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Abstract—This paper proposes an algorithm to deal with for the clustering. In the approaches [1], [2], they ignore
the feature selection in Gaussian mixture clustering by an this interrelationship between the feature selection and the
iterative way: the algorithm iterates between the clustering clustering task and typically choose the features prior to a
and the unsupervised feature selection. First, we propose a . . . S
quantitative measurement of the feature relevance with respect cl_usterl_ng aI_gonthm. Though it may significantly reduce the_
to the clustering. Then, we design the corresponding feature dimensionality, these selected features may not be necessarily
selection scheme and integrate it into the Rival Penalized EM well suited to the mining algorithm [5]. Thus, in order to
(RPEM) clustering algorithm (Cheung 2005) that is able to gbtain both optima for the feature subset and the clustering
determine t_he number of clusters a_utomatically. S_ubsequently, structure, some approaches, e.g. see [3], [4], wrap the feature
the clustering can be performed in an appropriate feature . ; - . .
subset by gradually eliminating the irrelevant features with selecho_n afOH”d the clusterlng_algorlthm by f'rSt conducting
automatic model selection. Compared to the existing methods, & combinatorial search for candidate subsets in the whole fea-
the numerical experiments have shown the efficacy of the ture space, then evaluating these subsets using the clustering
proposed algorithm on the synthetic and real world data. algorithm. Subsequently, the best subset is chosen using a
certain criterion during the repeated wrapping around. This
kind of approaches may suffer from a heavy computational

Gaussian mixture (GM) clustering has been widely applieBurden with the time-consuming searching strategy and the
to a variety of fields including data mining, time seriesepeated execution of the clustering algorithms. Recently,
forecasting, image processing, and so forth. In general, GMe approaches [5], [6] have managed to tackle these two
clustering needs to make the model selection, i.e. determiissues in a single optimization paradigm. The preliminary
the number of components in a mixture (also calteddel experiments in [5], [6] have shown the promising results.
order interchangeably), and estimate the parameters of ealfevertheless, such a method supposes that the explicit para-
component in a mixture based on the observations. Howevetetric form of irrelevant feature distribution is knowan
from the practical viewpoint, the elements of each obsepriori, which may be impossible from the practical point
vation (also calledeatureshereinafter) may not make the of view.
same contribution to the data cluster structure at all. That is,
there may be some irrelevant features in the observations.

Under the circumstances, the inclusion of such irrelevant In this paper, we propose an algorithm that deals with the
features in the clustering will not only drastically increase théature selection for the clustering in an iterative way: the
computational complexity, but also mask the cluster structuegigorithm iterates between the clustering and the unsuper-
due to thecurse of dimensionality vised feature selection. First, we will present a quantitative

In order to perform an appropriate data partition, a refinesheasurement of the feature relevance with respect to the
subset of most informative features is often expected. Hovelustering. Then, we will design the corresponding feature
ever, due to the absence of the ground-truth labels that coddlection scheme and integrate it into an efficient clustering
guide the assessment of the relevance for each feature witlgorithm, namely the Rival Penalized EM algorithm [13],
respect to the clustering, it is a nontrivial task to conduct th@hich is able to determine the number of clusters auto-
feature selection in the unsupervised learning. The problematically. Consequently, our proposed clustering method can
becomes even more challenging when the true number pérform the model and feature selection in a single paradigm,
clusters is unknowra priori, as the optimal feature subsetbut without knowing the explicit parametric form of the
and the optimal number of clusters are inter-related: differeitrelevant feature distribution in advance. The numerical sim-
clustering results might be obtained on different featuralations have shown that the proposed algorithm outperforms
subsets. This suggests that the feature selection, whichtfi® existing ones on both of the synthetic and real world data.
to identify the features that significantly contribute to the
grouping, should be taken into account jointly with the
clustering. The remainder of the paper is organized as follows. Section

In the literature, there have been several representatilleoverviews the RPEM algorithm. Section Il describes
methods that address the issue of the feature selectithe proposed feature selection procedure. Then, Section

I _ IV presents the proposed algorithm and Section V shows
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Il. THE RIVAL PENALIZED EM ALGORITHM FOR THE where
. a;p(x¢]6;
GAUSSIAN MIXTURE CLUSTERING h(jlxi, ©) = X (x¢[6;)

