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ABSTRACT

Many cognitive researches have shown that human may ’see voices’

or ’hear faces’, and such ability can be potentially associated by

machine vision and intelligence. However, this research is still un-

der early stage. In this paper, we present a novel adversarial deep

semantic matching network for efficient voice-face interactions

and associations, which can well learn the correspondence between

voices and faces for various cross-modal matching and retrieval

tasks. Within the proposed framework, we exploit a simple and

efficient adversarial learning architecture to learn the cross-modal

embeddings between faces and voices, which consists of two sub-

networks, respectively, for generator and discriminator. The former

subnetwork is designed to adaptively discriminate the high-level

semantical features between voices and faces, in which the triplet

loss and multi-modal center loss are in tandem utilized to explicitly

regularize the correspondences among them. The latter subnetwork

is further leveraged to maximally bridge the semantic gap between

the representations of voice and face data, featuring on maintaining

the semantic consistency. Through the joint exploitation of the

above, the proposed framework can well push representations of

voice-face data from the same person closer while pulling those

representations of different person away. Extensive experiments

empirically show that the proposed approach involves fewer pa-

rameters and calculations, adapts various cross-modal matching

tasks for voice-face data and brings substantial improvements over

the state-of-the-art methods.
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1 INTRODUCTION

Many researches in cognitive science and neuroscience have shown

that humans often integrate audio-visual information for various

perception tasks [5, 12]. In particular, face and voice cues, incor-

porating the advantages of non-intrusiveness and easily accessi-

ble, have been extensively utilized for various identity recognition

tasks [24]. As humans, we can recognize the identity of a familiar

person from either face or voice alone. In recent years, some cogni-

tive researches have also confirmed that humans are able to hear

voices of known individuals to form mental pictures of their facial

appearances, i.e., hearing faces, while memorizing and recalling

voices when seeing to their facial pictures, i.e., seeing voices [8, 9].

This is practical feasible, e.g., we are able to draw a general picture

of a speaking face on the other end the line in practice. Even, these

observations also explicitly provide strong support that humans

are capable of correctly matching unfamiliar face images to the

corresponding voice recordings, and vice versa.

From another perspective, the above studies lend credence to

the hypothesis that it may be possible to emulate the human abil-

ity to find the associations between voices and faces intelligently.

Automatic voice-face association is particularly useful for creating

natural human machine interaction systems and benefiting many

valuable applications such as speaker annotation and diarization.

For instance, a media recommender system with voice-face associ-

ation embedding can well present an appropriate voice actor for a

cartoon character, and this phenomenon can be defined as voice-

face matching task. With the motivation of whether machine learn-

ing models can reveal the correlations across different media data,

there have emerged some studies to mine the correlations between

audio and visual examples [10, 13]. Inspired by recent advance of

multi-modal deep learning works, some approaches [11, 19] gener-

ally correlate the faces and voices by having the same identity, and

leverage deep neural networks to exploit the common embeddings

from paired voice-face examples. It is noted that these common

embedding models are likely to succeed on the relevant training
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data, but which often induce poor performances on the unrelated

data. To the best of our knowledge, researches on reliable voice-face

association problem are still under the early stage.

In this paper, we focus on strengthening the semantic association

between the face examples and relevant voice recordings, while

developing an intelligent algorithm to predict a voice from faces

and a face from voice clips. To this end, we develop an efficient

adversarial deep semantic matching (ADSM) network, consisting of

generator and discriminator networks, to tackle voice-face associa-

tion problem. As shown in Figure 1, on the one hand, we develop an

efficient generative subnetwork to learn the high-level semantical

features between voice and face, and sequentially utilize the triplet

loss and multi-modal center loss to explicitly regularize the corre-

spondences among voice-face data. On the other hand, we propose

to utilize adversarial subnetwork to maximally reduce the semantic

gap between the representations of voice and face data, which can

well preserve modality similarity while minimizing inter-modal am-

biguity. Through the joint exploitation of the above, the proposed

ADSM framework can well push representations of voice-face data

from the same person closer while pulling those representations of

different person away. Extensive experiments show the promising

results on various cross-modal matching tasks, including selection

of a face or voice from a pair of choices, verification a given pair of

instances belong to the same person, and retrieval the given input

of one modality to one-out-of-N matching. The major contributions

of this paper are highlighted bellow:

• A novel ADSM framework is efficiently proposed for reli-

able voice-face interactions and associations, which can well

facilitate various cross-modal matching tasks.

