation dictionary is simply based on the subtraction of av­
erage face from generic samples of the same person and can­
not well depict the intra-personal variations. To tackle SSPP- 
CG FR, we propose a novel Iterative Dynamic Generic Learn­
ing (IDGL) method, where the labeled gallery and unlabeled 
query sets are fed into a dynamic label feedback network for 
learning. Specifically, IDGL first recovers the prototypes via 
a semi-supervised low-rank representation (SSLRR) frame­
work and learns a representative variation dictionary by ex­
tracting the “sample-specific”  corruptions from an auxiliary 
generic set. Then, it puts them into the P+V model to estimate 
labels for query samples. Subsequently, the estimated labels 
are used as the feedbacks to modify the SSLRR, thus updating 
new prototypes for the next round of P+V based label estima­
tion. With the dynamic learning network, the accuracy of the 
estimated labels is improved iteratively owing to the steadi­
ly enhanced prototypes. Experiments on various benchmark 
databases have verified the superiority of IDGL.

Index Terms— Face recognition, single sample per per­
son, low-rank representation, contaminated gallery set

1. INTRODUCTION

Single sample per person face recognition (SSPP FR), i.e. rec­
ognizing a person with a single face image only for training,
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has several attractive multimedia applications such as surveil­
lance security and criminal identification [1], However, SSPP 
FR is still one of the most challenging problems in FR due to 
the unavailability of intra-class information [2],

To address the SSPP FR problem, some attempts have 
been made in the last decade, which can be roughly grouped 
into two types: patch-based methods and generic learning 
methods. Patch-based methods [2, 3, 4] partition each sample 
in the gallery set (i.e., training set) into multiple image patch­
es, then perform feature extraction and recognition based on 
these local patches. For generic learning methods, they usual­
ly introduce an auxiliary generic set to provide new and use­
ful information. Typically, Deng et al. [5] proposed a super­
posed sparse representation classification (SSRC)-based P+V 
model provided that a query face equals its prototype plus 
the intra-personal variation. In the P+V model, each proto­
type is directly approximated by the gallery sample since it is 
assumed to be standard and variation-free under the assump­
tion. In other words, the P+V model is actually implemented 
as the gallery plus variation (G+V) model. Besides, the vari­
ation dictionary is generated by subtracting the average face 
from generic samples of each person. Based on the P+V/G+V 
model, a variety of generic learning methods [6,7, 8, 9] have 
been proposed recently to address the SSPP FR problem.

These aforementioned methods have achieved promising 
performance for SSPP FR provided that each gallery sam­
ple is a standard face with neutral expression and under u- 
niform lighting (like an ID photo). However, from the practi­
cal viewpoint, the gallery samples can be collected in a less 
constrained environment. For example, for criminal identifi­
cation, the suspects can be illegal immigrants, smugglers, or 
the persons without residence registration. In such cases, the 
gallery samples (i.e., reference photos) of suspects are hard­
ly acquired through standard photograph, but may be provid­
ed by witnesses with unaligned mobile photos or intercept­
ed from the blurred surveillance videos. Therefore, various 
nuisance variations, e.g., expressions, lightings and disguises, 
could exist in gallery samples, thus increasing more difficul­
ty for practical SSPP FR. Such a new and practical issue is 
called SSPP FR with a contaminated gallery (SSPP-CG FR).

In SSPP-CG FR, existing methods will suffer heavy per­
formance degeneration. Particularly for patch-based method-
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s, discriminative learning and feature extraction from local 
patches can be sensitive to the variations in contaminated 
gallery samples [6]. Worse still, some patches may even be 
corrupted and capture meaningless information of persons. 
In contrast, generic learning methods usually perform better 
than patch-based methods because they will introduce useful 
supplementary information from the generic set. Neverthe­
less, the P+V model applied in the existing generic learning 
methods is still not suitable for SSPP-CG FR. The plausible 
reasons are twofold: First, the contaminated gallery samples 
cannot be treated as proper prototypes for the P+V model; 
second, the variation dictionary in the P+V model is simply 
based on the subtraction of average face from generic sam­
ples of the same person. Under the circumstances, the impor­
tant variation details can usually be subtracted, as the average 
face is unable to characterize the neutral image of the person 
well. Therefore, a query sample will be easily misclassified 
as a gallery sample with the similar facial variation in these 
generic learning methods.

