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ABSTRACT

Media interestingness prediction plays an important role in
many real-world applications and attracts much research at-
tention recently. In this paper, we aim to investigate this
problem from the perspective of supervised feature extraction.
Specifically, we design a novel algorithm dubbed Multi-view
Manifold Learning (M2L) to uncover the latent factors that
are capable of distinguishing interesting media data from
non-interesting ones. By modelling both geometry preserv-
ing criterion and discrimination maximization criterion in a
unified framework, M2L learns a common subspace for data
from multiple views. The analytical solution of M2L is ob-
tained by solving a generalized eigen-decomposition problem.
Experiments on the Predicting Media Interestingness Dataset
validate the effectiveness of the proposed method.
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1 INTRODUCTION

Media interestingness analysis, which aims to automatically
analyze media data and identify the content which is consid-
ered to be interesting for the users, plays an important role in
many real-world applications such as image/video retrieval,
summarization, and recommendation [3, 11, 16, 19, 39, 46].

With the rapid development of computing resources, com-
putational explorations on media interestingness analysis
have received much attention recently. So far, the investiga-
tions have primarily focused on images and videos, for the
vast amount of rich information these two types of media
could provide. Dhar et al. utilized high-level image features,
i.e., compositional attributes, content attributes, and sky-
illumination attributes, to predict the interestingness of Flickr
photos [9]. Gygli et al. presented a computational model that
predicts the interestingness of images by measuring three
important cues: unusualness, aesthetics, and general prefer-
ences [13]. Grabner et al. generated four different cues, i.e.,
emotion, complexity, novelty, and learning, from the low-level
features, and constructed the interestingness predictor based
on the combination of these cues [12]. Liu et al. introduced a
method to measure the frame interestingness of a travel video
by comparing the SIFT features of the frame with those of
the web photos [23]. Jiang et al. conducted a pilot study to
understand the human perception on video interestingness,
and used a computational model to predict the interesting-
ness of videos [16]. Soleymani validated that the intrinsic
pleasantness, arousal, visual quality, and coping potential are
important factors contributing to visual interest in digital
photos and developed a system to detect these attributes
from low-level features [39]. In a recently organized Predict-
ing Media Interestingness Task [8], various computational
models have been utilized to predict the interestingness of
given images and videos [6, 22, 35, 37, 41, 44].

Although tremendous strides forward have already been
made in analyzing and predicting media interestingness, most
of the computational models still utilize manually selected
or pre-defined features, which are somewhat subjective and
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might lose important structural and discriminant information.
In order to automatically learn the useful and informative fea-
tures for media interestingness prediction, we formulate the
task as a supervised feature extraction problem and propose
to utilize manifold learning to solve it, since the distributions
of many kinds of media data, such as images and videos,
match the manifold assumption very well [32, 34], which
makes manifold learning being an appropriate tool for media
data analysis. Moreover, the media data can often be charac-
terized by features from multiple views [10, 18]. For instance,
images or video frames could be taken from different angles
or described by various kinds of visual features such as HoG,
SIFT, GIST, etc. In order to explore multi-view media data
under the manifold learning framework, we propose a novel
algorithm dubbed Multi-view Manifold Learning (M2L) to
uncover the latent factors that distinguish interesting me-
dia data from non-interesting ones. The proposed method
aims to preserve both the geometric structure and the inter-
estingness information of the original dataset by mapping
the multi-view data to a common subspace, in which the
cross-view correlation is taken into consideration.

The rest of the paper is organized as follows. In Section
2, we briefly review some representative works on manifold
learning for multimedia data analysis and multi-view dimen-
sionality reduction. The details of the proposed method,
M2L, is presented in Section 3. In Section 4, we evaluate the
performance of M2L on the Predicting Media Interestingness
Dataset [8]. The paper is concluded in Section 5.

2 RELATED WORKS

2.1 Manifold Learning for Multimedia
Data Analysis

Manifold learning, which uncovers the intrinsic structure of
data based on the assumption that the original observations
lie on or close to the low-dimensional nonlinear manifold, has
received much attention in the past two decades. The most
representative manifold learning algorithms include isomet-
ric feature mapping (Isomap) [40], locally linear embedding
(LLE) [36], and Laplacian eigenmaps (LE) [2]. Isomap is a
global method, which aims to preserve the geometry at all
scales by mapping the nearby data points on the manifold to
nearby points in the low-dimensional space and the faraway
points to faraway points. In contrast with Isomap, LLE and
LE are local methods, which assume that the global struc-
ture can be uncovered by keeping all the local structures
of the dataset, and thus only attempt to preserve the local
geometry.

