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ABSTRACT

Federated learning provides a privacy guarantee for gener-
ating good deep learning models on distributed clients with
different kinds of data. Nevertheless, dealing with non-IID
data is one of the most challenging problems for federated
learning. Researchers have proposed a variety of methods
to eliminate the negative influence of non-IIDness. How-
ever, they only focus on the non-IID data provided that the
universal class distribution is balanced. In many real-world
applications, the universal class distribution is long-tailed,
which causes the model seriously biased. Therefore, this
paper studies the joint problem of non-IID and long-tailed
data in federated learning and proposes a corresponding so-
lution called Federated Ensemble Distillation with Imbalance
Calibration (FEDIC). To deal with non-IID data, FEDIC
uses model ensemble to take advantage of the diversity of
models trained on non-IID data. Then, a new distillation
method with logit adjustment and calibration gating net-
work is proposed to solve the long-tail problem effectively.
We evaluate FEDIC on CIFAR-10-LT, CIFAR-100-LT, and
ImageNet-LT with a highly non-IID experimental setting,
in comparison with the state-of-the-art methods of feder-
ated learning and long-tail learning. Our code is available at
https://github.com/shangxinyi/FEDIC.

Index Terms— Federated learning, Non-IID, Long-tailed
learning, Distillation

1. INTRODUCTION

In recent years, an increasing number of deep learning tech-
niques have been deployed in mobile devices to handle data
from different sources, e.g., cameras, microphones, GPS, and
other sensors. These data play a key role in generating strong
predictive models to provide better services to the users.
However, transmitting user data to the server would bring
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Fig. 1: An example of federated learning application for the
task of gallery tagging on mobile phones. The majority class
in each client is shown in parentheses.

high privacy risks for both the service providers and mobile
users [1]. Recently, federated learning has received increasing
attention due to its capacity for distributed machine learning
with privacy protection [2]. Data privacy is guaranteed by
storing data and training model locally on each client. The
global model on the server is produced by aggregating local
models transmitted from clients without the requirement of
any data from them [3]. However, data heterogeneity is still
a major challenge in federated learning. Since the data in
each client may be drawn from different distributions without
meeting the requirement of IID [4], training on this kind of
data results in poor generalization ability of the global model.

In the literature, a number of methods have been proposed
to deal with non-IID data in federated learning. They can be
roughly categorized into client-side methods and server-side
methods, respectively. The former aims to improve the local
training process. Most of them regularize the local training
process such that the diversity of client models can be limited
[5]. The latter adopts specific model aggregation mechanisms
to alleviate the negative influence of data heterogeneity [6, 7].
Some recent works have adopted knowledge distillation on
the server [8, 9]. The knowledge is transfered from an ensem-
ble model, which is built by local models, to the global model.
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There are also some other methods that focus on optimization
strategy [10, 11] on the server.

Although the abovementioned methods solve the data
non-IIDness problem to some extent, they generally assume
that the universal class distribution is balanced, which may
not be true from a practical perspective. As shown in Fig. 1,
if we consider the overall clients, a few classes like scenery
have a large number of samples, while many classes like pet
or food only take a small portion. Building a classification
model on this kind of distribution is termed long-tail learn-
ing [12], which has been extensively studied in recent years.
Some methods origin from the traditional imbalance learning
[13], where the re-sampling [14] or re-weighing [15] tech-
niques are adopted to alleviate the imbalance influence. The
other methods [16] take advantage of the uniqueness of the
deep learning model and focus on the representation learning.

The existing solutions for non-IID data in federated learn-
ing generally perform poorly on the tail classes due to the lack
of consideration of the universal long-tail distribution. The
global class distribution is long-tailed such that each client
only holds a few tail classes, which makes local models per-
form poorly on the tail classes. Therefore, the global model
aggregated by biased local models is also biased. There are
also some methods specifically designed for federated learn-
ing on imbalanced data. One strategy is to adopt client se-
lection to match complementary clients [17]. However, some
clients may lose the chance to participate in model aggrega-
tion on the server if they cannot be matched with other clients.
Recently, ratio loss [18] has been proposed to estimate the
global imbalance status to help improve local optimization.
However, the performance of ratio loss is dropped as the de-
gree of data non-IIDness increases.

