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ABSTRACT

Voice-face association is generally specialized as a cross-modal cog-

nitive matching problem, and recent attention has been paid on the

feasibility of devising the computational mechanisms for recogniz-

ing such associations. Existing works are commonly resorting to

the combination of contrastive learning and classification-based

loss to correlate the heterogeneous datas. Nevertheless, the reliance

on typical features of each category, known as archetypes, derived

from the combination suffer from the weak invariance of modality-

specific features within the same identity, which might induce

a cross-modal joint feature space with calibration deviations. To

tackle these problems, this paper presents an efficient Archetype-

agnostic framework for reliable voice-face association. First, an

Archetype-agnostic SubspaceMerging (AaSM) method is carefully

designed to perform feature calibration which can well get rid of the

archetype dependence to facilitate the mutual perception of datas.

Further, an efficient Bilateral Connection Re-gauging scheme is

proposed to quantitatively screen and calibrate the biased datas,

namely loose pairs that deviate from joint feature space. Besides, an

Instance Equilibrium strategy is dynamically derived to optimize

the training process on loose data pairs and significantly improve

the data utilization. Through the joint exploitation of the above,

the proposed framework can well associate the voice-face data

to benefit various kinds of cross-modal cognitive tasks. Extensive

experiments verify the superiorities of the proposed voice-face as-

sociation framework and show its competitive performances with

the state-of-the-arts.
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1 INTRODUCTION

Your voice tells strangers what you look like, and it seems to be

incredible when you first hear this statement. Generally, people

may not realize that such assumptions are based on how they look

and sound across different person-specific data samples. In fact,

studies in neurosciences have shown that humans have the ability

to match the image of an unfamiliar face to an unfamiliar voice

with higher accuracy than chance and vice versa, which motivated

the machine learning algorithm to emulate the human ability to

find the associations between voices and faces intelligently.

Face-voice association can be considered as a cognitive task of

finding their semantic correspondence, which is of crucial impor-

tance to creating natural human machine interaction systems. The

prior works are devoted to exploring the relationship of inter-modal,

mining the common attributes between different modal informa-

tion so that their corresponding features will be comparable in

joint space. For instance, Wen et al. [35] map different modalities

individually by obtaining supervision indirectly from their com-

mon covariates, referring to the identity-sensitive factors. Kim et

al. [16], Nagrani et al. [20], Ying et al. [6], Wen et al.[34], Kai et

al. [5] directly seek the abstract and entangled connections between

different modalities to associate the voice and face data.

In recent years, some works have noted the importance of intra-

modal connections that can significantly complement the inter-

modal alignment. Along this line, Wang et al. [32], Wen et al. [34]
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Figure 1: Examples of loose pairs and ultra-loose pairs for

face modality. Loose pairs are triplets that fail to meet the

specified distance constraint, often due to high similarity in

appearance between the positive and negative samples. Dif-

ferently, the ultra-loose pairs are defined as invalid triplets,

for instance, when the anchor and positive samples do not

belong to the same identity or contain invalid distorted data.

and Nagrani et al. [22] attempt different loss functions to constrain

intra-modal representations. Although these works have witnessed

the progress of injecting intra-modality constraints into the original

model framework, such rough way often ignores the data inter-

action and is found to be sensitive to the experimental results.

Prior works take the classification-based loss as the classical par-

adigm of intra-modal representation learning, while the strategy

above relies on the global archetype, namely the weight matrix

of identity classifier or category center vector. As the invariance

of modality-specific representation with consistent identity is the

key point of mini-batchrepresentation, such suboptimal indirect

manner provided by archetype-dependent loss will hamper the

merge of representative subspaces. Besides, inconsistent handling

of different data is necessary in data-driven deep learning models.

Wen et al. [34] focus more on the hard identities by applying the

adaptive weight to the data with consistent identity, while Avishek

Joey Bose and Arsha Nagrani et al. [15] disregard the limits of

identity and impose stronger constraints on hard samples.

Based on the above analysis, the following issues can be sum-

marized: (a) Conventional methods with archetype-dependent loss

merely condsider the indirect mutual perception between subspaces,

resulting in poor spatial fusion effect. (b) Imposing weights on data

with category granularity are insufficient for handling the loose

pairs since there is no guarantee that the quality of data in the

same category are the same. (c) Existing methods generally exploit

the hard samples on instance granularity, but which intrinsically

ignore the hard samples in value and result in excessive mining of

hard samples with low value.

For solving problem (a), we propose an efficient Archetype-

agnostic Subspace Merging method that can directly build a

connection among the voice-face representation. For (b) and (c), an

efficient Bilateral Connection re-Gauging scheme is proposed to

quantitatively screen and calibrate the loose pairs that deviate from

joint feature space, while an Instance Equilibrium strategy is

dynamically derived to optimize the training process on loose data

pairs and significantly improve the data utilization. In a nutshell,

the main contributions of this paper are summarized as follows:

• An efficient Archetype-agnostic SubspaceMerging strategy

(AaSM) is explicitly proposed to performmodality alignment

across voice-face data, which canwell get rid of the archetype

dependence to facilitate the mutual perception of datas and

promote more accurate feature representations.