To address the above two issues, we propose a novel Itera­
tive Dynamic Generic Learning (IDGL) method for SSPP-CG 
FR. IDGL is based on a new observation that a face sample 
is composed of 1) an invariant low rank part (LRP) character­
izing the neutral prototype of the person, and 2) the corrup­
tions representing the intra-personal variants. Motivated by 
this, IDGL learns proper prototypes for contaminated gallery 
samples by recovering their LRPs through a semi-supervised 
low-rank representation (SSLRR) framework, and learns rep
resentative variation dictionary by extracting the “sample- 
specific” corruptions from the auxiliary generic set. More­
over, to enhance the prototypes, IDGL constructs a dynamic 
label feedback network to update the prototypes iteratively.

As shown in Fig. 1, IDGL includes two learning stages,
i.e., prototype learning via SSLRR and P+V based label esti
mation, and a dynamic label feedback step. In Stage I, with 
the labeled gallery and unlabeled query sets, we propose the 
SSLRR framework to learn proper prototypes to represent the 
persons by recovering the LRP of each gallery sample. In 
Stage II, rather than simply subtracting the average face, we 
introduce a “sample-specific” corruption strategy to learn a 
representative variation dictionary from an auxiliary generic 
set, which avoids the important variation details being sub­
tracted. Then, with the learned prototypes and learned varia­
tion dictionary, we could estimate the labels for query samples 
to further update the prototype learning process. In a dynamic 
updating manner, the estimated query labels are used as the 
feedbacks to modify the label indicator in SSLRR of Stage I, 
so as to update new and better prototypes.

Benefiting from the positive dynamic learning network, 
1) the qualities of the learned prototypes are enhanced be­
cause both linear and non-linear variations are gradually de­
creased and the useful information in the query set is effec­
tively employed; and 2) the accuracy of the estimated labels 
is improved iteratively owing to the constantly enhanced pro-

Stage I Stage II

Feedback: Updating Y

Fig. 1. The flowchart of IDGL, where Xg  and X q  denote the 
labeled gallery and unlabeled query sets, respectively, and Y 
is the label indicator matrix.

totypes. It is worth noting that, after recovering proper pro­
totypes for the contaminated gallery, IDGL can also be ap­
plicable in an inductive scenario for online recognition. That 
is, when a new unlabeled query sample comes, it w ill be di­
rectly fed into the learned prototypes plus learned variation 
dictionary (i.e., learned P + learned V) model for recognition, 
which is prone to real-time face retrieval scenarios.

We highlight the contributions of our work as follows: 1) 
To the best of our knowledge, this work is among the first 
to study the new challenging SSPP-CG FR problem, where 
the gallery set is contaminated by nuisance variations. 2) We 
propose a novel IDGL method by developing a dynamic label 
feedback network, to tackle the SSPP-CG FR problem. 3) We 
present a new “ sample-specific” corruption strategy to learn a 
more representative variation dictionary for the P+V model, 
compared with the existing generic learning methods.

