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ABSTRACT

Deep neural networks frequently suffer from performance
degradation when the training data is long-tailed because sev-
eral majority classes dominate the training, resulting in a bi-
ased model. Recent studies have made a great effort in solving
this issue by obtaining good representations from data space,
but few of them pay attention to the influence of feature norm
on the predicted results. In this paper, we therefore address
the long-tailed problem from feature space and thereby pro-
pose the feature-balanced loss. Specifically, we encourage
larger feature norms of tail classes by giving them relatively
stronger stimuli. Moreover, the stimuli intensity is gradu-
ally increased in the way of curriculum learning, which im-
proves the generalization of the tail classes, meanwhile main-
taining the performance of the head classes. Extensive ex-
periments on multiple popular long-tailed recognition bench-
marks demonstrate that the feature-balanced loss achieves su-
perior performance gains compared with the state-of-the-art
methods.

Index Terms— Long-tailed recognition, class imbalance
learning, feature-balanced loss, deep neural networks

1. INTRODUCTION

In classification problems, real-world data often exhibits a
long-tailed distribution: a few majority classes have large
amounts of samples, while numerous minority classes are
with only a few samples. This extreme imbalance class distri-
bution leads to the model training dominated by head classes.
As a result, the model performance for tail classes is severely
degraded. Nowadays, it is still challenging to effectively train
a model on long-tailed data in visual recognition tasks.

To address the issue of extreme data imbalance caused by
long-tailed distribution, an intuitive way is to re-balance the
model via class-balanced sampling [1, 2] or loss function re-
weighting [3, 4]. However, these methods result in overfitting
to the tail classes, which invariably inhibits the performance
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Fig. 1. A schematic diagram of the influence of feature norm
on decision margin in embedding space. With the increase of
the feature norm of the tail class samples, the margin becomes
clear and the separability of the samples can be enhanced,
which in turn improves the model generalization towards the
samples.

of the model. Most recently, Cui et al. [5] have proposed to
re-weight the loss function or re-sample the data based on the
“effective number” of each class, which has been shown em-
pirically effective. This “effective number” strategy, on the
other hand, does not truly address the issue of uneven fea-
ture distribution for long-tailed data. Subsequently, Cao et
al. [6] utilized the label-distribution-aware margin (LDAM)
to re-weight the loss, which can improve the generalization
performance of tail classes. Nevertheless, it calculates the
predicted logit through the cosine distance, which neglects
the significant influence of the feature norm.

In this paper, we address the long-tailed problem from a
feature norm perspective and thereby proposing the feature-
balanced loss (FBL). As shown in Fig. 1, it can be seen that
training samples with less feature norm are difficult to clas-
sify because of the unclear margins between each class. The
increase of feature norm can enlarge the margins between
classes and enhance the separability of the samples. Based
on this observation, we add a class-based stimulus to the pre-
dicted logit to encourage larger tail class feature norm to im-
prove its generalization. Different from LDAM that utilizes
hard margins to increase intra-class compactness, our FBL
enlarges decision margin without compressing the embedding
space distribution of each class. Furthermore, we adopt cur-
riculum learning [7] strategy to gradually increase the class-
based stimulus so that the network initially concentrates on
the head classes, and then gradually shifts its attention to the
tail classes as the training progresses. In this way, the clas-
sification accuracy of the tail classes can be improved while
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maintaining the performance of the head classes. We validate
the proposed FBL on five popular benchmark datasets, i.e.,
CIFAT-10-LT, CIFAT-100-LT, ImageNet-LT, iNaturalist 2018
and Places-LT. We also conduct an additional experiment on
feature norm visualization, which demonstrates that feature
norm is one of the key factors for improving the accuracy of
long-tailed data classification.

Our main contributions are summarized as follows:

• We propose the novel FBL for long-tailed visual recogni-
tion by adding an extra classes-based stimulus to the logit.
The proposed FBL encourages larger feature norms for tail
classes, thereby improving the generalization performance
of these classes.

• We propose to gradually increase the intensity of stimu-
lus in the way of curriculum learning. This robust training
strategy not only enhances the classification accuracy of tail
classes to a large extent, but also maintains the performance
of head classes.

• We conduct extensive experiments on commonly used
long-tailed datasets, which demonstrates the superiority of
the proposed method in comparison with the state-of-the-
art methods.

2. RELATED WORK

Long-tailed visual recognition has received increasing atten-
tion in computer vision because of the prevalence of data im-
balance in the real world. This section will make an overview
of the most related works.