• An efficient Bilateral Connection re-Gauging scheme is

proposed to quantitatively screen and calibrate the loose

pairs, which can guide the association framework to learn

the semantic correspondence within these hard samples.

• An Instance Equilibrium strategy is dynamically derived

to optimize the training process on loose data pairs, embed

the positive guidance to the learning model and significantly

improve the data utilization.

• Extensive experiments evaluated on various face-voice asso-

ciation tasks verify the advantages of the proposed model in

comparison with SOTAs.

2 RELATEDWORK

2.1 Learning Discriminative Representation

As the first work to realize the cross-modal audio-visual match-

ing task, SVHF [21] concatenate different modality features into

one feature, and feed them into a binary classifier. DIMNet [35]

believe that covariates such as gender, nationality, etc., which can

be extracted from any single modality, can be used as the basis

for the mutual mapping of representations between modalities.

Although the relatively pure feature information can be obtained

from common covariates, the number and attributes of covariates

that are difficult to determine limit its performance. Later, VAE-

based approaches [17, 30] generate and model the latent space for

associating two modalities.

In recent years, the metric learning method has performed well

in many fields, e.g. triplet loss, contrastive loss. As confirmed

by [3, 12, 13, 31], the effect of metric learning to some extent is

proportional to the number of negative pairs. For the sake of fur-

ther performances, Chen et al. [4] propose a quadruplet ranking

loss which is modified based on the triplet loss and Horiguchi et

al. [11, 28] utilize N-pair loss to gain more constrained condition.

In [16, 20, 32, 34], the contrastive loss does effectively constrain the

inter-modal relationship. What’s more, due to the co-occurrence of

image and audio in videos, unsupervised audio-visual representa-

tion metric learnings [1, 2, 19, 37] can obtain supervisory signal by

exploiting spatio-temporal synchronization of information.

Besides, learning of intra-modal associations also improve the

discrimination of representations for different identities. In [24,

32, 34], classification-based loss e.g. center loss or identity loss is

applied to distinguish intra-modal different identities. It is worth

noting that, compared to the contrastive learning which directly

acts on the relationship between features, the above-mentioned

loss needs to rely on extra reference features as bridges to optimize

indirectly. As what have been described above, a main drawback

of most existing methods is that indirect intra-modal alignment

hinders the fusion of modal common spaces. In addition, such

alignment mechanism separation may lead to a gap of the learning

rate within and betweenmodalities which hinder the representation

learning. Yet in this work, we propose a novel subspace fusion

mechanism where archetype representations are not required.
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Figure 2: The main differences and comparison with prior works. Previous archetype-dependent works have to rely on extra

agent representations, while AaSM promotes the fusion of cross-modal shared subspaces in a archetype-agnostic manner.

Further, we re-gauge the bilateral connection of “anchor” quantitatively for sifting loose informative pairs whose value is

measured by Instance Equilibrium.

2.2 Hard Sample Mining Method

Samples in datasets often exhibit varying training difficulties. Larger

loss function values indicate that the model does not fit certain

samples well, and giving more attention to these samples can en-

hance overall performance. Damianos Galanopoulos et al. [9] used

a threshold value to exclude potentially-positive samples and iden-

tified the hard-negative sample with the highest similarity score.

Arsha Nagrani et al. [11, 28] employed the "negative difficulty pa-

rameter 𝑇 " to control the difficulty of negative samples obtained
from the potential negative list and adopted a curriculum learn-

ing strategy for training. Additionally, Florian Schroff et al. [27]

focused on selecting semi-hard negative exemplars to form appro-

priate triplets for faster convergence. In works like [14, 25, 33],

mining hard samples was used for forming triplets and calculating

loss functions.

While the above methods can prioritize hard samples in the

model, it’s important to note that hard samples may also contain

low-value noise and irrelevant data. These extreme samples prompt

us to further analyze and subdivide the hard samples. An effective

approach is to assign different weights to individual samples. Wen

et al. [34] assigned weights to each sample at the identity-level

using an adaptive strategy. However, solely relying on the identity-

level weighting strategy is inadequate to address instance-level

hard samples. To tackle this challenge, we propose a novel strategy

to re-gauge and balance the impact of deviated sample pairs on the

model at the instance-level.

3 METHODOLOGY

For voice-face association, the most important thing is to map the

face and audio embedding into the shared representation space,

whereby the comparison can be made across different modalities.

Our goal is to learn the face and voice representations that mapped

to nearby points of the same identity, while separating the points

with different identities.

3.1 Archetype-agnostic Subspace Merging

Prior works [3, 12] have shown the outstanding performance in-

structed by contrastive learning method. When it comes to multi-

modal learning, it is insufficient to learn inter-modal relationships.

A combination of contrastive loss and classification-based loss be-

come the workhorse in cross-modal representation learning. Note

that, such classified-based loss relies on extra archetype as a me-

diator and experimental results show that this indirect manner

hinders the fusion of mini-batch representation subspaces. So How

can we interact directly? Inspired by [36], the Archetype-agnostic

Subspace Merging (AaSM) based on the non-parametric softmax is

proposed for joint representation Learning.