2. THE PROPOSED IDGL METHOD

We first define some basic notations thereinafter. Let X = 
[X g , X q ] =  [xi, • • • ,xm,xm+i, • • • ,xn] € 3idx"  be the sam­
ple set matrix, where XG =  {*i|™ i }  and X q  =  {xj|f=m+1} 
are the labeled gallery set and unlabeled query set, respec­
tively. The labels of labeled samples are denoted as y-i E 

{1,2, • • � , c}, where c is the total number of classes. In 
SSPP FR, each person has only one single sample, thus m 
is initialized as c. The label indicator binary matrix Y = 
[Yi ;Y2;--- ;Y„] 6 Knxc is defined as follows: if  x, has label 
yi =  j ,  Y ij =  1; otherwise, Y,j =  0. The auxiliary generic 
data matrix is defined as A =  [Ai, • • • , As] =  [ai, • • • ,ag] E 

\RdxS (S =  sT), with s persons not of interest and each hav­
ing T  different variations, and A i =  [a^-iyT+i,   • , a^.y]. 
The prototypes and the variation dictionary to be learned in 
our IDGL are denoted as P and V, respectively.

2.1. Stage I: Prototype Learning via SSLRR

In this stage, we aim to learn proper prototypes for contami­
nated gallery samples by extracting their LRPs through low- 
rank representation (LRR). However, in SSPP FR, the gallery 
set only contains single training sample for each person, 
which makes the existing unsupervised LRR-based methods 
fail to work in this case due to the extreme lack of training
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samples. Based on this consideration, we thus introduce the 
unlabeled query set into the SSPP-based gallery, and present 
an SSLRR framework for prototype learning as follows:

n m

min E  I lF* -  F̂ l l2Z« + Ai E  I lF< -  Y« I la
i , j = l  i = l  (J)

+ «||Z||. +^||E||a,i 
s.t. X = XZ + E,

where the first two terms encourage the predicted label matrix 
F e 5?nxc to capture both the label fitness and the manifold 
smoothness on the semi-supervised graph [10]. ||Z||» is the 
nuclear norm of Z to capture the low rank structure of image 
data. E2,i  is the Z2,i norm of E that encourages the columns 
of E to be zero. Ai, a and p are the balanced parameters.

The solution of Eq. (1) can be computed based on the 
linearized alternating direction method with adaptive penalty 
(LADMAP) [11], Specifically, we first introduce an auxiliary 
variable, i.e, S, and convert Eq. (1) to the following problem:

Fmins J2 HF* -  +  Tr((F -  Y)TU(F -  Y))

+ a||Z||,+/?||E||2,1 
s.t. X = XZ + E, Z = S,

(2)

where Tr(.) denotes the trace of a matrix, and U e 5Znx”  is a 
diagonal matrix with the first m and the rest n — m diagonal 
elements as Ai and 0, respectively. Then, we can obtain the 
augmented Lagrangian function of Eq. (2) as follows:

L(Z, F, E, S, A i, A2, /u)
n

=  E I IF* -  f j  I liSij +  Tr((F -  Y)TU(F -  Y)) 
i l ^ i  (3)
+ q ||Z||, + /3||E||2,i  + 0(Z,E,S,A1,A2,m)

-  id lA iH l. + ||A2||!)

where A i, A2 are Lagrange multipliers, (i >  0 is a penalty 
parameter, and Q(Z,E, S, A i, A 2, [i) =  /z/2(||X — XZ — E + 
A i/ / i  |^+| |Z—S+A2/yu| | J,). We then update the variables Z, 
F, E and S alternately, by minimizing L  with other variables 
fixed. With some algebra, the updating rules for Z, F, E and 
S are as follows:

Zk+1 = V ^ ( Z k -VzQ (Zk,~Ek,Sk, A f.A j, fik)/v) (4)

Ffc+1 =(Lfc + U)_1UY (5)

Efc+1 =Q a (X -  XZfe+1 + Ak//j,k) (6)

Sk+1 = argmin £  HF^1 -  F j+1||lSy 
S i,J = 1

+ ^ | |S - ( Z fc+1+ A ^ ' t)|||. (7)

where r) =  ||X|||,, VzQ is the partial differential of Q w.r.t.
Z, i.e., V zQ =  -X T(X -  XZfc -  Efc +  A f / / i fc) +  (Zfc -  Sfc + 
A 2/A*fc). L e » " x"  in Eq. (5) is the graph Laplacian matrix

