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ABSTRACT
Cheung and Xu 2001 has presented a dual structural recur-
rent radial basis function (RBF) network by considering the
different scales in net’s inputs and outputs. However, such
a network implies that the underlying functional relation-
ship between the net’s inputs and outputs is linear separable,
which may not be true from a practical viewpoint. In this
paper, we therefore propose a new recurrent RBF network.
It takes the net’s input and the past outputs as an augmented
input in analogy with the one in (Billings and Fung 1995),
but introduces a scale tuner into the net’s hidden layer to bal-
ance the different scales between inputs and outputs. This
network adaptively learns the parameters in the hidden layer
together with those in the output layer. We implement this
network by using a variant of extended normalized RBF
(Cheung and Xu 2001) with its hidden units learned by the
rival penalization controlled competitive learning (RPCCL)
algorithm (Cheung 2002). The experiments have shown the
outstanding performance of the proposed network in recur-
sive function estimation.

1. INTRODUCTION

In the past, radial basis function (RBF) network has been
extensively studied due to its simple architecture and fast
learning [2, 3, 6]. Typically, a RBF net describes its output
to be a function of the inputs only. However, in some prac-
tical problems such as nonlinear adaptive noise cancellation
problem [1] and the representation of finite state automata
[7], the net’s output depends on the past ones as well as
the inputs. Under the circumstances, such a network cannot
work well. In the literature, one improved RBF architecture
is to take the net’s input and the past outputs as an aug-
mented input [1]. However, this method requests the scale
of network’s output to be the same as the inputs. Otherwise,
it can lead to a poor clustering result in the hidden layer,
whereby the net’s performance considerably deteriorates.
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FRG/02-03/I-06.

In our recent paper [5], we have presented a dual struc-
tural radial basis function (DS-RBF) network, which is a hy-
brid system consisting of two sub-RBF networks. One sub-
network models the functional relationship between the cur-
rent network’s output and the past ones, and the other one
describes the relationship between the current output value
and the inputs. We have implemented each sub-RBF net-
work by using a new variant of extended normalized RBF
(ENRBF) net. The experiments in [5] has successfully shown
the outstanding performance of DS-RBF in nonlinear recur-
sive function approximation. However, we have also no-
ticed that the DS-RBF supposes the underlying functions
to be linear-separable, i.e., the function can be linearly de-
composed into two ones that are the functions of the net’s
current inputs and past outputs respectively, which however
may not be true from a practical viewpoint.

In this paper, we propose a new recurrent RBF network
which takes the net’s input and the past outputs as an aug-
mented input in analogy with the one in [1], but introduces
a scale tuner into the net’s hidden layer to balance the scales
between inputs and outputs. We learn the tuner’s parame-
ter together with those in the output layer, resulting in the
parameters in the hidden layer and output layer are learned
in an iterative way, rather than a two-separate steps as like
in [6]. We have given out the learning algorithm of this
network with its hidden units learned by the Rival Penaliza-
tion Controlled Competitive Learning (RPCCL) algorithm
[4] rather thank-means. The advantage is that the former
can automatically drive the centers of extra hidden units far
away from the input data set, whereby we can circumvent to
pre-determine the number of hidden units. The experiments
have shown the proposed net’s outstanding performance.

2. PROBLEM

Given a set ofN training data points{xt, zt}N
t=1, where

xt = [xt,1, xt,2, . . . , xt,d]T andzt ∈ <n are the input at
timet and the corresponding desired output respectively, we
describe the relations betweenzt’s andxt’s by the following



recursive function:

zt = F (Zt−1,xt) + et (1)

with Zt−1 = [zT
t−1, z

T
t−2, . . . , z

T
t−q]T , whereF (.) is an

unknown deterministic nonlinear function andet is white
noise. The task of a recurrent RBF network is to approxi-
mate this function through the given training data set with
the network’s generalization ability as good as possible un-
der a certain measurement.