The traditional methods often utilize the random parameters to

build a 𝑘-class linear classifier for intra-modal alignment, which

includes a 𝑘 ×𝑑-dimensional weight parameter𝑊 𝑘×𝑑 . Accordingly,

the probability for feature 𝒙 belonging to identity 𝑖 is calculated:

𝑃 (𝑖 |𝒙) =
exp (𝒙 ·𝒘𝑖 )∑𝐵
𝑗 exp (𝒙 ·𝒘 𝑗 )

(1)

where𝒘𝑖 denotes the 𝑖-th row of weight matrix𝑊 𝑘×𝑑 , 𝐵 indicates
the size of the batch. This encourages all features with identity 𝑖
to be close to weight 𝑤𝑖 . In this way, feature aggregation can be

treated as feature alignment. However, its shortcoming lies that

there is a dependence on the weight𝑤 𝑗 , which prevents the mutual

perception between features and affects the accuracy of feature

alignment. This dependency problem will be solved as follows:

Two modality-specific neural networks 𝑓𝑣 (·), 𝑓𝑎 (·) are utilized to
map face images and voices into feature vectors 𝑣𝑖 and 𝑎𝑖 on a

d-dimensional hypersphere. Given a positive feature pair (𝑣𝑖 , 𝑎𝑖 )
extracted from the same identity 𝑖 and a negative set N𝑀 = {𝑘 𝑗 | 𝑗 ≠
𝑖}𝑁𝑗 on modality 𝑀 ∈ {𝑉 , 𝐹 }. Mapping representations (𝑣𝑖 , 𝑎𝑖 ) of

the same identity to nearby points while repelling the ones from

different identities by minimizing the InfoNCE loss:

L𝑐 (𝒂𝑖 , 𝒗𝑖 ;𝜏) = − log 𝑃 (𝒂𝑖 |𝒗𝑖 ;𝜏) − log 𝑃 (𝒗𝑖 |𝒂𝑖 ;𝜏) (2)
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𝑤ℎ𝑒𝑟𝑒 𝑃 (𝒚𝑖 |𝒙 ;𝜏) =
exp(𝒙 · 𝒚𝑖/𝜏)

𝑍𝑖

𝑍𝑖 =
∑

𝒚 𝑗 ∈N
𝑀

{
exp(𝒙 · 𝒚 𝑗/𝜏) +

(
𝑚 · exp(𝒙 · 𝒚𝑖/𝜏)

)} (3)

where 𝑃 (𝒚𝑖 |𝒙;𝜏) represents the probability that vector 𝒙 belongs
to the identity 𝑖 corresponding to vector 𝒚𝑖 , 𝜏 is the temperature
hyper-parameter and 𝑚 is the margin hyper-parameter. Equiva-

lently, the above formula can be simplified to a softmax function.

Compared to the softmax function in Eq. (1), the crucial distinction

is that feature𝒚 in contrastive loss is not derived from the randomly

initialized feature archetype, but extracted from the real training

data set. This implies that classification-based loss indirectly ac-

complishes feature classification by guiding the model to collect

features onto corresponding archetypes, whereas contrastive loss

achieves a similar classification effect directly.

Moreover, the intra-modal alignment task is critical in creat-

ing a joint feature space. As the training data is fed in batches,

each iteration generates a feature subspace. The goal of intra-

modal feature alignment is to align and fuse different features.

Therefore, the efficiency of intra-modal alignment tasks signifi-

cantly impact the formation of the final joint feature space. To this

end, we propose an archetype-agnostic subspace merging strat-

egy for fusing feature subspaces through direct mutual percep-

tion by injecting the non-parametric mechanism into the within-

modal alignment task. Accordingly, the input data is extended

to 𝐼𝑖 = {𝒂𝑖 , 𝒂𝑖 , 𝒗𝑖 , 𝒗𝑖 |𝒂𝑖 ≠ 𝒂𝑖 , 𝒗𝑖 ≠ 𝒗𝑖 }𝐵𝑖=1 with auxiliary data

{𝒂𝑖 , 𝒗𝑖 }. We directly utilizes the sample features instead of fea-

ture archetypes, enabling mutual perception between features. In

terms of voice modality, the weight𝑤 𝑗 are replaced by the auxiliary

features 𝒂𝑖 , as is the face modality:

𝑃 (𝑖 |𝒂) =
exp (𝒂 · 𝒂𝑖 )∑𝐵
𝑗 exp (𝒂 · 𝒂 𝑗 )

(4)

It can be clearly observed that the Eq. (4) and contrastive learning

Eq. (2) are linked together. The invariance of intra-modal represen-

tation is optimized by minimizing the loss:

Lwma =
𝐵∑
𝑖

{
L𝑐 (𝒂𝑖 , 𝒂𝑖 ;𝜏) + L𝑐 (𝒗𝑖 , 𝒗𝑖 ;𝜏)

}
(5)

which gets rid of the archetypes under the classification-based

loss. Combining the cross-modal representation alignment loss,

the overall Archetype-agnostic Subspace Merging (AaSM) loss is

formulated as follows:

LAaSM = Lcross + Lwma (6)

where Lcross = L𝑐 (𝒂𝑖 , 𝒗𝑖 ;𝜏).
Disscussion Classification-based loss functions typically rely on

pre-defined global features. For instance, in identity loss-based

methods, the weight parameter for identity classification is rep-

resented as𝑊 ∈ R𝑁×𝐷 , where 𝑁 and 𝐷 denote the number of

identities and feature dimensions, respectively. Similarly, in center

loss-based methods, the center vector is denoted as 𝒄𝑦𝑖 ∈ R
𝑑 , repre-

senting the center of deep features for the 𝑦𝑖 -th class. Both weight
matrix𝑊 and center vectors 𝒄𝑦𝑖 serve as pre-defined centers for
different categories, acting as the archetypes of those categories.

ID: 10322
Image desc. : Multiple-
age picture mix.
Audio desc. : Multiple-
age human voice mix.

ID: 10327
Image desc. : A man with 
his eyes obscured by dark 
glasses.
Audio desc. : Audio is 
doped with female voices.

ID: 10325
Image desc. : Two faces 
captured in a single image.
Audio desc. : Standard 
male voice recording.

ID: 10912
Image desc. : A standard 
front-facing face image.
Audio desc. : Similar 
female voices in tone.

Figure 3: The distribution of GoF and the weights. As the

training process progresses, the distribution gradually shifts

from red to cyan. Furthermore, the figure illustrates the pres-

ence of loose pairs across different identities.

Consequently, alignment tasks between features can be converted

into alignment tasks between features and global archetypes. How-

ever, the introduction of archetypes increases the training burden as

they undergo random initialization and optimization during model

training. Additionally, the derived archetypes may hinder direct

mutual perception between one another, leading to indirect com-

parisons with the archetypes as intermediaries. This deviation in

modal alignment may result in poor feature matching.

3.2 Bilateral Connection re-Gauging

Although contrastive learning benefits from the large receptive

field brought by the extensive set of negative pairs[3, 13, 31], it can

only handle the qualitative multilateral connection of the anchor

in this scenario.

Next, we refine the model by identifying potential loose pairs

through quantitative re-gauging. Attributive “loose” has two-fold

meanings for data pairs: (1) Positive pairs with low similarity, such

as when the image in the positive pair contains multiple faces or

exhibits extremely fuzzy distortion, or the audio includes strong

background noise. (2) Negative pairs with high similarity. Notably,

training with ultra-loose pairs can adversely impact performance,

sowe exclude them.While optimizing the loose pairs aids in calibrat-

ing the deviated data pairs. Figure 1 shows examples of ultra-loose

pairs and loose pairs.

Therefore, we useM𝑢 andM𝑙 to filter out the ultra-loose pairs

and loose pairs, respectively. Additionally, we impose more con-

crete quantization conditions on these pairs. The masks for identi-

fying ultra-loose and loose pairs are formulated as follows:

M
𝑢
𝑖 = I

{(
(𝐿 ∗ 𝐼𝑛)𝑖,𝑖 −𝑚𝑢

)
< 0

}
M

𝑙
𝑖, 𝑗 = I

{(
𝐿𝑖, 𝑗 − (𝐿 ∗ 𝐼𝑛)𝑖,𝑖 +𝑚𝑙

)
> 0

} (7)

where𝑚𝑢 and𝑚𝑙 is the hyper-parameter threshold. Matrix 𝐿
and 𝐼 refers to the inter-modal representations similarity over mini-
batch and the unit matrix respectively.

Supposewe capture𝑇𝐾 loose pairs {(𝒂𝒏𝒌𝑖 ,𝒑𝒐𝒔𝑖 , 𝒏𝒆𝒈 𝑗 ) |𝑖 ∈ 𝐾, 𝑗 ∈

𝑇𝑖 } from 𝐾 different identity samples respectively, then define 𝑠
𝑝
𝑖 =
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ℎ(𝒂𝒏𝒌𝑖 ,𝒑𝒐𝒔𝑖 ), 𝑠
𝑛
𝑗 = ℎ(𝒂𝒏𝒌𝑖 , 𝒏𝒆𝒈 𝑗 ) where ℎ(·) is a score function

implemented using cosine similarity.

Due to the two-fold causes of loose pairs, its constraint function

must be able to adaptively reconcile the two so as to find the correct

optimization direction. Inspire by [29], the bilateral relationship

re-gauging loss is formulated as follows:

L𝑟𝑒 =
1

𝐾

𝐾∑
𝑖=1

𝑇𝑖∑
𝑗=1

1

𝑇𝑖

{
𝜂𝑛𝑗

(
𝑠𝑛𝑗 − Δ𝑛

)
− 𝜂

𝑝
𝑖

(
𝑠
𝑝
𝑖 − Δ𝑝

)}
(8)

where𝑚 is the margin that indirectly controls the between-class

Δ𝑝 = 1 − 𝑚, within-class margins Δ𝑛=𝑚, the optimal solution
𝑂𝑝=(1 +𝑚), and the coefficient 𝜂𝑛𝑗 =

[
𝑠𝑛𝑗 −𝑂𝑛

]
+
, 𝜂

𝑝
𝑖 =

[
𝑂𝑝 − 𝑠

𝑝
𝑖

]
+
.