As the manifold assumption matches the distribution of
multimedia data very well, manifold learning has played an
important role in various applications of multimedia data
analysis. Pless explored the video representation via Isomap
[32]. Rahimi et al. investigated the appearance manifolds
from video by exploiting the temporal coherence between
frames and supervision from a user [34]. Yang et al. learned
the hierarchical manifolds for multimedia document semantic-
s understanding and cross-media retrieval [45]. Almeida et al.

addressed the problem of video genre retrieval via reciprocal
kNN graph based manifold learning [1, 31]. Shnitzer et al.
applied a manifold learning technique, diffusion maps [5], to
music analysis applications [38]. In our previous work, we
proposed the hybrid manifold embedding for image classifica-
tion [25]. Recently, we utilized supervised manifold regression
to learn the compact representations of image/video data for
media interestingness prediction [24].

2.2 Multi-view Dimensionality Reduction

Multi-view dimensionality reduction aims to find a common
subspace for multiple views, where the cross-view correlation
is preserved. The most classical method for multi-view dimen-
sionality reduction is canonical correlation analysis (CCA),
which aims to find the subspace where the correlations of
data from two different views are maximized [15]. In [28],
CCA was extended for multi-view scenarios. Luo et al. fur-
ther proposed the tensor CCA for multi-view dimensionality
reduction [27]. Zhang et al. presented a multi-view dimen-
sionality co-reduction to explore the correlations within each
view and maximize the dependence among different views
[47].

Following the success of unsupervised multi-view dimen-
sionality reduction, semi-supervised and supervised dimen-
sionality reduction has been generalized for multi-view learn-
ing as well. Qian et al. introduced a semi-supervised multi-
label multi-view dimensionality reduction framework based
on reconstruction error minimization [33]. Wang et al. pro-
posed a deep learning based multi-view dimensionality re-
duction scheme [42]. Kan et al. extended the classical linear
discriminant analysis to the multi-view version [18].

Besides above general-purpose multi-view dimensionality
reduction models, some methods have been presented for
more specific applications in media data analysis. Li et al.
studied the cross-view similarity search problem by mapping
multiple views into a common Hamming space [21]. Farfade
et al. modelled the problem of multi-view face detection using
deep convolutional neural networks [10]. Jing et al. addressed
the problem of web page classification using a semi-supervised
intra-view and inter-view dimensionality reduction algorithm
[17]. Zhu et al. proposed a block-row sparse multi-view
multi-label learning method for image classification [48].

3 MULTI-VIEW MANIFOLD
LEARNING

3.1 Problem Formulation

Let X be the set of data samples from V views: X =
{(x11,x12, ...,x1V ), (x21,x22, ...,x2V ), ..., (xn1,xn2, ...,xnV )},
where xiv ∈ RDv (i = 1, ..., n, v = 1, ..., V ) denotes the i-th
sample from the v-th view, n denotes the number of data
samples in the set, V denotes the number of views, and
Dv denotes the original dimension of the v-th view. To
represent the data from different views, we define V data
matrices: X1 = [x11,x21, ...,xn1], X2 = [x12,x22, ...,xn2],
..., and XV = [x1V ,x2V , ...,xnV ]. Meanwhile, we have
the corresponding label of each of the n data samples:
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l = [l1, l2, ..., ln], where li ∈ [0, 1] is a real number denoting
the corresponding label of the i-th data sample, 1 for
extremely interesting and 0 for extremely non-interesting.

Given the above training set, Multi-view Manifold Learning
(M2L) aims to learn V transformation matrices Wv ∈ RDv×d

(d � Dv, v = 1, ..., V ), which are capable of projecting the
original high-dimensional data from different views to a com-
mon subspace Z = Rd, where the manifold structure of
the dataset could be well preserved, and the discriminant
information could be maximized.