• An efficient multi-modal center loss is presented for cross-

model common embedding learning, which can explicitly

regularize the correspondences among the voice-face data.

• Adiscriminative adversarial learningmechanism is addressed

to seamlessly guide the high-level semantical feature learn-

ing and bridge the semantic gap between the heterogeneous

voice and face data.

• Extensive experiments demonstrate the advantages of the

proposed framework under various cross-modal matching

tasks, and show its outstanding performance in comparison

with the-state-of-art methods.

The rest of this paper is organized as follows: Section 2 briefly

surveys the voice-face association works, and Section 3 elaborates

the proposed model and its implementation details. The extensive

experiments and comparisons are introduced in Section 4. Finally,

we draw a conclusion in Section 5.

2 RELATEDWORKS

Humanmay hear faces by forming mental pictures of what a person

looks like after only hearing his or her voice, while recalling voices

when taking a glance at their face pictures [24]. This phenomenon

has been investigated in a number of studies on human perception

and neurology [8, 12, 30]. These cognitive studies lend credence to

prove that it may be possible to find associations between voices

and faces, and machine learning community has also shown increas-

ing interest in studying such associations. Alone this line, some

works [4, 15] develop systems to identify active speakers from a

video by jointly observing the audio and visual signals. Although

these voice-speaker matching task seems similar, they mainly focus

on distinguishing active speakers from non-speakers at a given time.

By assuming that the voice and face are implicitly captured from

one speaker, these works learn the common embeddings through

joint presentation of voices and faces, to maximize their similarities

if they belong to the same speaker. Within these works, the voice

data and face image are acquired simultaneously.

With the recent advance of deep learning, multi-modal deep

learning leverages neural networks to mine common information

from large-scale multi-modal media data [21]. Inspired by these

works, SVHF [19] utilizes CNN architectures to learn the joint

presentation of voices and faces, and formulates their association

problem as a binary selection task. Later, they further form the pos-

itive voice-face pairs acquired from the same talking face in a video,

and consider the negative voice-faces pairs from different videos.

Accordingly, they utilize the contrastive loss to minimize the dis-

tance between the embeddings of positive pairs and penalizes the

negative pair distances [18]. Experimentally, these models are able

to match human performance on some challenging examples, e.g.,

faces with the same gender, age and nationality. Nevertheless, they

are task-specific methods, which cannot be utilized for other match-

ing applications. Similarly, FV-CME [6] first exploits a face-voice

matching model to learn cross-modal embeddings, and further uti-

lizes the N-pair loss to regularize the correspondence in voice-face

feature learning process. This approach is able to achieve face-voice

matching task, but which needs the fine-tuning process to optimize

the model, whose parameters is very huge. In addition, LAFV [11]

exploits the overlapping information between faces and voices, and

utilizes the standard network architectures to learn their common

latent spaces. Without human supervision, this approach trains the

networks from naturally paired face-voice data, and yields similar

results have been reported by other researches [6, 19]. Differently,

DIMNet [25] does not explicitly learn the joint relationship between

different modalities, but learns a shared representation by mapping

them individually to their common covariates, i.e., identity, nation-

ality and gender. This work is designed to be data less-intensive,

but which does not fully consider the high-level semantic correla-

tions between different modalities and also involve large network

parameters for learning. Therefore, its performances need further

improvements.

3 PROPOSED APPROACH

3.1 Problem Definition

The main objective of this paper is to study the cross-modal as-

sociations between face and voice. Without loss of generality, we

first tackle this problem as a binary matching task. Let F represent

the face samples,V denote the voice data, A characterize the at-

tributes of face and voice, i.e., AID (·): Identity; AG (·): Gender;

AN (·): Nationality. Accordingly, the face-voice modality dataset

can represented asM = {F ,V}. For voice to face matching task

(V→F) that consisting of a voice clip and two face images, the goal

is to examine which face is more likely to associate the voice clip.