The modified loss function using matrix operations is as follows:

L𝑟𝑒 =
1∑
M

∑{
𝐻𝑛�

(
𝐿−Δ𝑛

)
−𝐻𝑝 �

[ (
𝐿� 𝐼𝑛

)
∗ 𝐽𝑛−Δ𝑝

]}
�M (9)

𝐻𝑝 =
[
𝑂𝑝 −𝐿

]
+
� 𝐼𝑛 ∗ 𝐽𝑛, 𝐻

𝑛=
[
𝐿 +𝑚

]
+
,M=M𝑙

𝑖, 𝑗 ∧
(
𝐽𝑛 −M

𝑢
𝑖

)
(10)

where 𝐻𝑝 , 𝐻𝑛 denote the matrix form of coefficients 𝜂
𝑝
𝑖 , 𝜂

𝑛
𝑗 in

matrix operations, respectively. In particular, the matrix 𝐽𝑛 is an

all-one matrix.

3.3 Instance Equilibrium

In Figure 3, we observe that the accuracy of data varies widely

across different identities. However, high accuracy of identity data

does not necessarily mean the absence of loose pairs, as they are

still found across all identities. The crucial difference lies in the

quantity of loose pairs, which varies among different identities.

For easy-to-fit identity data containing very few ultra-loose pairs,

focusing on those pairs may hinder the model’s ability to accu-

rately fit the remaining data. On the other hand, in cases where

the identity data contains a significant proportion of challenging

loose pairs, focusing on these pairs can effectively enhance the

accuracy of the identity. Therefore, effectively balancing the loose

pairs with varying training values is key to optimizing the model’s

generalization and maximizing the utility of the training data.

To expand this motivation, we establish a mapping curve that

relates the degree of fit and weight of distinct identities initially,

as in Figure 3. For the sample of a certain identity, the Goodness

of Fit (GoF) of the sample is approximately proportional to the

accuracy of the sample matching during training. Based on the

above assumptions, we count the total number of tested items (𝑁 𝑠 )

and the number of correctly matched items (𝑁𝑐 ) from the cosine

similarity matrix (𝐿) in each mini-batch. Afterwards, we aggregate
this data over 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 mini-batches, then the GoF of a certain

identity 𝑛 can be approximated as 𝑁𝑐 divided by 𝑁 𝑠 :

𝐺𝑜𝐹𝑛=

𝑇𝑢𝑝𝑑𝑎𝑡𝑒∑
𝑡=0

𝐵∑
𝑖=0

{
I
[
𝑦
(
𝐿 (𝑡 )𝑖,𝑖

)
== 𝑛

] 𝐵∑
𝑖≠𝑗, 𝑗=0

(
𝐿 (𝑡 )𝑖, 𝑗 < 𝐿

(𝑡 )
𝑖,𝑖

)}

∑𝑇𝑢𝑝𝑑𝑎𝑡𝑒
𝑘=0

∑𝐵
𝑖=0 I

[
𝑦
(
𝐿
(𝑘 )
𝑖,𝑖

)
== 𝑛

]
· 𝐵

(11)

where 𝑦 (·) represents the mapping from anchor to identity label,

𝑇𝑢𝑝𝑑𝑎𝑡𝑒 is a hyperparameter, indicating that every 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 itera-
tions will reassign weight coefficient.

The degree of fit is categorized into three sections: fitting-prone,

underfitting-prone, and semi-fitting. The weight assigned to the

fitting-prone section decreases with increasing degree of fit, while

greater weight is assigned to the remaining sections. At first glance,

it seems feasible to model the curve simply as an inverse relation-

ship between the weight dependent variable and the GOF inde-

pendent variable. However, we contend that the intrinsic factor,

‘Personalization’, is a crucial determinant of the curve shape. The

degree of personalization, defined as the level of specificity of an

identity, is inversely proportional to the model’s generalization

performance. Since a high degree of personalization will lead to

the underfitting-prone samples, so identity categories with high

personalization and low GoF are also assigned small weights.

Further, the Instance Equilibrium strategy is utilized to suppress

the fitting-prone and underfitting-prone data while focusing more

on semi-fitting data. After training the model for a specified number

of iterations, we display the distribution of training data, as shown

in Figure 3. Since the bell curve of Gaussian distribution coincides

with our weight distribution strategy, a slight adjustment is made

to the probability density function (PDF) of Gaussian distribution

in order to regulate the weight curve:

𝝎𝑖 = 𝐺
(
𝐺𝑜𝐹𝑖 ; 𝜇 + 𝜆𝜎,−𝜉𝜎

2) (12)

where 𝐺 (·) is the probability density function of the Gaussian dis-

tribution 𝑁
(
𝜇 + 𝜆𝜎, 𝜉𝜎2

)
, 𝜇 and 𝜎 denote the mean and standard

deviation, respectively. To improve the accuracy of model matching,

it is necessary to apply a left offset to the curve for fine-tuning.