3. NEW RECURRENT RBF NETWORK

3.1. General Structure

In analogy with the conventional RBF network [6], the pro-
posed recurrent RBF network consists of ak-unit hidden
layer and ann-unit output layer as shown in Figure 1, where
the network takes the net’s current inputxt and the past
outputsZt−1 as an augmented input. Although such a net-
work is similar to that in [1], a new component namedInput
Scale Tuner(IST) is introduced into the hidden layer. Its
main goal is to unify the different scales between inputs and
outputs before performing clustering. In mathematics, the
functionality of this component can be generally described
as:

x̃t = h1(xt;Θ1)
Z̃t−1 = h2(Zt−1;Θ2), (2)

whereΘi, i = 1, 2, denotes the parameter set of function
hi. When an inputxt and the past outputsZt−1 presented in
the input layer, the IST transforms it toUt = [x̃T

t , Z̃T
t−1]

T .
Then, the output of unitj in the hidden layer is:

Oj(Ut) =
φ[(Ut −mj)T Σ−1

j (Ut −mj)]∑k
i=1 φ[(Ut −mi)T Σ−1

i (Ut −mi)]
, (3)

wheremj is the center vector, andΣj is the receptive field
of the basis functionφ(.). In general, one common choice of
functionφ(.) is the Gaussian functionφ(s2) = exp(−0.5s2).
That is,

Oj(Ut) =
exp[−0.5(Ut −mj)T Σ−1

j (Ut −mj)]∑k
i=1 exp[−0.5(Ut −mi)T Σ−1

i (Ut −mi)]
.

(4)
Consequently, the net’s actual outputẑt = [ẑt,1, ẑt,2, . . . , ẑt,n]T

is

ẑt =
k∑

j=1

gj(Ut;Θg)Oj(Ut), (5)

wheregj(Ut;Θg) with the parameter setΘg is ann × 1
vector function whoserth component describes the rela-
tions between hidden unitj and output unitr.

With the desired outputzt, the output error

et = zt − ẑt (6)

is calculated out, and propagated to the output and hidden
layers. Consequently, the two layers’ parameters are mod-
ified. In the next sub-section, we will give out a general
adaptive procedure to estimate these parameters.
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Figure 1: General structure of the proposed recurrent RBF
network.

3.2. A General Procedure for Parameter Estimations

We learn the parameters by minimizing the mean square er-
ror (MSE) between network’s actual outputsẑts and the de-
sired outputszts with the cost function:

Q(Θ) =
1
N

N∑
t=1

(zt − ẑt)T (zt − ẑt),

=
1
N

N∑
t=1

Jt(Θ) (7)

with Jt(Θ) = (zt − ẑt)T (zt − ẑt), andΘ = {Θ1, Θ2,
Θg}. In implementation, at each time stept, we adaptively
tuneΘ with a small step size along the descent direction of
minimizingJt(Θ). That is, we adjustΘ by

Θnew = Θold − η
∂Jt(Θ)

∂Θ
|Θold , (8)

whereη is a small positive learning rate.
In Sub-section 3.1, we have two parameter sets:Θh =

{mjs, Σjs, Θ1, Θ2} in the hidden layer, andΘg in the



output layer. Sincemjs andΣjs are both learned with the
inputsUts, whose values however depend on the parameter
Θ1 andΘ2. Consequently, we cannot learnΘh andΘg

in a two separate steps, i.e., learnΘh followed by learning
Θg. Hence, we alternatively give out an iterative learning
procedure for them as follows:

Step 1 Initialize Θ1, Θ2, andΘg.

Step 2 At current time stept with 1 ≤ t ≤ N , by fixing
Θ1 and Θ2, we transform the augmented input
[xt,Zt−1]T into Ut. we then adjust{mj ,Σj}s
with a small step size via an adaptive clustering al-
gorithm. Here, we choose RPCCL [4] rather than
the k-means or RPCL [8] upon the fact that not
only it can automatically deactivate the extra hid-
den units without pre-determining the size of the
hidden layer, but also it circumvents the selecting
problem of the de-learning rate in the RPCL.

Step 3 Fixing {mj ,Σj}s and calculate out the output er-
ror et, we adjustΘ1, Θ2, andΘg with a small
step size along the direction of minimizing the
mean square error between the network’s output
and its desired value.