Suppose there exist a triplet data set x={v, f1, f2} consisting of an

anchor voice segment clip v∈V and two face images f1∈F and

f2∈F . Note that, face examples in x contain a positive sample and a
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Figure 1: The schematic pipeline of the proposed ADSM network with adversarial training architectures.

negative sample. More specifically, fi can be considered as a positive

example if it possesses the same attributes as the anchor voice, i.e.,

AID (fi )=AID (v), and vice versa. Therefore, such voice-face asso-

ciation task can be considered as a binary classification task, which

can be achieved by predicting the position y∈{0, 1} of the positive

face. Meanwhile, let v=Nv(θv; v) ∈ R
d and f =Nf (θf ; f) ∈ R

d re-

spectively represent the voice mapping function and face mapping

function, which can individually map voice feature vector and face

feature vector into d-dimensional common subspace, and θv and θf
are their function parameters. Then let them = Nd(θd;x) represent
the discriminator in ADSM framework, wherem is the output of
modality classifier in discriminator and x is a d-dimensional vector
that obtained from the output of Nf or Nv, and θd is the parameter
for modality classifier in discriminator.

3.2 Proposed Framework

As shown in Figure 1, we exploit an efficient adversarial deep se-

mantic matching (ADSM) network for voice-face association, which

of two subnetworks, respectively, for generator and discriminator.

The former subnetwork is designed to adaptively discriminate the

high-level semantical features between voices and faces, in which

the triplet loss and multi-modal center loss are in tandem utilized to

explicitly regularize the correspondences among them. The latter

subnetwork is further leveraged to maximally reduce the semantic

gap between the representations of voice and face data, and modal-

ity classifier is utilized as discriminator G to maintain the semantic

consistency among them. By acting as an adversary, the joint adver-

sarial loss is further utilized for narrowing the gap between voice

and face data, by learning as a minimax game. As a whole, these

two subnetworks are trained together in an end-to-end manner.

3.3 Network Model

Within the proposed learning model, the main purpose of the gener-

ative subnetwork is to extract the discriminative high-level features

that can well characterize the voice-face data, while maintaining the

semantic correspondences between them. Meanwhile, it is reason-

able to expect that the learning network should be more powerful

with fewer parameters and can be calculated quickly [3]. In recent

years, ResNeXt [26] is demonstrated to be a simple and highly

modularized network architecture for image classification. More

specifically, this model repeats a building block that aggregates a

set of transformations with the same topology, which involves less

hyper-parameters while gaining accuracy. Meanwhile, Squeeze-

and-Excitation (SE) [7] block adaptively recalibrates channel-wise

feature responses by explicitly modelling interdependencies be-

tween channels, which brings significant performance improve-

ments at slight additional computational cost. Inspired by these

findings, we propose to stack ResNeXt and SE blocks together to

emphasize informative visual features and suppress less useful ones,

in which the network configuration is shown in Table 1.

The proposed subnetwork is shown in the lower part of Figure 1,

where the green layer is convolutional layer, the blue layer is ADSM

block and the yellow layer is SE module. The output dimension of

every convolutional layer situated in front of block is twice than the

input dimension, and top three layers in SE-ResNeXt block double

the dimension. Meanwhile, the last convolutional layer will halve

the dimensions before the feature embedded into the SE module.
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Table 1: The network configurations of face embnet.

Name Channel Num Output Size Stride

Input 3 128×128 -

Conv1 64 64×64 2

ADSM block1 64 64×64 -

Conv2 128 32×32 2

ADSM block2 128 32×32 -

Conv3 256 16×16 2

ADSM block3 256 16×16 -

Conv4 512 8×8 2

ADSM block4 512 8×8 -

Conv5 32 4×4 2

Global pool 32 - -

Multi-modal Center
Constraint

Adversarial Learning
Constraint

Figure 2: Illustration of MMC and adversarial constraints.

3.4 Loss Function

Face and voice data often exhibit diverse representations, and we

first utilize the triplet loss to regularize the correspondences be-

tween the face and voice. Since there are many categories in the

dataset, it is difficult to increase the distance between different

classes. Therefore, we expect the distance within the same category

to be as small as possible, and the triplet loss is employed:

LT r i =

n∑
i=1

[d(a, p) − αd(a, e) +margin]+ (1)

where a is anchor, p is positive sample, e is negative sample, margin

is a constant that utilized to maintain the positive distance value,

and d(·, ·) is Euclidean distance, hyper parameter α is utilized to
control weights between the positive distance and negative distance.

