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Abstract. This paper proposes a general approach named Expectation-
MiniMax (EMM) for clustering analysis without knowing the cluster
number. It describes the contrast function of Expectation-Maximization
(EM) algorithm by an approximate one with a designable error term.
Through adaptively minimizing a specific error term meanwhile maximiz-
ing the approximate contrast function, the EMM automatically penalizes
all rivals during the competitive learning. Subsequently, the EMM not
only includes the Rival Penalized Competitive Learning algorithm (Xu et
al. 1993) and its Type A form (Xu 1997) with the new variants developed,
but also provides a better alternative way to optimize the EM contrast
function with at least two advantages: (1) faster model parameter learn-
ing speed, and (2) automatic model-complexity selection capability. We
present the general learning procedures of the EMM, and demonstrate
its outstanding performance in comparison with the EM.

1 Introduction

In the literature, the conventional clustering algorithm k-means [4] has been
widely used in a variety of applications, which however needs to pre-assign
an appropriate cluster number. Otherwise, it often leads to a poor clustering
result. Unfortunately, such a setting is an intractable problem from a prac-
tical viewpoint. Alternatively, clustering problem has been studied by formu-
lating as a finite mixture of Gaussian densities, in which each density gen-
erally describes a cluster in any elliptic shape and in any portion of samples
[8]. Subsequently, the Gaussian mixture with the parameters estimated by the
Expectation-Maximization (EM) algorithm [3] provides a general solution for
clustering in parallel [3, 5]. However, in analog with the k-means algorithm, it
still needs to pre-assign the correct number of densities.

In the past decades, some works have been done towards determining the
correct number of clusters or densities along two major lines. The first one is
to formulate the cluster number selection as the choice of component number
in a finite mixture model. Consequently, there have been some criteria proposed
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for model selection, such as AIC [1], SIC [6] and so forth. Often, these existing
criteria may overestimate or underestimate the cluster number due to the dif-
ficulty of choosing an appropriate penalty function. In recent years, a number
selection criterion developed from Ying-Yang Machine has been proposed and
experimentally verified in [8], whose computing however is laborious.

In contrast, the other line aims to select an appropriate cluster number au-
tomatically by algorithms themselves during the competition learning without
a large amount of extra computing. In the literature, the typical example is
the Rival Penalized Competitive Learning (RPCL) algorithm [9] and its variant
RPCL (Type A) [8]. Its basic idea is that for each input, not only the winner of
the seed points is updated to adapt to the input, but also its nearest rival (the
second winner) is de-learned by a smaller learning rate (also called de-learning
rate hereafter). Many experiments have shown that the RPCL can perform well
in clustering analysis without knowing the cluster number. However, such a pe-
nalization scheme is heuristically proposed without any theoretical guidance. In
this paper, we propose a general learning approach named Expectation-MiniMax
(EMM) that describes the contrast function of EM algorithm by an approximate
one with a designable error term. Through adaptively minimizing a specific er-
ror term meanwhile maximizing the approximate contrast function, we will show
that the EMM automatically possesses the penalization scheme to punish all ri-
vals during the competitive learning. Subsequently, the EMM not only includes
the RPCL and its Type A form with the new variants proposed, but also shows
that such a rival penalized learning actually provides a better alternative way
to optimize the EM contrast function with at least two advantages: (1) faster
model parameter learning speed, and (2) automatic model-complexity selection
capability. We will give out the general learning procedures of the EMM, and
show its superior performance in comparison with the EM.

2 Expectation-MiniMax (EMM) Learning Approach

2.1 General Learning Framework

Suppose N observations x1, x2, . . ., xN are independently and identically dis-
tributed from an identifiable finite-mixture density population:

p∗(x; Θ∗) =
k∗∑

j=1

α∗jp(x;θ∗j ),
k∗∑

j=1

α∗j = 1, and α∗j > 0, (1)

where k∗ is the true mixture number of densities, Θ∗ = {(α∗j , θ∗j )|1 ≤ j ≤ k∗} is
the unknown true parameter set. The paper [3] shows that the estimate of Θ∗,
written as Θ, can be achieved by maximizing the following contrast function:

Q(XN ; Θ) =
1
N

N∑
t=1

qt(xt; Θ), (2)



with

qt(xt;Θ) =
k∑

j=1

h(j|xt) ln[αjp(xt; θj)], (3)

where XN = [xT
1 ,xT

2 , . . . ,xT
N ]T , and the candidate mixture number k measures

the model complexity. Furthermore, h(j|x) is the posterior probability of the jth

density as given x with

h(j|x) =
αjp(x; θj)
p(x; Θ)

=
αjp(x;θj)∑k

r=1 αrp(x; θr)
, (4)

and

p(x; Θ) =
k∑

j=1

αjp(x; θj),
k∑

j=1

αj = 1, αj > 0. (5)

Hence, with a specific k, minimizing Eq.(2) can be implemented by an adaptive
EM algorithm [7]. In Eq.(3), we further replace h(j|xt) by

I(j|xt) =
{

1, if j = c = arg max1≤r≤k h(r|xt);
0, otherwise. (6)

Subsequently, the contrast function Q(x; Θ) in Eq.(2) is approximated by

R(XN ; Θ) =
1
N

N∑
t=1

Jt(xt;Θ), Jt(xt; Θ) =
k∑

j=1

I(j|xt) ln[αjp(xt; θj)]. (7)

We therefore express Q(XN ; Θ) by

Q(XN ; Θ) = R(XN ;Θ)− E(XN ;Θ) (8)

with E(XN ;Θ) = 1
N

∑N
t=1 e(xt;Θ), e(xt; Θ) ≥ 0, where E(XN ;Θ) is the aver-

age approximate error, and e(xt;Θ) measures an instantaneous error at time step
t. In general, E(XN ;Θ) varies with the change of Θ, thus maximizing R(XN ; Θ)
is not equivalent to maximize Q(XN ; Θ). That is, we should minimize the ap-
proximate error E(XN ; Θ), meanwhile maximizing R(XN ;Θ). Subsequently, at
each time step t, after calculating h(j|xt)s by Eq.(4) (also called the Expec-
tation-step in the EM), we adjust the parameters with a small step towards
minimizing e(xt; Θ) meanwhile maximizing Jt(xt; Θ). We name such a learning
Expectation-MiniMax (EMM) approach. It can be seen that EMM degenerates
to the EM learning [3] as the error e(xt; Θ) = ē(xt; Θ) = Jt(xt; Θ)−qt(xt; Θ). In
the EMM, we have noticed that replacing h(j|xt)s by I(j|xt)s at each time step
t eventually brings about E(XN ;Θ). Hence, we can generally describe the error
e(xt; Θ) as a function of both h(j|x)ts and I(j|xt)s so long as each e(xt; Θ) ≥ 0
holds. Subsequently, we can describe the relationship between it and Ē(XN ; Θ)
= 1

N

∑N
t=1 ē(xt;Θ) by

Ē(XN ;Θ) = λ(Θ)E(XN ; Θ), (9)



where λ(Θ) is a positive scale number, which is generally a function of Θ only,
irrelevant to N observations. Hence, estimation of Θ by maximizing Q(XN ; Θ)
in Eq.(2) is equivalent to maximize

Qm(XN ; Θ) = R(XN ; Θ)− λmE(XN ;Θ) (10)

where λm represents the scale number calculated via Eq.(9) with the value of Θ
being the optimal solution of maximizing Q(XN ; Θ) in Eq.(2). Under the cir-
cumstances, it can be seen that maximizing Eq.(10) via the EMM generally leads
to the same solution as the EM. In general, we however need not estimate λm.
Instead, we simply regard λm as a constant during the learning. Subsequently,
the EMM provides an approximate, but better way to maximize Q(XN ;Θ) of
Eq.(2). In the following subsection, we will give out a general EMM learning
algorithm under a specific modeling of E(XN ; Θ).