Input: X  6 SP,X" , Y  6 St"xc,U e  \ i , a , P  >  0
1: Initialization: Z° =  S° =  E° =  F° =  AJ =  A |  =  O; /t° =  0.11, 

pVnax = 10«,p=  1.1, £1 = £2 = 10“ S S 6, tj = ||X |||,fc  = 0
2: while ||X -  X Z k -  E fc||^ / | |X| 1̂  >  a  or ^  m a x ( ^ | |Z fc -  

Z fc- 1||F , ||Ffc -  ||Efe -  ||Sfc -  Sfc- 1||i r) >  e2
do

3: Update Z k+1, F fc+1, E fe+1 and Sk+ i as Eq. (4)-Eq. (7)
4: Update the multipliers A i  and A 2 as follows:

a £+ 1 +- A f  +  Mfc(X -  XZfe+1 -  Efe+1)

A * +1 <— A 2 +  i i k (Zk+1 -  S *^1)

5: Update the parameter ft as follows:
, . fc + l  _ / , , maxfj, — m in { fi , p/x ;

6: Update k :k 4 —k +  l .
7: end while

Output: An optimal solution {F * , Z * , E * , S* }

Algorithm 1 IDGL Stage I: SSLRR

Generic samples Learned variation dictionary

Fig. 2. Illustration of the learned variation dictionary of some 
generic samples from one person on AR database.

and computed as Lfc =  Wfc—Sfc, where W - =  . V  and O
are the singular value thresholding [12] and Z2,i minimization 
operators [13], respectively. Eq. (7) is solved by decomposing 
it into n independent sub-problems with each having a closed- 
form solution

& = Zf+1 + (AS -  H ,) // i\  (8)

where H is a n by n matrix whose values are defined as = 
11 |Ftfc+1 — F*+1 HI, and Sj and H, are the *-th (i =  1, • • • , n) 
columns of matrices S and H, respectively. The algorithm for 
SSLRR is outlined in Algorithm 1. Note that, although it 
is nontrivial to theoretically prove the convergence for Al­
gorithm 1, as the SSLRR involves four iterating variables, 
i.e., {F, Z, E, S}, and the objective function in Eq. (2) is not s- 
mooth, Algorithm 1 can still have good convergence property 
under mild conditions, according to [13, 14],

After obtaining the optimal solution {F*, Z*, E*}, the re­
covered prototype P; for the i-th person in the contaminated 
gallery can be calculated from XZ* w.r.t. the samples predict­
ed as the i-th person.

2.2. Stage II: P+V based Label Estimation

Variation Dictionary Learning: We present a new way to 
learn a representative variation dictionary V from the auxil­
iary generic set A. Different from the existing methods that 
simply treat average face as the neutral image and subtract 
average face from generic samples to generate variations, our
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Algorithm 2 IDGL Method

Input: X  =  [Xg ,X q ] 6 Sfdxr\  Y  6 3ftnxc, U  6 Knxn; 
Al, A2 3 A3, CK, /3, tmax ^ 0 

1: repeat
2: Stage I: Learning prototypes P based on Algorithm 1
3: Stage II: Learning variation dictionary Y  in Eq. (9)-(10)
4: Stage II: Estimating label(X.Q) in Eq. (11)-(12)
5: Updating Y  through label(Xq)
6: until the maximum number of iterations Tmax is reached or Ia6eI(Xg) 

is not changed between two successive iterations 
Output: Estimated labels for the query set, i.e., label(X q )

method models the neutral image by the class-specific low- 
rank part (LRP) and uses the rest part (i.e., sample-specific 
corruptions) as the variations. The LRP is more suitable to 
represent the neutral image than the average face, and enables 
the important variation details not to be subtracted. Specifical­
ly, for each generic subset of the i-th class, i.e., Ai SE 5RdxT, 
we solve the following LRR-based optimization problem:

min ||Lj||, +  A21|V»|la.i, s.t. Ai =  A<L< +  Vi, (9)

where A,Lj describe the LRPs of generic samples for the i- 
th class, while V, model the “sample-specific” corruptions 
that can be treated as the intra-personal variations. Hence, the 
learned variation dictionary Y is formed as

v = [Vi,--- ,vs] e 3tdxS. (10)