2.1. Loss Modification

Loss modification aims to re-balance the importance of dif-
ferent classes by tuning the loss values. It addresses the class
imbalance problem from two perspectives: sample-wise and
class-wise. Sample-wise methods [8, 9] assign large relative
weights to the difficult samples through the fine-grained pa-
rameters in the loss. For example, focal loss [9] utilizes the
sample prediction hardness as the re-weighting coefficient of
the loss function. However, the classification difficulty of a
sample may not be directly related to its corresponding class
size. Hence, the sample-wise method is incapable of han-
dling the large-scale and severe imbalance data. Class-wise
methods [4, 5, 10] assign the loss function with class-specific
parameters that are negatively correlated to the label frequen-
cies. For example, Cui et al. [5] proposed to re-weight the
loss function by the “effective number” of each class instead
of label frequency. Nevertheless, it does not completely alle-
viate the problem of biased feature distribution.

2.2. Logit Adjustment

Logit adjustment addresses the class imbalance problem by
calibrating the logit to the prior during inference or train-
ing. Typically, a number of approaches adjust the loss dur-
ing training. Most recently, Cao et al. [6] have proposed
label-distribution-aware margin accompanied with the de-
ferred scheme (LDAM-DRW), which enforces tail classes to
have large relative margins to increase their classification ac-
curacy. Furthermore, DisAlign [11] adaptively aligns the logit
to a balanced class distribution to adjust the biased decision
boundary, which can re-balance the classifier well. Besides,
another kind of method post-hoc shifts the predicted logits.
For example, Menon et al. [12] proposed logit adjustment
(LA) to post-process the logit based on the label frequencies
of training data. In contrast, Hong et al. [13] proposed LADE,
which post-adjusts logits with the label frequencies of testing
data, allowing the distribution of the test set to be arbitrary.

3. PROPOSED METHOD

To mitigate the training bias towards the head classes caused
by long-tailed data, we propose the FBL as a more pow-
erful supervised signal for optimizing deep neural networks
(DNNs).

3.1. Analysis of Softmax Loss Function in Classification

Given a training sample x with the label y from the training
set T with total C classes and N training samples. We use f ∈
RD to represent the feature of x obtained from the embedding
layer with dimension D. W = {w1,w2, · · · ,wC} ∈ RD×C

represents the weight matrix of the classifier, where wi rep-
resents the weight vector of class i in the classifier. The pre-
dicted logit of class i is represented by zi, thus, zi = wT

i f .
We use the subscript y to represent the target class. That is, zy
indicates the target logit and zi (i ̸= y) is the non-target logit.
The original softmax loss function for the given sample x is:

Lsoftmax(x) = − log
ezy∑
j e

zj
. (1)

The gradient of Lsoftmax w.r.t. zi is:

∂Lsoftmax

∂zi
=

{
pi − 1, i = y
pi, i ̸= y

, (2)

where pi = ezi∑
j ezj

. In backward propagation, the gradients
of the target class are negative, and those of the non-target
classes are positive. Thus, the training samples punish the
non-target class weights wi (i ̸= y) by pi. The weights of tail
classes which have fewer training instances always receive
punishment signals. As a result, the weight norm of the clas-
sifier for tail classes is always reduced. Therefore, we obtain
the following properties:
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Property 1. The weight norm ∥wi∥ of the classifier for class
i is correlated with the class size ni.

In addition, we introduce additional property of softmax
loss that was found by Yuan et al. [14]:
Property 2. By fixing the weight vector and direction of fea-
ture vectors, softmax loss is a function that monotonically de-
creases with the increasing of feature L2-norm when features
are correctly classified.

Property 1 indicates that the target logit zy = wT
y f of

tail class is usually suppressed because of the relatively small
wT

y . Meanwhile, Property 2 shows that feature norm is an
important factor to achieve a lower loss, so that the features
can be more separable. To improve the performance on tail
classes, we can encourage larger feature norm for tail classes
to diminish the bias towards the head classes.

3.2. FBL with Curriculum Learning

To stimulate the large feature norm, we can add an additional
constraint item to the original cross-entropy loss:

L′ = − log
ezy∑
i e

zi
+ α

λy

∥f∥
, (3)

where α is the parameter used to adjust the strength of the
constraint, and λy controls the stimulus intensity towards dif-
ferent classes. Since Property 1 in Sec. 3.1 states that the
weight norm of classifier for tail classes is usually suppressed,
the logits of tail classes will be unfairly reduced. To diminish
this bias, we can encourage large feature norms for tail classes
and thus assign them stronger stimulation. Therefore, λy is
negatively correlated with the number of samples in class y.