3.2 Geometry Preserving Criteria

In order to preserve the geometric structure of the dataset,
we take both locality and globality into consideration. To
describe the local structure for each view, we define a neigh-
borhood graph matrix Nv for the v-th view (v = 1, ..., V ).
The element on the i-th row and the j-th column of Nv is
given as follows:

Nv
ij = e−

||xiv−xjv||
2

2σ , (1)

where the bandwidth σ is empirically set by σ =
∑n

i=1 ||xiv−
xivK ||

2/n with xivK being the K-th nearest neighbor of xiv.
Accordingly, we construct the locality scatter matrix Slv for
the v-th view:

Slv =

n∑
i=1

n∑
j=1

Nv
ij(xiv − xjv)(xiv − xjv)T . (2)

We then introduce the objective:

{W1, ...,WV } = arg min
W1,...,WV

tr
( V∑

v=1

WT
v SlvWv

)
, (3)

where tr(·) denotes the trace operation. By minimizing the
objective function in Eq. (3), the nearby data points in the
original space of each view will also be close to each other
in the common subspace, and thus the local structure is
expected to be well captured.

To represent the global structure of each view, we construct
the globality scatter matrix Sgv:

Sgv =

n∑
i=1

n∑
j=1

(1−Nv
ij)(xiv − xjv)(xiv − xjv)T . (4)

It is obvious that the larger the distance between xiv and
xjv, the smaller the Nv

ij , hence, the larger the (1−Nv
ij). This

fact indicates that Sgv pays more attention to the relation-
ship between faraway data points, which characterizes the
structure of the v-th view from the global perspective. We
then introduce the following objective:

{W1, ...,WV } = arg max
W1,...,WV

tr
( V∑

v=1

WT
v SgvWv

)
. (5)

By maximizing the objective function in Eq. (5), the distant
data points in the original space are still faraway from each
other in the common subspace, and thus the global structure
of the dataset is preserved.

3.3 Discrimination Maximizing Criteria

The idea behind the discriminant information maximization
is straightforward: if two data points (no matter within the
same view or from different views) possess similar interesting-
ness levels, they should be close to each other in the learned
subspace; otherwise, they should be faraway from each other.
The more similar the interestingness levels, the closer the
low-dimensional data points should be.

In order to describe the similarity between interestingness
levels of different data samples, we define the label similarity
matrix A, where the element on the i-th row and the j-th
column of A is given as follows:

Aij = 1− |li − lj | ∈ [0, 1]. (6)

Note that the representations of different views of the same
data sample share the same label.

We then propose the following objective:

{W1, ...,WV } = arg min
W1,...,WV

tr
( V∑

u=1

V∑
v=1

n∑
i=1

n∑
j=1

Aij(W
T
uxiu

−WT
v xjv)(WT

uxiu −WT
v xjv)T

)
.

(7)

By minimizing the objective function in Eq. (7), the data
samples with similar or even the same interestingness levels
will be close to each other in the learned common subspace,
and thus the label similarity is well maintained.

To characterize the dissimilarity between data points, we
define the discriminant matrix B, where the element on the
i-th row and the j-th column of B is given as follows:

Bij = 1−Aij = |li − lj | ∈ [0, 1]. (8)

Then we present the following objective:

{W1, ...,WV } = arg max
W1,...,WV

tr
( V∑

u=1

V∑
v=1

n∑
i=1

n∑
j=1

Bij(W
T
uxiu

−WT
v xjv)(WT

uxiu −WT
v xjv)T

)
.

(9)

By maximizing the objective function in Eq. (9), the data
samples with different labels are expected to be faraway
from each other in the learned common space, and thus the
discriminant information can be well preserved.