Fig. 2 illustrates the learned variation dictionary of some 
generic samples from one person on AR database, where we 
observe that it has intuitive explanations and can well char­
acterize the variations such as expressions, lightings and dis­
guises (sunglasses and scarf).
P+V model: Based on the learned variation dictionary V and 
the learned prototypes P in Stage I, we then perform label es­
timation for the query set, i.e., Xq  =  {x, |"=c+1}. Specifically, 
for each query sample x,, we solve the P+V model based min­
imization problem as follows:

; 
c

d

*
 

*

=  a r g m i n  x ,  —  [ P  V ]
0 I I 2  II 

+  A 3

0

0 , t p  II V . 11 2  II v > . II

where 0 e Kcxl and ip e 3iSxl denote the coefficient vec­
tors of P and V, respectively, A3 is a regularization parameter. 
Eq. (11) is solved via the basis pursuit de-nosing (BPDN)- 
homotopy algorithm [15]. Next, we compute the residual for 
each class k  =  1, • • • , c by

nt(xi) ( 12)

where 5^(0*) is a vector whose nonzero entries are the entries 
in 0 * that are associated with class k. Therefore, the label of 
the query sample x, will be classified into the class with the 
smallest rk(*i), i.e., labelfe) — argminfc rfc(xi).

2.3. Dynamic Label Feedback

After obtaining the estimated labels for the query set, i.e., 
label (Xq ), in Stage II, we then leverage them as the feed­
backs to modify the label indicator matrix Y of the SSLRR in 
Eq. (1), thus updating new prototypes P to facilitate the next 
round of P+V based label estimation. Overall, the complete 
algorithm of IDGL is presented in Algorithm 2.

It is worth noting that, in real-world scenarios, the whole 
query set always cannot be obtained in advance. To mimic 
practical face retrieval applications, we thus first collect a few 
antecedent query samples for batch processing, and use them 
to recover proper prototypes. Subsequently, IDGL can be ex­
tended to an inductive scenario for online recognition. That 
is, when a new query sample comes, it does not need to join 
the dynamic learning network but can be directly fed into the 
learned P + learned V model in Eq. (11)-(12) for label esti­
mation, which is effective and efficient.

3. EXPERIMENTAL RESULTS

3.1. Evaluation of IDGL on SSPP-CG FR

This subsection evaluates the performance of our IDGL for 
SSPP-CG FR on AR [16], E-YaleB [17], FERET [18] and 
CAS-PEAL [19] databases in inductive setting. In this case, 
the unlabeled query set is divided into two equal parts, i.e., 
half of the query samples join the dynamic learning network 
to recover prototypes, while the rest half are used as new 
query samples for recognition. For each tested database, we 
randomly construct 5 gallery sets with the contamination ra­
tios ranging from 10% to 90% with the interval of 40%. The 
partitions of the evaluated and generic subjects on the four 
databases follow the protocol in [4]. We repeat each experi­
ment 5 times, and report the average results.

There exist few methods specifically designed for SSPP- 
CG FR. In the experiments, we choose 5 representative meth­
ods for comparison, including 1 popular patch-based method, 
i.e., DMMA [2], and 4 recent generic learning methods, i.e., 
SSRC [5, 9], SVDL [6], CPL [7], and the state-of-the-art 
S3RC [8], The parameters of these methods are tuned to 
achieve the best results. For our IDGL, Ai, a, ft in Eq. (1), 
A2 in Eq. (9), A3 in Eq. (11), and Tmax are empirically set as
15.1, 2, 0.05, 0.001, and 10, respectively.