In this paper, we study the problem of federated learning
on non-IID and long-tailed data, and correspondingly propose
an effective server-side method called Federated Ensemble
Distillation with Imbalance Calibration (FEDIC) without
prior knowledge of global class distribution. In FEDIC, the
knowledge distillation technique is adopted on the server
to transfer the knowledge from the ensemble model to the
global model. However, in the long-tailed setting, the en-
semble model may still be biased towards the head classes.
Subsequently, the transferred knowledge may not be helpful.
We therefore propose a novel ensemble calibration method
to eliminate the bias of the ensemble model before conduct-
ing knowledge distillation. Specifically, we first propose a
new logit adjustment to reconstruct the ensemble model from
the perspectives of clients and classes, respectively. Then, a
calibration gating network is proposed to fuse the adjusted
logits based on ensemble representations effectively. The
final ensemble model generalizes well on both head and tail
classes after calibration. The contributions of this paper can
be summarized as follows:

• This paper is a pioneering work in federated learning
to study the joint problems of the data non-IIDness and

long-tail learning.

• We propose a new ensemble calibration method by logit
adjustment and calibration gating network techniques
to effectively make the output of the ensemble model
unbiased.

• We propose an effective server-side federated learning
method FEDIC, which utilizes the knowledge distilla-
tion technique to enhance the robustness of the global
model on both non-IID and long-tailed data.

2. PROPOSED METHOD

In this section, we first describe the problem setting with some
basic notations and then introduce FEDIC for federated learn-
ing on non-IID and long-tailed data.

2.1. Problem Setting
In this paper, the learning scenario is based on a typical feder-
ated learning system with K clients holding potentially non-
IID local datasetsD1,D2, ...,DK , respectively. The goal is to
obtain a global model on the server over the union of all these
datasetsD ,

⋃
k≤K Dk without access to any dataDk on the

k-th client. The setting difference in this paper is that D is
drawn from a long-tailed distribution (X ,Y), Y ∈ {1, ..., C},
which is unknown in advance. The model in federated learn-
ing is typically a neural network φw with parameters w. φw
has two components: 1) a feature extractor fw, mapping each
sample x to a d-dim representation vector; 2) a classifier hw,
typically being a fully-connected layer which outputs logits
to denote class confidence scores. The parameters of client
k’s local model are denoted as wk.

2.2. Proposed Method
FEDIC is a server-side method based on FedAvg [3] with-
out intervening in the local training process on each client.
It is based on an intuitive idea: The ensemble of the local
client models has better generalization ability than the global
model produced by parameter averaging [8]. Since the lo-
cal models are trained on non-IID data, their prediction re-
sults are highly diverse, which is one of the most important
factors that make the ensemble model work better than a sin-
gle model [19]. However, due to model heterogeneity, the
ensemble model cannot be transmitted to the clients for fur-
ther updating. Therefore, it is straightforward to leverage
knowledge distillation [20] to transfer the generalization abil-
ity from the ensemble model to the global model. Then, the
distilled global model is transmitted to each client for further
updating.

Specifically, on the server, we can construct the ensemble
model as the teacher model:

φt(x) =
K∑

k=1

ekφwk
(x), (1)
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Fig. 2: The framework of FEDIC on the server.

where ek is the ensemble weight for client k’s local model.
Then, we can obtain the global model w as the corresponding
student model 1 [3]:

w =

K∑
k=1

|Dk|
|D|

wk, (2)

φs(x) = φw(x). (3)
However, when the universal class distribution is long-tailed,
the generalization ability of the ensemble model on the tail
classes is also poor. As a result,it cannot provide a helpful
guide to the student model on the tail classes. Therefore, we
propose to utilize a small auxiliary datasetDaux on the server,
which is labeled and balanced in order to calibrate the ensem-
ble model against the long-tail distribution. The main reason
of utilizing the auxiliary data is that the global imbalance de-
gree is unknown for both the server and clients, which makes
most of the methods for long-tailed learning are infeasible.
It is worth noting that all auxiliary data is collected indepen-
dently on the server and there is no data transmission or data
sharing in our problem setting. The model architecture of
FEDIC on the server is shown in Fig. 2. In the following, we
will describe two core components of FEDIC in detail.
Ensemble Calibration. Because of training on local data
with different distributions, each local model may perform
differently on the tail classes. It is reasonable to assign a
higher ensemble weight to the local model that performs well
on the tail classes to improve the generalization ability of the
ensemble model. However, the server has no prior knowl-
edge of which classes are the tail classes and which local
model performs well on them. Therefore, instead of giv-