For the sake of analysis of the loss function, we rewrite
Eq. (3) as:

L′ = − log ezy∑
j ezj

+ log e
λy
∥f∥

= − log e
zy−

λy
∥f∥∑

j ezj

= − log py

, (4)

where py = e
zy−

λy
∥f∥∑

j ezj
. As the sum of the probabilities of all

classes obtained by Eq. (4) is not equal to 1, i.e.,
∑C

y=1 py ̸=
1, we further modify the logit to ensure that the total pre-
dicted probabilities of all classes are equal to 1. The feature-
balanced logit zbj of class j is introduced and is expressed as:

zbj = zj − α
λj

∥f∥
. (5)

In addition, λj controls the intensity of the stimulus, which
should be weak for head classes and strong for tail classes.
Subsequently, we set λj at:

λj = log nmax − log nj , (6)

Algorithm 1: FBL with curriculum learning
Input: Training dataset S
Output: Predicted labels

1 Initialize the DNN model ϕ((x, y); θ) randomly,
where θ is the parameter of the model;

2 for t = 1 to T do
3 Sample mini-batch training samples B from the

long-tailed data S with batch size of b;
4 Obtain the constraint strength parameter α:

α← α(t);
5 Obtain the stimulus intensity parameter λj :

λj ← log nmax − log nj ;
6 Calculate the loss by Eq. (8):

L((x, y); θ) = 1
b

∑
(x,y)∈B LFBL(x, y);

7 Update model parameters:
θ ← θ − α′∇θL((x, y); θ);

8 end

so that it is zero for the most frequent class and is much
stronger for tail classes.

Furthermore, the stronger the constraint on feature (i.e.,
λj

∥f∥ ) is, the more the model focuses on the tail classes. We
can adopt the idea of curriculum learning [7], which makes
the model initially focus on easy samples (i.e., head classes),
and then gradually shift to learning difficult samples (i.e., tail
classes). To achieve this, we can choose the learning strategy
that gradually increases α as the training progresses. There-
fore, we replace α by α(t) which is related to the training
epoch t. We empirically select the parabolic increase learn-
ing strategy, which is expressed as:

α(t) ∝ (
t

T
)2, (7)

where t is the training epoch and T is the total number of
epochs. Sec. 4.5 also provides experimental results for differ-
ent learning strategies.

The final loss function LFBL is expressed as:

LFBL = − 1

N

∑
i

log
ez

b
yi∑

j e
zb
j

. (8)

This loss function is named as FBL–feature-balanced loss, be-
cause it balances the logit of different classes based on feature
norm. The algorithm of our proposed method is summarized
in Algorithm 1.

4. EXPERIMENTS

4.1. Datasets

To demonstrate the effectiveness of our proposed FBL, we
conduct the experiments on five benchmark datasets with the
various scales.
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Table 1. An Overview of Long-Tailed Datasets
Dataset CIFAR-10-LT CIFAR-100-LT ImageNet-LT Places-LT iNat 2018

# Classes 10 100 1,000 365 8,142
IF 100 50 100 50 256 996 500

# Train. img. 12,406 13,996 10,847 12,608 115,846 62,500 437,513
Tail class size 50 100 5 10 5 5 2

Head class size 5,000 5,000 500 500 1,280 4,980 1,000
# Val. img. - - - - 20,000 7,300 24,426
# Test img. 10,000 10,000 10,000 10,000 50,000 36,500 -

CIFAR-10/100-LT [6] down-samples the original balanced
version of CIFAR-10/100 [15] per class by an imbalanced fac-
tor IF = Nmax

Nmin
(where Nmax and Nmin are the numbers of

training samples in the most and the least frequent classes, re-
spectively). CIFAR-10-LT and CIFAR-100-LT have two typ-
ical variants, namely, with IF = {100, 50}.
ImageNet-LT [16] is a large-scale long-tailed dataset for
object classification through sampling a subset following
the Pareto distribution with the power value α = 6 from
ImageNet-2012 [17]. It includes 115.8K images with the
class size ranging from 5 to 1,280, imitating the long-tailed
distribution that regularly existed in the real world.
Places-LT is a long-tailed version of the large-scale scene
classification dataset Places-365 [18]. There are 184.5K im-
ages with class sizes ranging from 5 to 4,980. Moreover, the
gap between the sizes of tail and head classes of this dataset
is larger than that of ImageNet-LT.
iNaturalist 2018 (iNat 2018) is the iNaturalist species classi-
fication and detection dataset [19], which is a massive real-
world long-tailed dataset. In its 2018 version, iNaturalist
comprises 437,513 training images from 8,142 classes. In the
light of different classes, the numbers of the training samples
follow an exponential decay.