3.4 Objective Function of M2L

In order to preserve the geometric structure while maximizing
the discriminant information, we integrate aforementioned
four objectives (Eqs. (3), (5), (7), and (9)) into a unified
formulation in Eq. (10), where α ∈ [0, 1] is a trade-off pa-
rameter to balance the weight of geometry information and
that of discriminant information in the proposed learning
framework.
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{W1, ...,WV } = arg max
W1,...,WV

WT
v Wv=Id

v=1,...,V

tr

(α V∑
v=1

WT
v SgvWv + (1− α)

V∑
u=1

V∑
v=1

n∑
i=1

n∑
j=1

Bij(W
T
uxiu −WT

v xjv)(WT
uxiu −WT

v xjv)T

α

V∑
v=1

WT
v SlvWv + (1− α)

V∑
u=1

V∑
v=1

n∑
i=1

n∑
j=1

Aij(W
T
uxiu −WT

v xjv)(WT
uxiu −WT

v xjv)T

)

(10)

3.5 Analytical Solution of M2L

Actually, Eq. (10) could be rewritten as follows:

W = arg max
W

WTW=Id

tr

(
WT

(
αSg + (1− α)QB

)
W

WT
(
αSl + (1− α)QA

)
W

)
, (11)

where W = [WT
1 ,W

T
2 , . . . ,W

T
V ]T , Sg =

diag(Sg1,Sg2, . . . ,SgV ), Sl = diag(Sl1,Sl2, . . . ,SlV ),

QB =

X1LB11X
T
1 · · · X1LB1V XT

V

...
. . .

...
XV LBV 1X

T
1 · · · XV LBV V XT

V

, and

QA =

X1LA11X
T
1 · · · X1LA1V XT

V

...
. . .

...
XV LAV 1X

T
1 · · · XV LAV V XT

V

. Here LBuv

and LAuv (u, v = 1, ..., V ) are the (u, v)-th blocks of LB

and LA, respectively, i.e., LB =

LB11 · · · LB1V

...
. . .

...
LBV 1 · · · LBV V


and LA =

LA11 · · · LA1V

...
. . .

...
LAV 1 · · · LAV V

, where LB and LA

are two nV × nV Laplacian matrices [2] defined as
LB = DiagB −AdjB and LA = DiagA −AdjA, in which
AdjB = 1V ×V ⊗ B and AdjA = 1V ×V ⊗ A are also
nV × nV matrices, 1V ×V denotes the V × V matrix with
all entries being 1, the symbol ⊗ denotes the Kronecker
product operation on two matrices, and DiagB and DiagA

are diagonal matrices defined as (DiagB)ii =
∑nV

j=1(AdjB)ij

and (DiagA)ii =
∑nV

j=1(AdjA)ij , respectively (i = 1, ..., nV ).
Then the optimal W that maximizes the objective function
in Eq. (11) is composed of the eigenvectors corresponding
to the d largest eigenvalues of the following generalized
eigen-decomposition problem:(

αSg + (1− α)QB

)
w = λ

(
αSl + (1− α)QA

)
w. (12)

The detailed procedure of M2L is described in Algorithm 1.

4 EXPERIMENTAL RESULTS

4.1 Synthetic Example

First, we schematically illustrate the effect of M2L on a
synthetic dataset. This synthetic dataset is composed of
twelve two-dimensional data samples with two views, where

X1 =

[
1 1 1 1 2 2 2 2 3 3 3 3
1 2 3 4 3 4 5 6 5 6 7 8

]
and X2 =

Algorithm 1: Multi-view Manifold Learning (M2L)

Input: The training dataset
X = {(x11, ...,x1V ), ..., (xn1, ...,xnV )} and the
corresponding label set L = {l1, ..., ln}; the
subspace dimension d; and the balancing
parameter α

Output: Transformation matrices W1, · · · ,WV

1 for v = 1, ..., V do
2 Construct Nv according to Eq. (1);

3 Construct Slv according to Eq. (2);

4 Construct Sgv according to Eq. (4);

5 end

6 Construct Sl: Sl ← diag(Sl1,Sl2, . . . ,SlV );

7 Construct Sg: Sg ← diag(Sg1,Sg2, . . . ,SgV );

8 Construct A according to Eq. (6);

9 Construct AdjA: AdjA ← 1V ×V ⊗A;

10 Construct DiagA: (DiagA)ii ←
∑nV

j=1(AdjA)ij ;

11 Construct LA: LA ← DiagA −AdjA;

12 Construct QA:

QA =

X1LA11X
T
1 · · · X1LA1V XT

V

...
. . .

...
XV LAV 1X

T
1 · · · XV LAV V XT

V

;

13 Construct B according to Eq. (8);

14 Construct AdjB : AdjB ← 1V ×V ⊗B;

15 Construct DiagB : (DiagB)ii =
∑nV

j=1(AdjB)ij ;

16 Construct LB : LB ← DiagB −AdjB ;

17 Construct QB :

QB =

X1LB11X
T
1 · · · X1LB1V XT

V

...
. . .