Fig. 3 illustrates the learned prototypes for some contam­
inated gallery samples on the four databases. It is clear that 
IDGL can successfully remove various linear variations, es­
pecially for the shadow and disguises (e.g., sunglasses and 
scarf), from these samples. Besides, even facing with the non­
linear variations of expressions such as laugh (see Fig. 3 (a)), 
IDGL has also shown good robustness and acquires appropri­
ate prototypes that can well represent the persons.

Table 1 presents the performance of different methods. We 
can observe that, as the contamination ratio increases, all the 
methods suffer from performance decline to different extents.
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(a) AR (b) E-YaleB

(c) FERET (d) CAS-PEAL

Fig. 3. Some contaminated gallery samples (left) and the 
learned prototypes by IDGL (right) on (a) AR, (b) E-YaleB, 
(c) FERET and (d) CAS-PEAL databases, respectively.

Table 1. Recognition accuracies of different methods for 
SSPP-CG FR on AR, E-YaleB, FERET and CAS-PEAL 
databases, where the contamination ratios are 10%, 50%, and
90%, respectively.

G allery D M M A SSRC S V D L CPL SdRC ID G L

A R
10%
50%

90%

54.9
37.5

25.3

84.9
74.7
68.7

83.1
70.7

62.3

82.9
70.7
64.4

90.9
82.8

75.1

95.0
90.6

86.6

E-YaleB
10%

50%
90%

43.2
33.2

23.3

68.5
62.2

55.7

70.0

61.0 
51.3

63.0 

56.9
49.1

66.7

53.0
42.3

76.6 
71.4

65.7

FERET
10%
50%

90%

44.5
30.9

21.0

70.1
61.6

47.5

69.3

54.9
40.1

62.8
48.6

36.9

72.3 
62.7
55.4

79.9
69.5

63.1

CAS-
P E A L

10%

50%
90%

63.5

59.9
52.1

80.9
74.1
68.1

82.1

74.7
68.3

78.5

70.0
68.7

82.5

73.5 
66.7

88.5

79.7
75.7

However, IDGL consistently outperforms the other generic 
learning methods including S3RC, SVDL and SSRC, and the 
superiority of IDGL has shown to be more significant. For 
example, as the contamination ratio increases from 10% to 
90%, IDGL has a gain over the second best S3RC, from 4.1% 
to 11.5% on AR database. The superiority of IDGL is ow­
ing to its two advantages. The first advantage is the learned 
prototypes that can better represent the persons and narrow 
the gap between a query sample and the gallery sample of the 
same person but with different types of variations. The second 
one is the learned variation dictionary that can provide repre­
sentative intra-personal variations to better reconstruct query 
samples. Besides, the patch-based DMMA is not competitive 
with SSRC, and perform much worse than our IDGL.

3.2. Computational Complexity Analysis

This subsection analyzes the computational complexity of 
IDGL in inductive setting. In this setting, a few query samples 
are collected first to train prototypes followed by the recogni­

Table 2. Recognition accuracies (%) of IDGL using the Light 
CNN and InsightFace features and the other deep learning- 
based methods on LFW database._________

Methods Accuracy (% )

DeepID 70.7
VG G-face 84.7
JCR-ACF 86.0
NN+InsightFace 94.5

N N +L igh tC N N -29 98.3

IDG L+InsightFace 98.1
ID G L+ L igh tC N N -2 9 99.7

tion of new query samples. Let X e Kdxi (l — c +  q) be the 
sample set matrix to be processed, q be the number of query 
samples for training prototypes, k be the rank of X, and r  be 
the number of iterations in Algorithm 1, then the time com­
plexity for Stage I is 0 (r( lk 2+ l3+ l2k)). In Stage II, the time 
complexity of variation dictionary learning in Eq. (9)-(10) is 
0(sd3) [11], and the label estimation in Eq. (11)-(12) requires 
0(Tid2q +  T\d{c +  S)q), where t i is the number of itera­
tions for BPDN-homotopy. Let rmax be the maximum num­
ber of iterations in Algorithm 2, then the time complexity for 
training prototypes is 0(TmaxTl3 +  TmaxT1dq(d +  S) +  sd3) 
(k < l, c -C S). In recognition phase, the time complexity for 
recognizing a new query sample is 0(T\d(d +  S)).