More specifically, in V→F task, a, p and e respectively correspond

to voice, positive face and negative face, and vice versa.

The goal of the proposed framework is to minimize the semantic

gap among the high-level representations of semantically simi-

lar voice-face samples. The preservation of intra-modal similarity

ensures that the representations of data points with the same seman-

tical category should be close to each other, while the preservation

of inter-modal similarity is often utilized to maintain the semantic

consistency between heterogeneous modalities [1, 2, 16, 29]. As the

triplet loss converges, then we change the triplet loss to a novel

multi-modal center (MMC) loss. As shown in Figure 2, we add a con-

straint between features and their centers, which contains two part:

intra-modality center distance and inter-modality center distance.

Intra-modality center distance makes the data distribution within

the same modality to be much closer, while the inter-modality cen-

ter distance ensures the centers of heterogeneous modalities within

the same category to be as close as possible. Before introducing the

MMC loss, the centers for each class and modality are calculated:

c
j
i =

1

n

n∑
k=1

xk , ci =
1

m

m∑
k=1

cki (2)

where c
j
i means the j-th modality center in i-th class, ci means the

center of i-th class with all modalities, n,m are respectively the di-
mensionality of features and the number of categories. Accordingly,

the MMC loss can be formulated as follows:

LMMC−intra =
1

2

n∑
i=1

���N (x
j
i ) − c

j
i

���2
2

(3)

LMMC−inter =
1

2

n∑
i=1

‖N (xi ) − ci ‖
2
2 (4)

Then, the integrated MMC loss can be formulated as:

LMMC = LMMC−intra + γLMMC−inter (5)

where γ is the balance parameter. Accordingly, the generative loss
for generator subnetwork is given by:

Lg =

{
LT r i , epoch < k

LMMC , epoch ≥ k
(6)

For adversarial learning, the modality classifier Nd is utilized as

a discriminator, which is defined to discriminate the data from the

face to voice and it also acts as an adversary. As shown in Figure 2,

it is expected the distances further regularized by the adversarial

learning could ensure that the representations of data points with

the same semantical category should be close to each other [14].

Within the proposed ADSM, modality classifier is acted as a three

layer fully connected neural network and the cross-entropy loss is

utilized to bridge the semantic gap between different modalities:

Ld =
1

m

m∑
j=1

(j · loдNd(x)) (7)

where x is input vector from the output of Nf or Nv andm is the
modality number. During the training process, we need to learn

both the generator and discriminator in an end-to-end way, and

the optimization process contains two part:

θf, θv = arg min
θf,θv

(Lg − ηLd) (8)

θd = arg max
θd

(Lg − ηLd) (9)

where η is a hyperparameter to control the training weight be-
tween discriminator and generator. This minimax game can be

efficiently implemented using a stochastic gradient descent opti-

mization solver, and the optimizations can be iteratively solved until

the convergence is reached. In summary, the proposed learning

algorithm for ADSM is displayed in Algorithm 1.
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Algorithm 1 Learning algorithm of ADSM framework

Input: Face-voice Dataset: {a, p,n} corresponds to the original

input data {v, f1, f2} or {f, v1, v2},

Initialize face generator f =Nf (θf ; f), voice generator

v=Nv (θv ; v),
Initialize model discriminator by:m = Nd(θd;x),
Initialize hyperparameters: γ , η, k , H

Repeat until convergence:

1: if train epoch num == k then

2: for i = 0 to class_num do

3: ci = (mean(ΣN (ai )) +mean(ΣN (pi )))/2
4: end for

5: use set c to initialize MMC loss
6: end if Calculate the ADSMnet loss

7: a = N (a),p = N (p),n = N (n)

8: if train epoch num < k then

9: Lд = LT r iplet (N (a),N (p),N (n))
10: else

11: Lд = LMMC (N (a),N (p))
12: end if

Calculate the Modality Classifier loss

13: p1 = Nd(a),p2 = Nd(p)
14: Ld = LCE (p1) + LCE (p2)