The hyperparameters 𝜆 and 𝜉 are used to control the shape of the
curve which sensitive to our strategies. Negative hyperparameters

𝜆 is used to implement the left offset, namely |𝜆𝜎 |. Imposing the
weights calculated by Eq. (12) on the re-gauging loss, then it can be

modified as:

L𝑟𝑒 =
1

𝐾

𝐾∑
𝑖=1

𝑇𝑖∑
𝑗=1

𝝎𝑖

𝑇𝑖

{
𝜂𝑛𝑗

(
𝑠𝑛𝑗 − Δ𝑛

)
− 𝜂

𝑝
𝑖

(
𝑠
𝑝
𝑖 − Δ𝑝

)}
(13)

We then minimize the weighted sum of the two losses:

L𝑎𝑙𝑙 = LAaSM + L𝑟𝑒 (14)

Apply to loose pairs vs.all pairs: Because of the radical strategy

of instance equilibrium, some identities are given zero weight. Base

on this premise, when imposing weight on all loss functions, the

model can only passively fit identity samples with zero weights ac-

cording to the patterns of other identities. What’s worse, due to the

instability of the initial weight, the proportion of zero-weight sam-

ples will be increased which will keep a lid on model performance.

Therefore, instead of covering all the loss functions with weight,

we feed all the data indiscriminately into the Bilateral connection

re-Gauging loss to ensure the stability of the model training.

4 EXPERIMENTS

4.1 Datasets

We evaluating our method on two datasets including combined

dataset Vox-CM which still face images and audio flips are ex-

tracted from availabled dataset VGGFace[26] and VoxCeleb[23]
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Table 1: Details of the datasets.

Dataset Partition Train Validation Test Total

Vox-CM

Voice clips 113,322 14,182 21,850 12,362
Face images 104,724 12,260 20,076 91,238
Identities 924 112 189 1,225
Queries(V2F) – 42,546 65,550 108,096
Queries(F2V) – 36,780 60,228 97,008

AVSpeech-CM

Voice clips 12,357 1,505 3,096 16,958
Face images 91,238 8,631 18,045 117,914
Identities 400 50 100 550
Queries(V2F) – 43,645 54,135 97,780
Queries(F2V) – 43,155 52,632 95,787

respectively and a new dataset AVSpeech-CM constructed in-house

which will be made publicly available soon.

Vox-CM VGGFace comprises of 982,803 still face images with 2.6M

identities collected by querying raw images in Image Search. Mean-

while, VoxCeleb is an audio-visual dataset consisting of short clips

of human speech, containing over 100,000 utterances for 1,251

celebrities with video and audio format. To meet the requirement of

proposed tasks, we use only data with 1,225 identities overlapped

between VGGFace and VoxCeleb. For fair comparison, we follow the

train/val/test split strategy from Wen et al.[34] in our experiments.

Note that no intersection among these sets.

AVSpeech-CMWe introduce a new audio-visual dataset for cross-

modal face and voice association learning base on large-scale dataset

AVSpeech [8] which comprising speech clips with no interfering

background signals. Since in each clip the only visible face and

audible sound belong to a single speaking person, such inherent

mapping can be broken down to get the data pair we want. Specif-

ically, to accommodate the needs of various tasks of cross-modal

face and voice association learning, the dataset creation pipeline

is proposed as follows: First, we separate the video frames and

audio from the video. Secondly, face images are obtained from the

video frames by the OpenCV face recognition method while audio

clips are divided according to AVSpeech author annotations. Third,

we pre-train a gender prediction model on VoxCeleb and apply

it on AVSpeech to obtain gender labels while filtering the data

with low confidence level. Based on the criterion of gender balance

and high quality of individual data, we screen out 550 identities to

make up our dataset, named as AVSpeech-CM (Cross-Modal). The

train/validation/test sets is divided according to the ratio of 8:1:2.

To reduce the impact of random data, the tasks of validation and

test are based on the queries lists provided in advance which specify

the data pairs of voices and faces. More statistical information for

the datasets are shown in the Table 1.

4.2 Implementation Details

Network Architecture The architecture of our network is com-

prised of two sub-networks which are utilized to extract features:

the FaceSubnetwork and the VoiceSubnetwork, which are fed with

still images of faces and audio clips repectively.

FaceSubnetwork.The faceSubnetwork is implementedwith ResNet

152. The size of the image inputted is 112,112,3, which is normal-

ized to [-1, 1] by subtracting 127.5 and dividing 127.5. The output

feature is 128 dimensions to which is remapped by the followed

fully connected layer from 512 dimensions.

VoiceSubnetwork. The voiceSubnetwork is implemented with

ThinResNet34, of which inputs is a spectrogram of audio. Briefly,

the MelSpectrogram utilized as input is generated using mono raw

audio signal by applying Short-time Fourier Transform STFT and

triangular filters with 40 mel filterbanks and a hamming sliding

window of width 25ms and of hop 10ms.

Training Strategy. The training process can be divided into two

phases: warming up training and training with coordinated weight

coefficients. The weight of best performance on validation set will

be saved for evaluation. To speed up model convergence, we sample

different identities in each mini-batch to ensure maximum identity

diversity. The faceSubnetwork is pre-trained on MS-1M [10] driven

by face recognition task while voiceSubnetwork is pre-trained on

VoxCeleb2 [7] driven by audio speaker recognition.