3.3. Evaluation on Deep Learning-based Features

This subsection evaluates the performance of IDGL with deep 
learning-based features under unconstrained environments. 
We first compare our IDGL using the state-of-the-art Light C- 
NN (CNN-29 model) [20] and InsightFace [21] features, i.e., 
IDGL+LightCNN-29 and IDGL+InsightFace, with 3 recent 
deep learning-based methods including DeepID [22], VGG- 
face [23] and joint and collaborative representation with local 
adaptive convolution feature (JCR-ACF) [24], on the uncon­
strained LFW database [25]. For reference, we also present 
the results of the nearest neighbor classier using the two 
deep learning-based features, i.e., NN+LightCNN-29 and N- 
N+InsightFace. We follow the experimental setting in [24] 
and report the recognition accuracies of all the methods. As 
shown in Table 2, NN+LightCNN-29 and NN+InsightFace 
have obtained quite high recognition accuracies of 98.3% and 
94.5%, respectively, on LFW database. But even more sur­
prising is that our IDGL still achieves the highest recognition 
accuracy of 99.7% using the Light CNN feature, which far 
outperforms the other deep learning-based methods.

Furthermore, we introduce two more challenging un­
constrained databases, i.e., CelebA [26] and IJB-C [27], 
to evaluate the performance of IDGL+LightCNN-29 and 
IDGL+InsightFace. We also leverage the NN+LightCNN-29 
and NN+InsightFace as two baseline methods. On CelebA, 
we randomly select 300 persons with 10 images per person 
for testing, where the first 200 persons are used for evaluation 
and the rest 100 ones for generic learning. On IJB-C, we se­
lect 200 videos from 200 persons for testing, where the first
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Table 3. Recognition accuracies (%) of IDGL+LightCNN-29 
and IDGL+InsightFace on the unconstrained CelebA and IJB- 
C databases. The improvements of the two methods w.r.t. their 
corresponding baselines are highlighted in the brackets.

Methods CelebA U B -C

N N +L igh tC N N -29 87.9 70.9
NN+InsightFace 89.0 79.1

ID G L+ L igh tC N N -2 9 93.7 ( t  5.8) 81.8 ( t  10.9)
IDG L+InsightFace 92.6 ( t  3.6) 86.2 ( t  7.1)

half are used for evaluation and the rest half for generic learn­
ing. For CelebA (or IJB-C), we randomly select a sample (or 
frame) of each person (or video) as the gallery sample, and 
select another 9 samples (or frames) for recognition. We re­
peat the experiment 5 times and report the average recognition 
results in Table 3. It is observed that IDGL+LightenCNN- 
29 can further enhance the recognition performance over the 
baseline NN+LightCNN-29 on two databases. The same situ­
ation applies to IDGL+InsightFace and NN+InsightFace. The 
promising results again verifies the feasibility and effective­
ness of combining IDGL with deep learning-based features 
for practical SSPP-CG FR under unconstrained environments.

4. CONCLUSION

This paper has proposed the IDGL method to address the new 
challenging SSPP-CG FR problem. IDGL develops a dynam­
ic label feedback network to update proper prototypes as well 
as to recognize query samples. Besides, IDGL presents a new 
“ sample-specific” corruption strategy to learn the variation 
dictionary from an auxiliary generic set. Moreover, IDGL can 
be further enhanced by combining it with deep learning-based 
features under unconstrained environments. The experiments 
have demonstrated the superiority of IDGL, with significant 
improvements over the state-of-the-art counterparts.
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