Train the network

15: if train epoch num %H ! =0 then
16: Lall = Lд − ηLd

17: else

18: Lall = ηLd − Lд

19: end if

20: Return: Lall

3.5 Model Training

The proposed ADSM networks are trained in an end-to-end manner

by stochastic gradient descent (SDG) with batch normalization, and

SGD optimizer with momentum 0.9, weight decay 0.001 and batch

size 96 is selected for training on GPU NVIDIA RTX 2080Ti. For

generator, the learning rate is initialized with 1e-5 at the beginning

of training process, changed to 1e-2 when at the 6 epoch, divided

by 10 after every 3 epochs, and changed to MMC loss when the

loss function converges to a stable value. Then, the learning rate is

reset to 10e-3 and divided by 10 after every 3 epochs, until the loss

function converges. For discriminator, the learning rate is also set

at 1e-4 for warming up, set to 1e-2 at 6 epoch, divided by 10 after

every 4 epochs. In addition, training round H is set at 5, η is fixed
to be 0.3, α is set at 0.8 and margin value is fixed at 0.6.

4 EXPERIMENTS

Dataset: The public VoxCeleb [20] and VGGFace [22] datasets are

selected for evaluation, which consist of 1251 celebrities recorded

under different environments and background noise levels. For fair

comparison, we refer to the challenging split scheme [19], where

persons of names starting with [’A’, ’B’] are assigned to the vali-

dation set, while those starting with [’C’, ’D’, ’E’] are assigned for

testing, and the rest persons are selected as the train set, summa-

rized in Table 2. The proposed ADSM method trained through full

learning scheme is abbreviated as ADSM-TCD. Meanwhile, the

proposed network learned only use triplet loss is abbreviated as

ADSM-T and use both triplet loss and MMC loss is abbreviated

as ADSM-TC. Since the work [18] select 901 identities in train set

and 250 identities in test set, which is different from the split from

work [19]. Further, we also train our network through this data

split with less training data, and name it as ADSM-LTCD.

4.1 Data Pre-Processing

Face examples:All the facial regions are detected by MTCNN [27],

and the sizes of cropped RGB face examples are scaled to 128×128.

Similar to [23, 25? ], the face images are augmented by horizontally

flipping the images with 50% probability, and normalized to [−1, 1].

Voice clip: The speaking voice clips are detected by voice activate

detector [28]. If the recording length of detected voice clip is less

than 10s, we randomly repeat it to 10s to ensure the adequate

samples. Conversely, we cut off the voice clip to be 10s if its length

is larger than 10s. Consequently, we calculate the MFCC features

by using the window 25ms and interval 10ms.

Table 2: Number statistics for the splitting datasets.

Item Train Validation Test Total

Identities 942 116 193 1251

Face Images 930428 112492 174512 1217432

Voice clips 116501 14635 22380 153516

Videos 16820 2044 3425 22295

4.2 Cross-modal Matching Protocol

In order to verify the effectiveness of the proposed ADSM approach,

we design the following protocols for evaluation.

1:2 matching task: Each input data pair contains an Anchor from

one modality (voice or face), and a gallery of two inputs from the

other modality (face or voice), including a positive example that

belongs to the same person and a negative example that does not

match the person. The task of the network is to determine which

sample is a positive example, and we have 22118400 groups of

testing data in total.

1:Nmatching task: This task is the extension of 1:2 matching, and

the model need to predict the only positive sample from N samples.
This task is more challenging with the increase of number N . Since
the model has been tested on 1:2 matching task, only the V→F task

is selected for evaluation.

Verification task: This task is to determine whether the input

face and voice belong to the same person or not, and this task can

Table 3: Network classification performance (Acc %)

Task Unseen-unheard Seen-heard

Face G recognition 99.85 99.80

Voice G recognition 97.09 98.75

Face N recognition 77.28 85.18

Voice N recognition 70.45 80.69
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Figure 3: Analysis of low accuracy performance.

be further divided into two seen-heard (tested samples appear in

training dataset) and unseen-unheard cases (tested examples not

appear in training dataset).

Retrieval task: This task is an extension of cross-modal matching

task, and one or more instances might match the given anchor. In

this task, 40 face images and 40 voice clips are selected from one

person, and mAP metric is selected to validate the cross-modal

retrieval performance of the proposed approach.