2.2 A General EMM Learning Algorithm

We let

E(XN ;Θ) =
1
N

N∑
t=1

e(xt; Θ) =
1
N

N∑
t=1

k∑

j=1

[I(j|xt)− h(j|xt)]2. (11)

Eq.(10) can then be specified as

Qm(XN ;Θ) =
1
N

N∑
t=1

k∑

j=1

Jt(xt;Θ)− λm
1
N

N∑
t=1

k∑

j=1

e(xt; Θ). (12)

Hence, maximizing Qm(XN ; Θ) in Eq.(12) can be realized towards maximizing
R(XN ; Θ) meanwhile minimizing E(XN ; Θ). In adaptive implementation, we
have the following EMM learning algorithm:

Step 1 Initialize the parameter set Θ as given a specific k.
Step 2 Given each input xt, calculate I(j|xt) by Eq.(6) with h(j|xt) given by

Eq.(4) with Θ fixed.
Step 3 Fix I(j|xt), update Θ with a small step towards the direction of max-

imizing R(XN ; Θ). To avoid the constraint on αjs during the learning, we
let αjs be the soft-max function of k totally-free new variables βjs with

αj =
exp(βj)∑k

r=1 exp(βr)
. (13)

Subsequently, we update

β(new)
c = β(old)

c + η1
∂Jt(xt;Θ)

∂βc

|
β

(old)
c

(14)

θ(new)
c = θ(old)

c + η1
∂Jt(xt; Θ)

∂θc
|
θ
(old)
c

, (15)



where η1 is a small positive step size. We denote the updating results of
Step 3 as Θa = {βa

j , θa
j }k

j=1 with

βa
j =

{
β

(new)
c , if j = c,

β
(old)
j , if j 6= c

θa
j =

{
θ(new)

c , if j = c,

θ
(old)
j , if j 6= c.

(16)

Step 4 Fix Θa, we let

ha(j|xt) =





α(new)
c p(xt;θ

(new)
c )

p(xt;Θa) , if j = c

α
(old)
j p(x;θ

(old)
j )

p(xt;Θa) , otherwise,
(17)

with α
(new)
c calculated by Eq.(13) based on β

(new)
c and those β

(old)
j s with

j 6= c. Then, we adjust Θ(old) with a small step towards the direction of
minimizing E(XN ; Θ), where e(xt;Θ) is explicitly given as

e(xt; Θ) = (Ia
t − ha

t )T (Ia
t − ha

t ) (18)

with

Ia
t = [Ia(1|xt), Ia(2|xt), . . . , Ia(k|xt)]T (19)

ha
t = [ha(1|xt), ha(2|xt), . . . , ha(k|xt)]T (20)

Ia(j|xt) =
{

1, if j = arg max1≤r≤k ha(r|xt);
0, otherwise. (21)

It can be shown that Ia
t must be equal to It. Since Θa is fixed, it implies

that ha(c|xt) is a constant in this step. Hence, we only need to adjust those
remaining parameters in Θ except for βc and θc, denoted as Θ̃ hereafter.
Furthermore, we notice that there is a summation constraint on αjs as shown
in Eq.(5), the updating of βc only in Eq.(14) is, in effect, to automatically
update those αjs with j 6= c with a small step towards the direction of
minimizing E(XN ;Θ). Hence, at this step, we need not update those αjs
with j 6= c. Subsequently, we have, for ∀1 ≤ j ≤ k with j 6= c,

θ
(new)
j = θ

(old)
j − η2

∂e(xt; Θa)
∂θj

|
Θ̃

(old) (22)

= θ
(old)
j − η2

ha(j|xt)
p(xt; Θa)

∂

∂θj
[αjp(xt; θj)]|Θ̃(old) , (23)

where η2 = η1λm is the learning step in Step 4, and Ia
t must be equal to

It for each time step t. In Eq.(23), extra computing is required to calculate
p(xt;Θa) and ha(j|xt)s with j 6= c. For simplicity, we hereafter further
approximate p(xt; Θa) by p(xt; Θ(old)), those ha(j|xt)s with j 6= c then
become h(j|xt)s. That is, Eq.(23) is approximated by

θ
(new)
j = θ

(old)
j − η2

h(j|xt)

p(xt;Θ(old))

∂

∂θj
[αjp(xt;θj)]|Θ̃(old) (24)

for ∀1 ≤ j ≤ k with j 6= c.



Step 5 Step 1 – Step 4 are repeated for each input until Θ converges.

If we further let each mixture component p(x; θj) be a Gaussian density, written
as G(x;mj , Σj), where mj and Σj are the mean and covariance matrix of x,
respectively, the previous Step 3 and Step 4 can then explicitly become

Step 3 Update θc with I(c|xt) = 1 only by

β(new)
c = β(old)

c + η1(1− α(old)
c ) (25)

m(new)
c = m(old)

c + η1Σ
−1
c

(old)
(xt −m(old)

c ) (26)

Σ−1
c

(new)
= (1 + η1)Σ−1

c

(old) − η1Ut,c (27)

with Ut,c = [Σ−1
c

(old)
(xt −m(old)

c )(xt −m(old)
c )T Σ−1

c

(old)
].