Step 2andStep 3are implemented for each time step until
all the parameters converge.

In the following section, we will give out the detailed
learning algorithm by implementing the proposed recurrent
RBF with using the ENRBF net in [5].

4. LEARNING ALGORITHM

We suppose thath1 andh2 in Eq.(2) are linear functions:

h1(xt,Θ1) = A1xt + B1

h2(Zt−1,Θ2) = A2Zt−1 + B2 (9)

with Θ1 = {A1,B1} andΘ2 = {A2,B2}. That is,

Ut =
(

A1 0
0 A2

)(
xt

Zt−1

)
+

(
B1

B2

)

= Ãut + B̃,

whereÃ =
(

A1 0
0 A2

)
, ut =

(
xt

Zt−1

)
, andB̃ =

(
B1

B2

)
. Under the circumstances, the proposed RBF net-

work will degenerate to the one in [1] whenA1 = A2 and
B1 = B2 = 0. Furthermore, we letgj(Ut) be a single-
term polynomial term to fit the relations between each hid-
den units and its corresponding output unit as given in the
ENRBF variant [5]. That is,

gj(Ut;Θg) = Wjdg[sign(Ut)]|Ut|pj + βj (10)

with

sign(Ut) = [sign(Ut,1), . . . , sign(Ut,d+qn)]T

|Ut|pj = [|Ut,1|pj , |Ut,2|pj , . . . , |Ut,d+qn|pj ]T ,(11)

whereΘg consists ofWjs, pjs andβjs, dg(Ut) denotes
the diagonal matrix whose(i, i)th element isUt,i, Wj is an
n× (d + qn) parameter matrix, andβj is ann× 1 constant
vector. By putting Eq.(10) into Eq.(5), we then obtain

ẑt =
k∑

j=1

[Wjdg[sign(Ut)]|Ut|pj + βj ]Oj(Ut) (12)

with Oj(Ut) given by Eq.(4). In this specific implementa-
tion, the parameters in this net are:{Ã, B̃, mjs,Σjs} in the
hidden layer and{Wj , pj , βj}’s in the output layer. Con-
sequently, the previousStep 2andStep 3can be explicitly
given as follows:

Step 2 At current time stept with 1 ≤ t ≤ N , givenÃs
andB̃s, we do the three sub-steps:

Step 2.1 CalculateUt by Eq.(2) and Eq.(9).

Step 2.2 Adjustmjs by the RPCCL [4]. That is,
given the inputxt, and forj = 1, 2, . . ., k,
let

I(j|xt) =





1, if j = c,
−1, if y = r,
0, otherwise,

(13)

with

c = arg min
j

γj‖xt −mj‖2,

r = arg min
j 6=c

γj‖xt −mj‖2,

whereγj = njPk
r=1 nr

is the relative winning

frequency ofmj in the past, andnj is the cu-
mulative number of the occurrences ofI(j|xt)
= 1 in the past. Then, update the winnermc

(i.e.,I(c|xt) = 1) and its rival only by

mnew
τ = mold

τ + ∆mτ , τ = c, r

with

∆mc = αc(xt −mc)
∆mr = −αcpr(xt)(xt −mr)

wherepr(xt) = min(‖mc−mr‖,‖mc−xt‖)
‖mc−mr‖ , and

αc is a small positive learning rate.

Step 2.3 UpdateΣc only. Since the algorithm
just involves its inverse, to save computing



costs and calculation stability, we here pre-
fer to updateΣ−1

c directly by

Σ−1
c

new
=

Σ−1
c

old

1− ηs
[I− ηsζtζ

T
t Σ−1

c

old

1− ηs + ηsζ
T
t Σ−1

c

old
ζt

],

whereI is an identity matrix,ζt = Ut−mc,
andηs is a small positive learning rate. To
make the covariance learned smoothly, by
rule of thumb,ηs should be chosen much
smaller thanη, e.g.,ηs = 0.1η.