Suppose that the observation data s&n = p(x:|0)
{x1,x2...xn} is generated from a mixture oft* s the posterior probability that, belongs to thej*® com-
Gaussian components, i.e., ponent in the mixture, anfél is greater than or equal to*.
g(j|xt,©)’s are designable weight functions, satisfying the

o
X " X constraints below:
p(x¢|©%) = Zajp(xt‘aj) 1) .
j=1
. Zg(.ﬂxta@):C)lStSNv
with =
K
Za;le and V1<j<k*, of>0, and
i=1 v]?.g(]‘xta@) =0 If h(j‘Xt,("')) = 07
where each observatior,(1 < ¢t < N) is a vector of d- . "
dimensional featureszy, .. . , ] Furthermorep(x,|6?) where( is a positive constant. In [13], they are constructed

is the j*" Gaussian component with the paramefer o from the following equation:

reprs}slents the true mixing coefficient, or the proportion of 9(ixe,©) = (1 + e)I(j|xs, ©) — eth(j|x¢, ©)
the j** component in the mixture. The main purpose of clus-

tering analysis is to find an estimate 6f = {a;,e; f;;l, with

denoted a® = {qa;,0;}_,, from N observations. A general 1 if j = ¢ = arg maxi<icp h(ilx, ©);
approach is to search a set of parameters which could reach &j|x,©) = { 0 jor . 1Sk Y
maxima of the fitness in terms afiaximum likelihoodML) ' ()

defined below: and ¢, is a small positive quantity. This construction of

weight functions reflects the pruning scheme: when a sample
x; comes from a component that indeed exists in the mixture,
the value ofh(j|x¢, ®) is likely to be the greatest, thus this

Maximization(EM) algorithm [7], [8], [2]. However, there is component will be the winner. Accordingly, a positive weight

no penalty in the above likelihood, which means the modeﬂ(dxt’ ©) will keep it n t.he temporary .model. In contrast,
N . . all other components fail in the competition and are treated as
order £* cannot be automatically determined and has to b

pre-specified. Although some model selection criteria, e.t‘?Ie pseudo-components’. As a result, the negative weights

see [10], [11], have been proposed in the literature, they m%?e assigned to them_ as a penalty. _Over the learning process
O, only the genuine clusters will survive, whereas the

require users to compare the candidate models for a range o .
. . . pseudo-clusters” will gradually faded out from the mixture.

of orders to determine the optimal one, whose computatio The RPEM aives an estimate &®* via maximizin

is laborious. Recently, an approach callRdial Penalized weighted Iikelihgod (MWL) in (2), i.e 9

EM (RPEM for short) [13] has been proposed, by which 9 T

the. ordgr is Qetermined simultaneo.usly with the parameter Onwr = argmax{Q(0, X x)}.

estimation. It is achieved by introducing unequal weights into e

the conventional maximum likelihood as the regularizatiomhe more detailed implementation of the RPEM can be found

Oy = arg mgx{logp(XN\G)}.

The commonly used search strategy is thepectation

terms. The weighted likelihood is written below: in [13]. In the following, we summarize its major steps in
N Algorithm 1.
1
QO,XN) = ~ > logp(x¢|0)
t=1 Algorithm 1: The RPEM algorithm.
N k - —
1 ) input : {x1,xa2,.. .,xjy}, k, n, epochmqz, initial ©
= W Z Zg(j|xt, 0) log p(x+|0©) output: The converged®
t=1 j=1 1 epoch_count < 0;
1 N 2 while epoch_count < epochmaqs dO
- = M(O.x 2 3 for t — 1to N do . A
N ; ( ’ t) 2) 4 Step 1 Calculateh(j|x¢, ©)’s to obtain g(j|x¢, ©)’s;
B 5 Step 2
A(new) _ &(old _ &lold OM(x vé)
k ol ) =0l )—I—A@—@( >+77 E)@t &(old)
M(O,x;) = Z 9(j|x:, ©) logle;p(x¢|6;)] s ond wherer is a learning rate.
j=l1 8 epoch_count «— epoch_count + 1;
k 9 end

— > g(ilx,©)log h(jx:, ©)  (3)

Jj=1



I11. UNSUPERVISEDFEATURE SELECTION According to the score of each feature, we could obtain

the refined relevant feature subgetin the following way:
It is found that a feature should be irrelevant to the data

cluster structure if the clusters are indistinguishable each R = R — {I|SCORE, < - max(SCORE;),l € R}

other when the observations are projected onto this feature. ek

To illustrate this scenario, we show an example using a 2vhere R is the current relevant feature subset, and a
component bivariate Gaussian mixture in Figure 1. If weiser-defined threshold value.