1For better notation representation, we ignore the superscript (t) to denote
the model in the t-th round, which is usually adopted in federated learning
literature.

ing each client a static weight (e.g., 1/K for the common
average ensemble) in the ensemble, we propose the client-
wise logit adjustment that searches proper ensemble weights
ek, k = 1, ...,K by learnable parameters. Given a sample
x ∈ Daux on the server, we first calculate the logits of local
models φwk

(x). The ensemble weights ek are calculated by
a non-linear transform:

ek = sigmoid
(
aTe φwk

(x) + be
)
, (4)

where ae ∈ RC and be is a learnable parameter. ek is then
normalized to make its sum equal to 1. Subsequently, the
weighted logits of the local model can be computed, as shown
in Eq. (1). However, if none of the clients handles the tail
classes well, the weighted ensemble is still biased towards
the head classes. Subsequently, we propose class-wise logit
adjustment to further enhance the logit of the tail classes by
learnable parameters az,bz ∈ RC . They linearly transform
the original weighted ensemble logits φt(x) to calibrated log-
its zcl on each class:

zcl = az � φt(x) + bz, (5)

where � denotes the Hadamard product. Thus, zcl is the cali-
brated logits after client-wise and class-wise logit adjustment.

However, the effectiveness of the premise of logit adjust-
ment is that the features are well extracted. Simply manipu-
lating the logits may not be sufficient if the feature extractors
of local models are severely affected. Therefore, we propose
to update the feature extractor as well to complement logit
adjustment. Specifically, we can obtain a model ŵ by fine-
tuning the global model on Daux. Since Daux is balanced, ŵ
is adjusted to obtain an unbiased feature extractor. Then, we
can obtain the fine-tuned logits zft = φŵ(x) for the input x.
The logits zcl and zft are both adjusted to deal with the long-
tail distribution but they are from different perspectives. That
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Table 1: Top-1 test accuracy (%) for FEDIC and compared FL methods on CIFAR-10/100-LT with different IFs.

CIFAR-10-LT CIFAR-100-LT
Family Method IF=100 IF=50 IF=10 IF=100 IF=50 IF=10

FedAvg 52.12 52.43 59.97 25.81 28.19 38.22
FedAvgM 53.64 54.42 59.52 25.11 28.82 38.77
FedProx 52.75 55.07 60.44 25.43 27.77 38.45FL methods

FedNova 52.93 56.53 61.58 26.81 28.91 39.62

FedDF 50.33 52.58 58.84 25.60 28.79 38.60Distillation-based FL methods FedBE 44.05 50.66 53.53 22.46 23.77 33.53

Fed-Focal Loss 49.66 52.02 59.68 24.66 26.04 35.54
Ratio Loss 54.15 57.77 60.58 26.72 28.83 38.79
FedAvg+cRT 51.74 55.87 61.11 30.73 31.47 39.75
FedAvg+τ -norm 44.38 45.59 48.29 19.59 22.07 30.48

Imbalance-oriented FL methods

FedAvg+LWS 44.48 46.20 55.17 20.70 23.24 32.31

Proposed method FEDIC 63.11 63.82 65.50 33.67 34.74 41.93

is, zcl is produced on the merit of the model ensemble but
with fixed feature extractors, while zft is based on the single
global model, but its feature extractor is fine-tuned on Daux.
Inspired by [21], we propose a calibration gating network to
control the trade-off between zft and zcl, in order to effec-
tively integrate the calibrated and fine-tuned logits and make
them complement each other. The network takes the feature
ensemble as the input through a non-linear layer to output the
weight between zft and zcl, such that each sample obtains a
different weight according to its own feature. The calibration
gating network is formulated as:

σ = sigmoid(uTv), (6)

where v = 1
|S|
∑

k∈S fwk
(x) is the feature ensemble, and

|S| is the number of selected clients in each round. u ∈ Rd

is a learnable parameter. Thus, the final calibrated logits z′

through the calibration gating network is formulated as:
z′ = σzcl +

(
1− σ

)
zft. (7)

The weight σ ∈ (0, 1) acts as a feature-dependent gate to con-
trol the trade-off between zft and zcl. All learnable parame-
ters in the whole process of ensemble calibration are updated
by cross-entropy loss on (x,y) ∼ Daux:

L = −
C∑

j=1

yj log
exp(z′j)∑C
i=1 exp(z

′
k)
. (8)

Ensemble Distillation. To better distill unbiased knowledge
from the teacher model (i.e., the calibrated ensemble model)
to the student model (i.e., the global model), we follow the
work of knowledge distillation with two loss components
[20]: (1) LCE is the cross-entropy loss between logits of the
student model and the ground truth; (2) LKL is the Kullback-
Leibler (KL) divergence of the logits between the teacher
model and the student model. We useDaux to calculate LCE ,
and use another unlabeled dataset Dulb for LKL to boost the
performance of distillation knowledge further. Thus, the loss
is constituted by a trade-off hyperparameter λ ∈ [0, 1]:

LFEDIC = (1− λ)LCE + λLKL. (9)
We set λ = 0.5 in all experiments.

3. EXPERIMENTS

3.1. Experiment Setup
We conduct the experiments on the following datasets:
CIFAR-10/100-LT [22]. We first exclude the auxiliary data
Daux from the training data and then follow [23] to shape
the rest of the data into a long-tail distribution with differ-
ent imbalance factors (IF), which is calculated by the ratio
between the number of samples in the largest class and that
in the smallest class. For the unlabeled dataset Dulb, we use
CIFAR-100 for CIFAR-10-LT, and use the downsampled Im-
ageNet (image size 32) for CIFAR-100-LT.
ImageNet-LT is a long-tailed version of ImageNet [24].
It contains 115.8K images from 1,000 categories, with the
largest and smallest categories containing 1,280 and 5 im-
ages, respectively. We obtain the auxiliary data Daux from
the balanced evaluation data and we use the oversampled
CIFAR100 (image size 224) as Dulb.

We use ResNet-8 for CIFAR-10-LT and CIFAR-100-LT,
and ResNet-50 for ImageNet-LT as the backbone network.
By default, we run 200 global communication rounds, with
20 clients in total and an active user ratio C = 40% in each
round. For local training, the batch size is set at 128 with
learning rate 0.1 and SGD as the optimizer. For server train-
ing, we set the calibration steps I at 100, the distillation steps
J at 100, and Adam with a learning rate 0.001 is used for
knowledge distillation. Following [8], we use Dirichlet dis-
tribution to generate the non-IID data partition among clients
with the concentration parameter α = 0.1.

3.2. Comparison with the State-of-the-art Methods
To verify the effectiveness of FEDIC, we compare the pro-
posed method with the following federated learning (FL)
methods: FedAvg [3], FedAvgM [11], FedProx [5] and Fed-
Nova [10], and distillation-based FL methods, including
FedDF [8] and FedBE [9]. All of them aim at producing a
good global model on non-IID data. Moreover, we also com-
pare the imbalance-oriented FL methods: Fed-Focal Loss
[25], Ratio Loss [18], and FedAvg with post-hoc methods
like cRT , τ -norm and LWS [16].
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Table 2: Top-1 test accuracy (%) for FEDIC and compared
FL methods on ImageNet-LT.

ImageNet-LT
Method All Many Medium Few

FedAvg 23.85 34.92 19.18 7.41
FedAvgM 22.57 33.93 18.55 6.73
FedProx 22.99 34.25 17.06 6.37

FedDF 21.63 31.78 15.52 4.48
Ratio Loss 24.32 36.33 18.14 7.10
FedAvg+LWS 21.58 31.66 15.76 5.33