Step 3 After computinget by Eq.(6), we updatẽA and
B̃ by

Ãnew = Ãold + η∆Ã

B̃new = B̃old + η∆B̃

with

∆Ã = dg(∆B̃uT
t )

∆B̃ =
k∑

j=1

[Oj(Ut)pjdg(|Ut|pj−1)WT
j et]

+
k∑

j=1

ct,j [
k∑

i=1

Oi(Ut)Σ−1
i (Ut −mi)

−Σ−1
j (Ut −mj)],

wherect,j = Oj(Ut)tr[eT
t gj(Ut)]. Also, we up-

dateWjs,pjs, andβjs by

Wnew
j = Wold

j + η∆Wj

pnew
j = pold

j + η∆pj

βnew
j = βold

j + η∆βj

with

∆Wj = Oj(Ut)et(|Ut|pj )T dg[sign(Ut)]
∆pj = Oj(Ut)vT

t,jdg[sign(Ut)]WT
j et

∆βj = Oj(Ut)et,

wherevt,j = [|Ut,1|pj ln |Ut,1|, |Ut,2|pj ln |Ut,2|,
. . ., |Ut,d+qn|pj ln |Ut,d+qn|]T .

5. EXPERIMENTAL RESULTS

We conducted two experiments to demonstrate the perfor-
mance of the proposed network in the recursive function es-
timation. In Experiment1, we let the data be from a linear-
separable function, while the data in Experiment2 are from
a linear non-separable one.

5.1. Experiment 1

We generated1, 100 data points{xt, zt}s from the follow-
ing equation:

yt = 0.7(sinxt)3 + 0.3y2
t−1 + εt, t ≥ 1 (14)

with y0 = 0, wherext ∈ [1, 11], εt ∈ [−0.1, 0.1] is white
noise with uniformly distributed. We let the first1, 000 data
points be training set, and the remaining100 points be test-
ing set. In the experiment, we fixedη = 0.001 and set the
size of hidden layer bek = 5. We measured the net’s per-
formance under the MSE criterion.

Figure 2 shows the net’s performance curve on the train-
ing set, where it can be seen that the network tends to con-
verge withMSE = 0.0070 after 15 epoches, i.e., repeat-
edly scan the training data set15 times. After net’s perfor-
mance convergence, We then tested the network on the test-
ing set with obtainingMSE = 0.0147. This result is com-
parable with that from the dual structural RBF in [5]. Fur-
thermore, for comparison, we also implemented the RBF
(denoted as RBF-R hereafter) with the current inputs and
past outputs as an augmented inputs, but without consider-
ing their scales. We found that the network’s performance
deteriorate significantly with the MSE value on the testing
set to be0.0379.
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Figure 2: The performance curve of the proposed recurrent
RBF network on the training data set in Experiment 1.

5.2. Experiment 2

We also generated1, 100 data points{xt, zt}s that were
from the following equation:

yt = 0.4(sinxt)3+0.3y2
t−1+0.3yt−1 cos(xt)+εt, t ≥ 1,

wherey0, xt, andεt were set in the same way as Eq.(14).
The data distribution graph is shown in Figure 3. Under the
same experimental environment as Experiment 1, we used



the first1, 000 data points to train the network, whose per-
formance learning curve is shown in Figure 4. It can be
seen that its performance has converged after30 epoches
with MSE = 0.0071. We then used the remaining100
data points to test the network’s performance. The MSE
value was0.0057. Also, we tested the RBF-R on the same
data set, and obtainedMSE = 0.0415. It shows again that
the proposed network outperforms the RBF-R. The former
works well in the case of linear non-separable function esti-
mation as well as linear-separable one, but the latter cannot.
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Figure 3: The graph of function valueyt versusxt andyt−1.
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Figure 4: The performance curve of the proposed recurrent
RBF network on the training data set in Experiment 2.

6. CONCLUSIONS

We have proposed a new recurrent RBF network, which
takes the net’s input and the past outputs as an augmented
input, but introduces a scale tuner into the net’s hidden layer
to balance the different scales between inputs and outputs.
This network adaptively learns the parameters in the hidden
layer together with those in the output layer. We have im-

plemented this network by using a variant of ENRBF [5]
with its hidden units learned by the RPCCL algorithm [4].
The experiments have shown the outstanding performance
of the proposed network in recursive function estimation.
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