project the two clusters onto the Y axis, it is unable to

distinguish these two clusters by the feature Y, because the V. THE ITERATIVE FEATURE SELECTION AND
observations from the two clusters are almost projected onto CLUSTERING

the same dense region of this dimension. Hence, the featuresince the optimal number of clusters and the optimal

features subset are inter-related, we integrate the feature

25 ‘ ‘ ‘ ‘ selection scheme of Section Ill into the RPEM algorithm,
thus the clustering and the unsupervised feature selection

2 ] work in an iterative way. Specifically, at the end of each

AN s epoch of the RPEM algorithm, the approximately optimal

number of clusters and the corresponding parameters can be

estimated on a given feature space. The proposed feature
o v PO X selection method outputs a ranking of each feature in terms of
— Tl the discriminability with respect to eeferencepartition, i.e.,
of ] the current data partition. A new partition is performed on the
. ‘ ‘ ‘ ‘ currently chosen feature space in the epoch. Subsequently,
05 ! RV 26 * the relevant feature subset is refined based on the current

referencepartition. Algorithm 2 presents the details of the

Fig. 1. The feature X is relevant to the partitioning, while the feature yalgorithm.
is irrelevant.

Y will not be helpful in finding the cluster structure, i.e., it is Algorlthm 2: The RPEM with lterative Feature Selec-

ion.
irrelevant for the clustering. On the contrary, the projections :

h h ful inf input : {x1,x2,...,XN}, kmaz, 1 epochmaz, initial ©
onto the X axis can provide the useful information regarding oput: The converged on R, the relevant feature subsét
the cIu_ster structure, thus the feature X is relevant for the 5 — {all features}:
clustering. 2 epoch_count «— 0;

Subsequently, we define the following quantitative mea‘31 while epoch-count < epochmaz do

for ¢ 1to N do
sure for the relevance of each feature: ",

5 Step 1 Calculateh(j|x:, ©)'s to obtaing(j|x¢, ©)'s on R;
1 k 1 k 312 _ 6 Step 2 Update parameter® on R;
SCORE, = ¢ > Score, ; = : da- S)i=1....d Brew) = Gleld) 4 AQ = BOI) 4 PMELO)|
j=1 j=1 ! 7 end

8 R — FeatureSelection  (R);
wherek is the number of cIuster&i is the variance of the R R

4" cluster on thé*™ dimension, and2 is the global variance 10 epoch_count — epoch_count + 1;

of the whole data on th&" dlmensmn 11 end
1 N
S?Zmz(@t—ml = Z”«”H _
t=1 Procedure FeatureSelection( R)
input : R

The Score, ; indicates the relevance of theh feature with S
output: R

respect to thg*" cluster. Thus, the average relevance of the

Ith feature for the clustering is represented by $ti€O RE;. ; Ic%alcu'?;es{cl%@%}ég }j 5 maxicn(SCORE;).1 € R}:

When theSCORE; receives a value close to the maximum ! cn i i

value (i.e. 1), it approximately indicates that all the local

variances of thé clusters on this dimension are considerably The rationale behind this iterative execution of clustering

small in comparison to the global variance of this dimensiorand the feature selection can be interpreted as follows:

which is tantamount to indicating these clusters far awaklthough the optimal feature subset on which an optimal

from each other on this dimension. Hence, these featurekistering may be obtained is not knovenpriori, we can

are very relevant to the partitioning task. Otherwise, thexpect to obtain a potential optimal clustering result on the

SCORE; will receive the score close to the minimum valuecurrent given subset. By evaluating on the current reference

(i.e. 0). clustering, it then performs the feature selection procedure




to further refine the relevant feature subset, which may leathta. We appended 8 independent variables, sampled from

to an even better partition in the next epoch. a standard normal distribution, to each data generated from
In the above algorithm, the weight functigi{j|x;,©)'s the following bivariate Gaussian mixture structure, yielding
are designed as: a 10-dimensional data set with 1000 points.