4.3 Model Performance

Classification results: To validate the model efficiency, we first

utilize gender (G) and nationality (N) to perform classification tasks.

Note that, the nationality distribution in the dataset is seriously

unbalanced, and it is difficult to conduct efficient training. The

classification accuracies obtained by the proposed approach are

shown in Table 3, it can be observed that the proposed network

modal can well discriminate the meaningful face and voice features

to characterize the gender and nationality of the humans. That is,

the final outputs of network modal not only can preserve much

information about the gender, but also contain valuable information

for complex nationality analysis.

1:2 matching results: The recent SVHF-Net [19], LAFV [11], FV-

CME [6] and DIMNet [25] are selected for comparison. Similar

to these works, the experiments are controlled with varying de-

mographic grouping, particularly ‘-’ denotes the test set are not

stratified, ‘G’, ‘N’ and ‘GN’ are stratified by gender, nationality, and

grouped gender-nationality, respectively.

As shown in Table 4, it can be found that the proposed ADSM

model has yielded the improved 1:2 matching performances in most

cases. For V→F task, ADSM-TCD improves the DIMNet-IG by 5.13%

on unconstrained tests and 9.23% on gender-constrained tests. That

is, the mapping operation from original voices and faces to their

common covariates is an effective strategy to learn cross-modal

embeddings, and the proposed network model provides more ca-

pability to learn useful information for cross-modal matching task.

As shown in Figure 3, the proposed ADSM network has achieved

the state of art in all indicators, the accuracies of most matching

results are higher. Meanwhile, we also investigate the low accu-

racy examples, and there are only few identities whose accuracy

is relatively lower. These low accuracies occur on examples with

noisy audios and some abnormal associations of faces and voices.

Therefore, the adversarial loss generated by modality classifier of-

ten contributes to a higher retrieval performance than the model

without adversarial learning module.
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Figure 4: Performances on 1:N matching task.

Figure 5: Top 10 cross-modal retrieval results by voice query,

and the correctly indexed samples are marked in red.

1:Nmatching results: For V→F, the multi-ways network is tested,

which accepts N face samples and predicts the only positive sample
from these samples. We also conduct different matching tasks for

N>2, as shown in Fig. 4. It can be found that ADSM has achieved
the best results on different N values, and training with different
data split shows the little effect on the performance. These results

are consistent with the results illustrated in Table 4. That is, ADSM

is powerful to find the associations between faces and voices.

Verification results: For fair comparison, the data splits are cho-

sen as the same as PINs [18]. Accordingly, the cross-modal verifica-

tion results in terms of standard AUC value are reported in Table 6,

it can be found that the proposed ADSM method outperforms the

PINs in different versification tasks, also performs favorably com-

pared to the recent DIMNet work. Therefore, our network model is

tolerate to different verification tasks with promising performances.

Cross-modal retrieval results:We also report the cross-modal

retrieval results by respectively using voice or face query, whose

objective is to retrieve gallery items with the same attribute, i.e.,

‘G’, ‘N’ and ‘GN’. Similar to work [25], 182 identities are randomly

selected from the testing set. As shown in Table 4, the proposed

ADSM approach always yields the best mAP values, in both V→F

and F→V retrieval tasks. For instance, the mAP score obtained by

the proposed ADSM approach reaches up to 64.91% on nationality,

which is significantly higher than the result 43.26% obtained by

DIMNet-I. Representative retrieval examples are shown in Figure 5,

it can be observed that the proposed model is able to well correlate

the semantically similar face and voices.

Visualization results:We further utilize the t-SNE [17] algorithm

to visualize the learned embedding features, and data examples from

eight peoples are randomly selected for visualization. As shown in

Figure 6, it can be found that the proposed ADSM network can put

the feature embedding of two similar modalities close together, and
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Table 4: Cross-modal matching results of voice and face, and the best results are highlighted in bold.