Table 1 summarizes the details of the above datasets.

4.2. Implementation Details

We use Pytorch to implement and train all the backbones with
stochastic gradient descent with momentum.
Backbone. Following the protocol of Cui et al. [5], ResNet-
32 is adopted as the backbone for all CIFAR-10/100-LT
datasets. For ImageNet-LT and iNat 2018, ResNet-50 is ap-
plied. For Places-LT, we follow Liu et al. [16] and start from
a ResNet-152 pre-trained on the original balanced version
of ImageNet. Except for ResNet-152, all the backbones are
trained from scratch.
Training details. For CIFAR-10/100-LT, we train the back-
bone with 200 epochs and batch size of 64. The initial learn-
ing rate (lr) is set at 0.1, and we anneal lr by 100 at the 160-
th and 180-th epoch, respectively. For the three large-scale
datasets, backbone is trained with 180 epochs, batch size of
512, and initial lr = 0.2. We divide lr by 10 at 120-th and
160-th epochs.

Table 2. Comparison results on CIFAR-10/100-LT. Top-1
accuracy (%) are reported. The best results are shown in
underline bold.

Dataset CIFAR-10-LT CIFAR-100-LT
Backbone Net ResNet-32

IF 100 50 100 50
CE loss (baseline) 71.07 75.31 39.43 44.20

LDAM-DRW [6] (NeurIPS 2019) 77.03 81.03 42.04 47.62
BBN [20] (CVPR 2020) 79.82 81.18 42.56 47.02

LA [12](ICLR 2021) 80.92 - 43.89 -
FBL (ours) 82.46 84.30 45.22 50.65

Table 3. Comparison results on ImageNet-LT, iNaturalist
2018 and Places-LT. Top-1 accuracy (%) are reported. The
best results are shown in underline bold.

Dataset ImageNet-LT iNat 2018 Places-LT
Backbone Net ResNet-50 ResNet-50 ResNet-152

CE loss (baseline) 44.51 63.80 27.13
LDAM-DRW [6] (NeurIPS 2019) 48.80 68.00 -

Decoupling [2] (ICLR 2020) 47.70 69.49 37.62
LA [12] (ICLR 2021) 50.44 66.36 -

FBL (ours) 50.70 69.90 38.66

4.3. Comparison Methods

The vanilla training with cross-entropy (CE) loss is chosen as
the baseline method. We compare the proposed method with
the state-of-the-art ones, i.e., the logit modification methods
including: LDAM-DRW [6] and LA [12], the most recently
proposed two-stage method–BBN [20] on the small-scale
datasets (CIFAR-10/100-LT) and decoupling on the large-
scale datasets (imageNet-LT, iNat 2018 and Places-LT).

4.4. Long-Tailed Recognition Results

Results on CIFAR-10/100-LT. We conduct the comparison
experiments on CIFAR-10/100-LT with IF = {100, 50}. Ta-
ble 2 summarizes the top-1 accuracy. Our FBL outperforms
the other competing methods by noticeable margins across all
the datasets. For example, FBL outperforms the state-of-the-
art method – LA by 1.54% and 1.33% with IF = 100 on
CIFAR-10-LT and CIFAR-100-LT, respectively.
Results on large-scale datasets. FBL yields good perfor-
mance on all large-scale datasets, which is consistent with
that CIFAR-10/100-LT. Table 3 shows the comparison results.
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Fig. 2. Top: The changes of feature norm on head classes (class index-{0, 1}) and tail classes (class index-{8, 9}) with respect
to training epochs (left) and the feature norm distribution of classes over test dataset (right) on CIFAR-10 with IF = 100 (a)
and 50 (b). Bottom: The changes of feature norm on head classes (class index-{9, 19}) and tail classes (class index-{79, 89})
with respect to training epochs (left) and the feature norm distribution of classes over test dataset (right) on CIFAR-100 with
IF = 100 (c) and 50 (d).

Table 4. Ablation experiment of different learning strategy
on CIFAR-10-LT with IF = 100.