...
XV LBV 1X

T
1 · · · XV LBV V XT

V

;

18 Obtain W by solving the generalized eigen-
decomposition problem:(
αSg + (1− α)QB

)
w = λ

(
αSl + (1− α)QA

)
w;

19 [WT
1 ,W

T
2 , . . . ,W

T
M ]←WT ;

[
0 1
1 0

]
X1, i.e., we interchange the two dimensions in view

1 to generate view 2. Moreover, we set the label vector
l = [0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1].

Figure 1 shows the projection directions learned by M2L
and the corresponding one-dimensional mapping results for
these two views (Figure 1(a) for view 1 and Figure 1(b) for
view 2). For each view, we demonstrate three projection
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Figure 1: Schematic illustration of M2L on the syn-
thetic example. (a) The original data in view 1 and
the corresponding projections generated by M2L. (b)
The original data in view 2 and the corresponding
projections generated by M2L.

directions with α = 0, 0.5, and 1 respectively. When α = 0,
the proposed M2L considers only the discriminant informa-
tion but ignores the geometric structure. Therefore, the
data with different label values are well separated but the
intra-class manifold information is lost in the one-dimensional
subspace (w1 = [1, 0]T for view 1 and w2 = [0, 1]T for view
2). In contrast, when α = 1, i.e., ignoring the discriminan-
t information, the mapping results preserve the manifold
structure well but the data with different labels are over-
lapped (w1 = [0.4146, 1]T and w2 = [1, 0.4146]T ). By setting
α = 0.5, both geometric structure and discriminant informa-
tion are taken into consideration, and thus are well preserved
(w1 = [1, 0.1441]T and w2 = [0.144, 1]T ). Interestingly, the
relation between two views (i.e., the row exchange) is faith-
fully reflected by the corresponding projection vectors. More-
over, in the one-dimensional subspace, the mapping values
of data from different views are similar if they possess the
same label value; and are distinct from each other if the label
values are different. This indicates that the learned common
subspace preserves the label information consistently across
different views.

4.2 Media Interestingness Prediction

In this subsection, we evaluate the performance of the
proposed method on the Predicting Media Interestingness
dataset [8]. The data is extracted from 78 Creative Commons
licensed trailers of Hollywood-like movies. The trailers are
further segmented into 7, 396 shots, 5, 054 of which are used
for training and the remaining 2, 342 shots are used for test.
For each shot, the middle frame is extracted as its key frame
and a set of low-level features of this key frame is computed
as the original feature representation of the corresponding
shot [8].

In our experiments, we utilize five types of features, i.e.,
300-D dense Scale Invariant Feature Transform (dense SIFT)
features [20, 26], 300-D HoG 2×2 features [7, 43], 59-D Local
Binary Patterns (LBP) features [29], 512-D GIST features

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

alpha

M
SE

Figure 2: MSE of M2L under various values of α.

Table 1: Performance (in terms of MSE) of PCA,
MCCA, SMR, and M2L with the corresponding re-
duced dimensions on Predicting Media Interesting-
ness dataset

PCA MCCA SMR M2L

MSE 0.1850 0.1197 0.0599 0.0340

Red. Dim. 37 3× 5 = 15 15 2× 5 = 10

[30], and 128-D color histogram features. We thus have
5 views and the total dimension of these 5 views is 1, 299.
All data are manually annotated in terms of interestingness
ranging from 0 to 1 by human assessors.

Firstly, we compare the proposed method M2L with three
dimensionality reduction methods, i.e., principal componen-
t analysis (PCA) [14], multi-view CCA (MCCA) [28], and
supervised manifold regression (SMR) [24], where PCA is
the most classical dimensionality reduction method, MC-
CA is a representative multi-view dimensionality reduction
algorithm, and SMR is a recently proposed dimensionality
reduction method for continuous labels. For MCCA and
M2L, we first map the original representations of 5 views to a
low-dimensional common subspace, and then concatenate the
reduced representations of these 5 views to a single feature
vector. For PCA and SMR, we first concatenate the original
representations of these 5 views to a 1, 299-dimensional fea-
ture vector, and then map it to a low-dimensional subspace.
After dimensionality reduction, we utilize ε-SVR on the low-
dimensional data to predict the interestingness levels. We
choose LIBSVM [4] and the RBF kernel, and the parameters
in ε-SVR for the low-dimensional representations generated
by PCA, MCCA, SMR, and M2L are determined separately
by a 5-fold cross validation technique on training data.