FEDIC 28.93 38.24 25.28 15.91

Results on CIFAR-10/100-LT. The results are summarized
in Table 1. FEDIC achieves the highest test accuracy on
both datasets with different IFs. Compared with the base-
line FedAvg, the performance gain of FEDIC is the highest
when IF=100 (around 11% for CIFAR-10-LT and 7.8% for
CIFAR-100-LT). It shows the generalization ability of FEDIC
when the universal class distribution is highly long-tailed. Fe-
dAvgM, FedProx and FedNova perform similarly to FedAvg
because they only deal with data non-IIDness without taking
global imbalanced class distribution into account. For the
distillation-based methods, FedDF and FedBE perform even
worse than FedAvg. A plausible reason is that their effec-
tiveness is based on the power of the ensemble model as the
teacher model to transfer knowledge. However, the ensemble
model may perform even worse than the global model on
the tail classes leading to a worse distilled model due to the
global imbalanced distribution. This observation also vali-
dates the necessity of ensemble calibration in FEDIC. For the
imbalance-oriented FL methods, some of them (e.g., Ratio
Loss) perform well in some cases compared with FedAvg.
However, there is still a performance gap compared with
FEDIC because they only alleviate the imbalance problem on
the server but ignore the data non-IID problem.
Results on ImageNet-LT. We evaluate FEDIC on ImageNet-
LT whose results are reported in Table 2. Compared with the
other methods, FEDIC achieves the best results on all cases
we have tried thus far. At the same time, the accuracy on
the few-shot classes achieves 15.91%, which is a significant
improvement of 8.5% in comparison with the baseline.

Table 3: Ablation study on the components of ensemble cali-
bration in FEDIC on CIFAR-10-LT with IF=100.

Module CIFAR-10-LT

FT LA KD All Many Medium Few

(a) 7 7 7 53.59 76.90 50.12 34.90
(b) 3 7 7 61.11 64.30 62.47 56.10
(c) 7 3 7 60.66 66.00 60.93 53.26
(d) 3 3 7 64.77 65.26 64.88 62.55

(e) 7 7 3 53.92 77.20 51.32 34.05
(f) 3 7 3 60.18 64.68 58.04 56.32
(g) 7 3 3 61.71 63.75 63.45 57.94
(h) 3 3 3 63.11 64.90 63.60 60.83

3.3. Model Validation

Ablation study on ensemble calibration. We conduct an
ablation study to evaluate the necessity of each component
of ensemble calibration in FEDIC, as shown in Table 3. We
evaluate three modules: Fine-tune (FT), client-wise and class-
wise logit adjustment (LA) and knowledge distillation (KD).
Note that we do not specifically evaluate the proposed cal-
ibration gating network because it is used only if both FT
and LA are activated. The experiment is done by running
FEDIC to round 200 and evaluating all combinations on that
round. In the upper part (a)-(d) in Table 3, we only evaluate
the performance of the ensemble model without distillation.
Compared with the baseline (a), the overall accuracy of the
calibrated ensemble model (d) is improved by 11.2%. In the
lower part (e)-(h), knowledge distillation is conducted. It can
be observed that the gap of the overall accuracy between the
teacher model (d) and the student model (h) is only 1.7%,
which indicates that the generalization ability to deal with the
long-tail distribution is successfully transferred.
Influence of sizes of auxiliary and unlabeled datasets. The
sizes of Daux and Dulb play a key role in FEDIC. Therefore,
we evaluate its influence on the performance of FEDIC, com-
pared with the baseline FedAvg and a global model fine-tuned
with Daux (marked as FT), as shown in Fig. 3. Different
curves in the figure indicate the data fractions of the unlabeled
data used for distillation. We observe that FEDIC consistently
outperforms FedAvg and FT for all sizes of Daux.
Sensitivity analysis of hyperparameters. We investigate the
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impact of distillation trade-off coefficient λ. This hyperpa-
rameter controls the strength of distillation in the loss func-
tion in Eq. (9). It can be observed from Fig. 4 that FEDIC is
robust to most λ values. However, the performance severely
drops when λ reaches 1, which shows that solely distillation
with unlabeled data is not enough for a good global model.
Influence of the degree of non-IIDness. Fig. 5 further shows
the test accuracy of four methods under the different degrees
of non-IIDness. It can be observed that the performance of all
methods drops as the degree of non-IIDness increases. How-
ever, the performance of the compared methods drops more
severely than FEDIC when α decreases from 1.0 to 0.01.

4. CONCLUSION

In this paper, we have proposed FEDIC to deal with the prob-
lem of learning a global model on non-IID and long-tailed
data in the federated learning framework. FEDIC is a server-
side method that first calibrates the biased ensemble model
against the long-tail distribution by client-wise and class-wise
logit adjustment with a calibration gating network. Then, the
calibrated ensemble is used as the teacher model to trans-
fer knowledge to the global model for further optimization
on the clients. Also, the effectiveness of each component
in FEDIC has been validated empirically. Experiments have
shown that FEDIC outperforms the state-of-the-art FL meth-
ods on datasets with the non-IID and long-tailed setting.
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