α(t) Representation Acc.(%)
Linear decrease 1− t/T 75.97
Linear increase t/T 81.67
Sine increase sin(t/T · π/2) 81.22

Cosine increase 1− cos(t/T · π/2) 80.79
Parabolic increase (t/T )2 82.46

The proposed FBL that can be trained end-to-end not only
achieves better results than LA, but also is superior to the
two-stage method, i.e., LDAM-DRW and decoupling. For ex-
ample, on ImageNet-LT, FBL outperforms LDAM-DRW and
decoupling by 1.90% and 3.00%, respectively.

4.5. Ablation Study

We conduct an ablation study to investigate the effectiveness
of different learning strategies adopted by α(t). Table 4 sum-
marizes their performance. It can be seen that the classifica-
tion accuracy of the linear decrease strategy is 75.97%, which
is only higher than that of the baseline method (71.07%).
It is not as competitive as other learning strategies, because
it makes the DNN model focus on hard samples (i.e., tail
classes) first. As the training progresses, the network grad-
ually forgets what it has previously learned. Therefore, there
is basically no improvement in the performance of the tail
classes. Other strategies that increase α with the training
epoch t gradually shift the network’s attention from the head
classes to the tail, which can avoid forgetting the tail classes
and improve the overall performance.

Table 5. Per-class accuracy (%) of test set on CIFAR-10-LT.
Class index 0 1 2 3 4 5 6 7 8 9

IF 100
CE loss 91.0 98.2 83.2 72.5 78.8 65.1 68.8 59.5 49.0 44.6

FBL 88.1 94.7 81.9 73.0 83.6 75.1 86.3 77.3 82.7 81.9
IF 50

CE loss 84.5 95.8 68.5 74.6 81.1 72.7 82.9 67,5 59.1 66.4
FBL 83.7 92.1 81.7 73.9 85.0 76.1 87.7 85.0 88.5 89.3

Table 6. Per-class accuracy (%) of test set on CIFAR-100-LT.
Class index 0 9 19 29 · · · 69 79 89 99

IF 100
CE loss 89.0 72.0 59.0 48.0 · · · 45.0 12.0 3.0 2.0

FBL 86.0 77.0 54.0 45.0 · · · 60.0 27.0 22.0 8.0
IF 50

CE loss 88.0 79.0 53.0 49.0 · · · 53.0 10.0 19.0 13.0
FBL 87.0 77.0 56.0 57.0 · · · 62.0 48.0 38.0 17.0

4.6. Feature-balanced Results

To further validate the effects of the proposed FBL, especially
the tail classes, we visualize the changes of the feature norm
(i.e., ∥f∥) with respect to training epochs and feature norm
distribution of classes over the test set on CIFAR-10/100-LT.
The results are shown in Fig. 2. The corresponding per-class
accuracy is presented in Table 5 and 6, respectively. The fol-
lowing phenomena can be seen:

• The capability of the model to learn from different classes
of samples is diverse. Specifically, in Fig. 2 (a) and (b), the
feature norms of head classes samples (class index-{0, 1})
reach stable in very early training epochs due to enough
training samples. Differently, on CIFAR-100-LT (as shown
in Fig. 2 (c) and (d)), the feature norms of the samples
from all classes including head (class index-{9, 19}) and
tail classes (class index-{79, 89}) are constantly changing
as the epoch increases, which have a similar phenomenon
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to the tail classes in CIFAR-10-LT (class index-{8, 9} in
Fig. 2 (a) and (b)) because they all suffer from insufficient
training samples.

• Compared with CE loss, our FBL encourages larger fea-
ture norms of tail class samples to eliminate representation
bias towards head classes. The area (S∗

area(class index))
enclosed by the curve of CE loss and FBL becomes larger
as the number of class samples decreases, e.g. Stail

area(9) >
Stail
area(8) > Shead

area (1) > Shead
area (0) in Fig. 2 (a), which is in

line with our motivation.

These observations not only justify our intuition about the in-
fluence of feature norm on decision margin, but also offer a
new promising way to investigate long-tailed visual recogni-
tion.

5. CONCLUSIONS

In this work, we have proposed a novel FBL to address the
long-tailed classification from feature space. FBL encour-
ages larger feature norms of tail classes by adding relatively
stronger stimuli to the logits of tail classes, which can miti-
gate the representation bias towards head classes in the feature
space. In addition, a curriculum learning strategy has been
adopted to gradually increase the stimuli in training, which
can keep the good accuracy of the model for the head classes
and improve the performance of the tail classes. FBL allows
DNNs to be trained end-to-end without the risk of a perfor-
mance drop from head classes. Extensive experiments have
demonstrated the superiority of the proposed FBL.
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