For data-processing, we apply data augmentation for images,

e.g.random cropping, flipping and apply random audio duration

clipping for audios. Meanwhile, we adopt stochastic gradient de-

scent (SGD) optimizer withmini-batch size of 20 and 0.9 momentum.

The learning rate is initialized as 1𝑒 − 2 , and decays by 0.1 in the

6888 and 9888 iterations. Hyper-parameters set in our model are as

follows:𝑚 = 3.4,𝑚𝑙 = 0.2,𝑚𝑢 = 0.15, 𝑇𝑤𝑎𝑟𝑚 = 6440, 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 920.
Evaluation protocol To assess the performance of model, the

following evaluation tasks are selected.

(a) 1:2 matching Given three samples consist of one face image

as probe and two audio segment as gallery, or vice verse. There

is only one sample, known as positive candidate, in the gallery

whose identity is consistent with query. While the rest, of course,

are called negative candidates. The task is to find out candidates in

the gallery who match the identity of query. The performance is

measured with accuracy (ACC).

(b) 1:N matching The task is essentially the same as 1:2 match-

ing, and the only change is to enlarge the number 𝑁 of negative

candidates. We restricted N to the range of 2 to 10, and the accuracy

is utilized to measure the performance.

(c) Verification Given two instances sampled from different

modalities. The task is to determine whether they belong to the

same identity or not. The performance is measured with Area Under

the ROC curve (AUC).

(d) Retrieval This task is more challenging than the 1: N match-

ing task because it has more than one positive candidates in the

gallery. This task is to rank the gallery to make sure those with

high similarity to probe are ranked at the top. The performance is

measured with mean average precision (mAP) [18].

We obtain the measurement of each task in two different sce-

narios, voice to face (V2F) and face to voice (F2V). Similarly, we

subdivide the query lists for testing into two categories: gender

unrestricted (U) and gender restricted (G). This means that when

testing in the gender restricted list, the model cannot regard gender

as the basis for judgment.

4.3 Quantitative Results

We compare our proposed method with four representative models,

including SVHF[21], DIMnet[35], Wang’s[32], Wen’s[34]. Due to

the limitation of the model structure, only partial task results are
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Table 2: The result of multiple tasks on Vox-CM and AVSpeech-CM. V2F:from voice to face, F2V:from face to voice; U: gender

unrestricted; G: gender restricted. The best results of our models are shown in bold.

Datasets Tasks
1 : 2Matching (ACC) Verification (AUC) Retrieval (mAP)

V2F(U) F2V(U) V2F(G) F2V(G) V2F(U) F2V(U) V2F(G) F2V(G) V2F F2V

Vox-CM

SVHF[21] 81.00 79.50 63.90 63.40 – – – – – –

DIMNet-I[35] 84.06 82.92 73.32 70.29 82.69 82.61 71.51 69.81 5.50 3.92

DIMNet-IG[35] 84.39 83.70 73.15 71.67 83.10 83.56 72.07 71.14 4.68 4.01

Wang’s[32] 84.76 84.87 74.10 74.22 84.25 84.87 74.63 74.74 5.13 4.45

Wen’s[34] 87.20 86.50 77.70 75.30 87.20 87.00 75.50 76.10 5.50 5.80

Ours 87.87 88.63 78.90 78.58 88.42 89.02 79.17 78.95 6.77 7.16

AVSpeech-CM

SVHF[21] 67.28 69.96 51.25 54.03 – – – – – –

DIMNet-I[35] 70.07 70.68 61.53 62.18 68.8 70.36 60.42 60.84 7.23 9.07

DIMNet-IG[35] 70.49 71.01 61.63 63.11 70.2 71.53 60.54 61.53 8.68 5.52

Wang’s[32] 72.04 72.54 62.75 64.95 72.56 74.67 62.74 65.03 7.01 5.99

Wen’s[34] 72.53 74.36 64.38 66.96 73.08 74.58 64.07 65.86 9.55 8.49

Ours 80.29 79.98 68.78 67.81 80.69 81.16 68.63 69.05 11.80 13.43

(a) F2V(U)/Vox-CM (b) V2F(U)/Vox-CM (c) F2V(G)/AVSpeech-CM (d) V2F(G)/AVSpeech-CM

Figure 4: Quantitative results on 1:N matching task.

available. Table 2 shows the quantitative results of our method and

its competitors on both datasets. The performance of our method

on all tasks significantly surpass all the competitors. Compared to

the state-of-the-art on Vox-CM, except for the small improvement

on task 1 (about 0.67%), other tasks have obvious improvement,

bringing an average performance gain of 2%.

In the horizontal comparison of Table 2, it is obvious that the

presence or absence of gender constraints has a great influence on

the model results. The results of model drop by an average of 9%

with the same gender constraint on the training set. This suggests

that gender plays a key role in inter-modal associations. Compared

to previous methods, it is clear that this gap is narrowed in our

method. Especially on the validation task of V2F and the matching

task of F2Vwithout gender restriction, performance gains as high as

3.67% and 3.28% are achieved, respectively. Such large improvement

has been obtained with the absence of the discriminant factor of

gender fully demonstrates that our method can mine deeper gender-

irrelevant connections.