Task Method
V→F F→V

- G N GN - G N GN

Matching Accuracy

(Acc )

SVHF [19] 81.00 65.20 78.20 - 79.50 - - -

LAFV [11] 78.20 62.90 76.40 61.60 78.60 61.60 76.70 61.20

FV-CME [6] 78.10 59.97 - - 77.80 60.65 - -

DIMNet-I [25] 83.45 70.91 81.97 69.89 83.52 71.78 82.41 70.90

DIMNet-IG [25] 84.12 71.32 82.65 70.39 84.03 71.65 82.96 70.78

ADSM-T 88.27 80.03 83.09 69.13 88.55 79.00 85.82 74.61

ADSM-TC 88.98 80.38 84.02 69.97 89.15 79.45 86.42 75.36

ADSM-LTCD 88.77 79.93 83.41 69.09 89.05 79.03 86.02 74.81

ADSM-TCD 89.45 80.55 84.69 71.11 89.52 80.06 86.67 75.91

Retrieval Performance

(mAP )

FV-CME [6] 1.96 - - - 2.18 - - -

DIMNet-I [25] 4.25 89.57 43.26 - 4.17 88.50 43.68 -

DIMNet-IG [25] 4.42 93.10 43.2 - 4.23 92.16 43.86 -

ADSM-T 8.97 92.86 64.38 66.28 6.78 91.66 63.45 64.36

ADSM-TC 9.21 93.34 64.91 66.46 7.09 93.02 63.42 65.06

ADSM-LTCD 9.16 92.98 59.39 65.83 7.02 92.02 61.75 61.33

ADSM-TCD 10.00 93.18 59.19 61.35 8.21 92.12 57.93 59.68

Table 5: The parameter numbers in different network models.

Method Train set Test set Test pairs Facenet Facenet params Voicenet Voicenet params All params

SVHF [19] 942 189 0.01M VGG-M 103.05M VGG-M 16.62M 123.34M

PINs [18] 901 250 0.03M VGG-M 103.05M VGG-M 16.62M 119.67M

FV-CME [6] 862 216 38000M ResNet-50 23.75M i-Vector - -

DIMNet [25] 924 189 68M DIMNet-f 8.18M DIMNet-v 10.43M 18.54M

LAFV [11] 1001 250 0.025M VGG-16 14.77M SoundNet 0.86M 15.65M

ADSM-TCD 942 193 221M ADSM-f 7.02M ADSM-v 5.38M 12.40M

ADSM-LTCD 901 250 374M ADSM-f 7.02M ADSM-v 5.38M 12.40M

Figure 6: Embedding visualization by identity (left) and gen-

der (right). Top: results by obtained by ADSM-T; Bottom: re-

sults learned by ADSM-TCD.

Table 6: AUC values(%) of verification testing.

Task Method - G N A GNA

unseen

unheard

PINs [18] 78.5 61.1 77.2 74.9 58.8

DIMNet [25] 83.2 71.2 81.9 78.0 62.8

ADSM-LTCD 88.4 79.3 83.6 83.9 64.7

seen

heard

PINs [18] 87.0 74.2 85.9 86.6 74.0

DIMNet [25] 94.7 89.8 93.2 94.8 87.8

ADSM-LTCD 95.9 92.5 93.9 95.5 89.8

the learned feature embeddings are discriminative to benefit the

challenging associations between voices and faces.

Ablation Studies and Parameter Analysis: The ablation studies

of different learning combinations are shown in Table 4. It can be

found that the cross-modal embedding learning module and adver-

sarial learning modules are both beneficial for various voice-face

mathching tasks, whereby the proposed ADSM learning framework

is capable of capturing the inherent interactions of voice-face more

expressively. Besides, deep models often involve large amount of

network parameters. Remarkably, the proposed ADSM model is

designed to incorporate less model parameters, and the parameter
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numbers of different network models are elaborated in Table 5. It

can be clearly observed that the proposed ADSMnetwork really pro-

cesses less model parameters, which can greatly reduce the model

complexity while holding the learning ability. The experimental

results have shown its outstanding performances.

5 CONCLUSION

This paper has presented an efficient adversarial deep semantic

matching framework for reliable voice-face interactions and associa-

tions. The proposed framework is able to well learn the cross-modal

embeddings for voices and faces, while the adversarial learning ar-

chitecture associated with the proposed multi-modal center loss can

well push representations of the same identity closer while pulling

those of different identity away. With significantly reduced model

parameters, extensive experiments on various cross-modal voice-

face matching tasks have verified its outstanding performance.
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