We also use the 5-fold cross validation technique on train-
ing data to determine the optimal value of α for M2L. From
Figure 2 we can see that the mean square error (MSE) value
is relatively large when α = 0 (preserving only the discrimi-
nant information) or α = 1 (preserving only the geometric
structure). The performance becomes better when both
the geometric structure and the discriminant information
are taken into consideration, and achieves the best when
α = 0.9. Therefore, we set α = 0.9 for M2L in the remaining
experiments.

Table 1 reports the best performance (in terms of MSE,
i.e., mean squared error) and the corresponding reduced
dimension of aforementioned four algorithms. By learning
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(a) Ground Truth = 0.5131
Predicted Value = 0.3897

(b) Ground Truth = 0.3618
Predicted Value = 0.3052

(c) Ground Truth = 0.0749
Predicted Value = 0.0735

(d) Ground Truth = 0.0559
Predicted Value = 0.0575

Figure 3: Examples of interesting and non-
interesting video frames from the Predicting Media
Interestingness dataset. (a) and (b) are examples of
video frames with high interestingness values while
(c) and (d) are examples of video frames with low
interestingness values.

the intrinsic features from multiple views jointly, MCCA
and M2L outperform the classical PCA. By preserving the
geometric structure and the discriminant information of the
dataset, SMR and M2L achieve better results than PCA and
MCCA. By integrating the geometric structures of different
views and the interestingness information of the original
dataset under a multi-view manifold learning framework, M2L
performs the best in this experiment. Moreover, the reduced
dimension of M2L is the lowest among four methods, which
indicates that the proposed method is capable of capturing
the interestingness information of original dataset in a very
low-dimensional subspace.

Figure 3 illustrates some examples of interesting and non-
interesting video frames from the Predicting Media Interest-
ingness dataset. Images in the top row of Figure 3 are two
examples of video frames with high interestingness values
and images in the bottom row are two examples of video
frames with low interestingness values. We also list the
ground truth and the predicted value on these video frames
in the figure. We can observe that our predictions on these
frames are consistent with the human judgment in terms of
interestingness.

After having demonstrated the overall performance of M2L
on all five views, we further measure the MSE values of M2L
on individual views. Table 2 gives the results of M2L on dense
SIFT, HoG 2×2, LBP, GIST, and color histogram, respec-
tively. We can observe that even using the low-dimensional
representation from only one view can generate good result
in predicting the media interestingness. Specifically, the per-
formance of M2L on LBP and GIST is better than that of
PCA and MCCA with all five views; and the performance of

Table 2: Performance (in terms of MSE) of M2L on
individual views of Predicting Media Interestingness
dataset

SIFT HoG LBP GIST ColorHist

MSE 0.0462 0.0522 0.0813 0.0723 0.0360

Red. Dim. 2 2 2 2 2

M2L on dense SIFT, HoG 2×2, and color histogram further
outperforms SMR with all five views. The reason of achieving
good performance on individual view might be that although
only one view is used in prediction, the transformation ma-
trix for that individual view is learned by considering the
information from all the five views.

5 CONCLUSIONS

In this paper, we propose a novel Multi-view Manifold Learn-
ing (M2L) algorithm to uncover the mapping between visual
features and the corresponding interestingness levels. By
modelling both geometric structures and interestingness in-
formation in a multi-view learning framework, the proposed
algorithm shows good and explainable results in both syn-
thetic example and real-world dataset.

For the future work, we are interested in mining the physi-
cal meaning of each dimension in the learned subspace, as
well as its relations with the findings from psychology. More-
over, we aim to improve the proposed model by considering
the high-order tensor structure and the dynamic nature of
video data. Last but not least, we are going to investigate
the possibility of extending the current method to the imbal-
anced version as most of the users only pay attention to the
interesting media data rather than the non-interesting ones.
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