To further verify the generalization performance of our method,

we evaluate our method on AVSpeech-CM and report the corre-

sponding results in Table 2. Similar conclusions can be obtained for

AVSpeech-CM as for Vox-CM. What’s more, we show the results of

the proposed method on the 1:N matching task on two datasets in

Fig 4. As the value of N increases, the difficulty of the matching task

keeps increasing and the gap between the previous method and our

method keeps getting bigger. On the other hand, the performance

of the previous method drops significantly, while our method drops

relatively gently. It shows that the features extracted by our method

are more accurate and discriminative.

4.4 Qualitative Results

We used two different markers and various colors to distinguish

between modal information and identity, respectively. We then

visualized the feature extraction results of the model under different

iterations, as shown in Figure 5. The figure illustrates that as the

model iteratively trains, features of the same identity consistently

cluster together. Furthermore, we observed that audio information

clusters together before image information. This could be attributed

to audio’s smaller information capacity and themodel’s faster fitting

degree. The image on the far right demonstrates that the model

effectively clusters features of the same identity together under

optimal weight, and also establishes connections between different
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(a) Chance (b) After 600 iterations (c) After training (d) Test set visualization

Figure 5: Visualization results of voice and face representations on Vox-CM. Distinct identities are denoted by different colors,

while dissimilar markers are used to represent embeddings of different modalities.

modal features. That’s means the learned representations cross

the boundaries of modalities and be mapped into a shared space,

demonstrating the effectiveness of the proposed method.

However, we noticed clusters of different modal information of

different identities in the figure, which could be due to the fact that

two-dimensional data points after dimensionality reduction could

not accurately express the distance relation of high-dimensional

features. From another point of view, this observation also proved

the existence of different identities with high matching similarity

in the test set.

4.5 Ablation Study

We perform an ablation study to demonstrate the effectiveness of

the proposed three module: 1) the archetype-agnostic subspace

merging, 2) the bilateral connection re-gauging and 3) the instance

equilibrium. For 1), we build the model with archetype-dependent

loss strategy as opposed to our archetype-agnostic strategy with

other modules are not modified. Specifically, we use identity loss

and center loss to implement two different archetype-agnostic loss

respectively. For 2) and 3), We remove the relevant modules and

leave the remaining modules unchanged. We show the results on

data set Vox-CM in Table 3.

Effectiveness of the archetype-agnostic subspace merging.

Comparing the subspace fusion driven by archetype-agnostic loss to

the ones driven by archetype-dependent loss which implemented by

center loss and identity loss is marked with (a) and (b), respectively.

We observe that AaSM obtains obvious improvement (e.g. on Vox-

CM, AaSM brings about 1.10% to 4.30% performance improvement).

This is because although the archetype-dependent loss function

makes the sample instances tend to the corresponding archetype, it

does not mean different samples can be in a reasonable position in

the feature space. This comparison demonstrates the AaSM can act

directly on the sample relationship so that the mutual perception

between samples can ensure that the sample representations are

more accurate which promotes the fusion of the modal subspace.

Effectiveness of the bilateral connection re-gauging. Compar-

ing (d) and (e), we can deduce that the module of bilateral connec-

tion re-gauging bring about 1.70% improvement which manifests

its effectiveness. Such improvements can be explained by deeper

exploration: Removing the re-gauging module will result in the un-

availability of the loose pairs, thus degrading instance equilibrium

from instance-level to identity-level. Intuitively, instance equilib-

rium mechanism will impose the weights on all the instances. It

Table 3: Ablation studies of different modules.

Archetype Bilateral

re-Gauging

Identities

equilib.
Match. Verif.

-agnostic -depend.

(a) 80.3 81.0

(b) 86.2 86.1

� (c) 87.3 87.8

� (d) 87.1 87.2

(e) 88.6 89.0

means that even the non-loose pairs that are easy to learn can be

given heavy weight. That’s why filtering out the loose pairs by the

bilateral connection re-gauging can work.

Effectiveness of the instance equilibrium. Comparing (c) and

(e), it can be seen after imposing the instance equilibrium strategy,

the model gain an average increase of about 1.41% which confirms

the idea that loose pairs have different values. Hence, the instance

equilibrium is indispensable to loose pairs.

5 CONCLUSION

This paper has proposed a novel archetype-agnostic framework for

learning the association between voice and face, which consists of

the following three modules: 1) An archetype-agnostic subspace

merging strategy is utilized to perform feature calibrationwhich can

well get rid of the archetype dependence. 2) An efficient Bilateral

Connection re-Gauging scheme is proposed to quantitatively screen

the loose pairs, featuring on calibrating the biased data pairs. 3)

The instance equilibrium strategy is proposed for focusing more on

valuable loose pairs while suppress the counter-productive effect

of ultra-loose pairs. The experiment results have shown that the

proposed voice-face association learning framework has shown its

outstanding and improved performance.
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