Step 4 Update those θjs with j 6= c (we call them as rivals hereafter). That is,

m(new)
j = m(old)

j − η2h
2(j|xt)Σ−1

j

(old)
(xt −m(old)

j ) (28)

Σ−1
j

(new)
= [1− η2h

2(j|xt)]Σ−1
j

(old)
+ η2h

2(j|xt)Ut,j . (29)

If we fix η2 at zero and initialize the seed points mjs such that each true cluster
contains at least a seed point, it can be seen that the EMM actually degenerates
to the k∗-means algorithm [2]. Otherwise, the EMM not only updates the winner
of the component parameters βc and θc in Step 3, but also penalizes all rivals
with a de-learning rate η2 in Step 4. In consistence with the updating equations
of mc and Σc in Eq.(26) and Eq.(27) respectively, we therefore name ηj,t =
η2h

2(j|xt) with j 6= c as the penalization force rate of the rival with the subscript
j. Compared to the exiting RPCL (Type A), the EMM algorithm extends it with
the two generalizations:

1. At each time step, the EMM penalizes all rivals rather than the nearest rival
of the winner in the RPCL (Type A).

2. The penalization force rate in EMM is dynamically changed, while the RPCL
(Type A) set the so-called de-learning rate constantly.

Hence, in analog with the RPCL (Type A), the EMM can automatically deter-
mine the correct cluster number so long as k in Step 1 is not less than k∗. If
we further simply penalize the nearest rival only each time in the same way as
the RPCL and its Type A variant, and always fix its penalization force rate at
a constant, written as η̄τ , the EMM then degenerates to the RPCL (Type A).
Furthermore, during the clustering, if we further fix all αj = 1

k , and Σj = I for
∀1 ≤ j ≤ k, where I is the identity matrix, the learning rule of the seed points
mjs in the EMM is then equivalent to that of the RPCL [9]. That is, either of
RPCL or RPCL (Type A) is a special case of the EMM.

3 Experimental Demonstration

To show the performance of the EMM in comparison with the EM, we randomly
generated the data points from a mixture of three bivariate Gaussian distribu-



tions:

p(x) = 0.3G[x|
(

1
1

)
,

(
0.15, 0.05
0.05, 0.25

)
] + 0.4G[x|

(
1.0
2.5

)
,

(
0.15, 0.0
0.0, 0.14

)
]

+0.3G[x|
(

2.5
2.5

)
,

(
0.15, −0.1

−0.1, 0.15

)
] (30)

with the sample size 1, 000. We used six seed points, i.e., k > k∗ = 3, and
randomly set the learning rate η1 = η2 = 0.001.

Fig. 1 shows the parameter learning curves of the EMM and the EM, re-
spectively. It can be seen that the EM learning speed is much slower than the
proposed EMM. Actually, the parameters learned by the EMM have converged
after 40 epoches, but the EM not despite 800 epoches. In the EMM, one snap-
shot at Epoch 40 found that {αi, θi} with i = 1, 2, 4 all converged to the correct
values, meanwhile α3 = α5 = α6 = 0. From the winning rule of Eq.(6), we know
that the densities of 3, 5, 6 have become dead because they have no chance any
more to win in the competition learning process. In other words, the data set is
recognized to be a mixture of the three densities: 1, 2, 4. Hence, the EMM has
the robust performance without knowing the exact cluster number. In contrast,
it was found that the EM leaded six densities to compete each other without
making extra densities die. Subsequently, all the parameters were converged to
the wrong positions. That is, the EM cannot work in this case.

4 Conclusion

This paper have proposed a general Expectation-MiniMax learning approach
that not only includes the RPCL and its Type A form with the new variants
developed, but also shows that such a penalized learning actually provides an
alternative way to optimize the EM contrast function. Compared to the EM, the
EMM converges much faster with the robust performance in clustering analysis
without knowing the cluster number. We have presented the general learning
procedures of the EMM, and successfully demonstrated its superior performance
in comparison with the EM.
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