9(i1xe,0) = I(j|x4,©) + h(j[x¢,0),5 = 1,..., kmaa

0.3 %N 1 ; 0.1 0.0 104N 1 : 0.1 0.0
where thel(j|x;,0) is defined by (4). It is easy to verify K ! ) ( 00 01 >] K ° ) ( -0 01 >]
that the above design still satisfies the required constraints 05, v [( 5 ) _ ( 0.1 0.0 )}
the g(j|x:, ©). Obviously, such a design gives the winning 5 /7100 0l

X 3 .
component only, i.e., theé™ component, at each time step an - Ano4rently, the last 8 dimensions are unimodal and irrele-

e?(tra award Whosg value HC"%’ ©) =1. This We|ght 'de- . vant to the clustering. The objective is to detect the clustering
sign actually penahz_es_ those rival components in an mphcgn the first two dimensions and identify the last 8 irrelevant
way. ansequently, it is able to automatically determine 3fatures. We ran the proposed algorithm 10 times, the 3
app_roprlate number of cqmpo_nents as well. components and the irrelevant features were always correctly

Since the RPEM algorithm is able to prune t_he redunda%und in all runs we have tried so far. Figure. 2 shows the
c;:mpl)gnt:a nt.;, th? reIe\égnce dscore calculation in each epq(égrning curves of the component weights and the size of
should be therefore adjusted as: relevant features subset in a typical run.

Enz 1 Fnz 57 We then compared our algorithm with the one proposed by

(1-—=)1=1,....d Law et, al [5]. The algorithm in [5] makes theoft decisions

SCORE; =

Score; j =
knz —) knz - Sy . .
j= j= on whether the feature is relevant for the clustering or not,
where k,. is the number of the clusters in the curren@nd has to pre-assume the irrelevant features conformed to a
referencepartition with Gaussian distribution. Otherwise, its performance would be
_ . degraded to a certain degree. For example, we appended 8
knz = kmax — | K[, K ={jla; =0,j =1,..., kmaa }- variables uniformly distributed between 0 and 5, to the data

K| is the cardinality of the sek’, which contains the index from the above bivariate mixture structure, provided that the

variables marking the clusters whose weights have begigtribution of the irrelevant features is the Gaussian when

pruned towards zero. In general, we should not include sudy'ng the algorithm.in [5]. Itis f?“”d that the algorithm of
components in the feature relevance score calculation. 2] Was unable to give a proper inference about the clusters
any more. Instead, it always largely over-fitted the data as

V. EXPERIMENTAL RESULTS illustrated in Figure 3. This implies that the algorithm of [5]

Thls Section ShOWS the experimenta| resu|ts on two Syhs SenSitive to the diStI’ibution Of irrelevant features.
thetic data sets and four real world benchmark data setsIn contrast, the proposed algorithm circumvents this sen-
from the UCI repository [14]. In all the experiments, theSitivity. As shown in Figure 3, it has succeeded to infer
initial number of components,,,.. should be large enough the clus.tenng structure in the original feature space. The
so that the initialization properly covers the data. We use@ason is that we assume all the features are relevant at

the following inequality to estimate the appropriate initiaffirst, and then prune the features from the relevant feature
number of components suggested in [12]: subset, according to the “scoring” derived upon tisference

clustering in the current epoch. In our method, we need not

k> _ logo assume the explicit form of the distribution of the irrelevant
log(1 — amin) features. Figure 4 demonstrates its learning curves of the
where a,i, = min{ay,...,ax} is the mixing proportion component weights and the size of the relevant feature

of the component which is mostly likely to be missed insubset. It is interesting to note that, both in Figure 2 and
the initialization. Under the circumstances, if we desire thd, the components weights were gradually converged over
probability of a successful initialization is no lower thanthe epochs when the feature elimination was undergoing,
1 — o = 0.95, and supposev,;, = 0.2, k should be indicating that the feature selection had indeed facilitated
greater than 12. We therefore det., = 20, and the initial the clustering.
component weightsy; = 1/kyae (5 = 1,..., kmnaee). The Further, we show the proposed algorithm on 4 benchmark
initial centers of each clustets;’'s were randomly chosen real-world data sets [14] in comparison to the RPEM algo-
from data points, the initial variances of the clusters omithm and the algorithm in [5]. The characters of the data are
each dimension were set to a fraction (e.g., we arbitraisummarized in Table |. Each data set aglata points with
set it at 1/5) of the global variance on tlih dimension: d features fromk* classes. We evaluate the accuracy of the
57, = 157, and the constant was set to 0.2. We found that obtained partition with theerror rate index. After dividing
the initialization to these parameters performed reasonahlilye original data set into the training set and the testing set
well. of the equal size, we executed the above algorithms on the
Firstly, we investigated the capability of the proposed algaraining set to obtain the parameters of the Gaussian mixture
rithm on the model and feature selections using a syntheticodel, then each data point in the testing set was classified
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Fig. 2. The results on the first synthetic data set. (a) the learning curv{a&gf}?;’f“); (b) the interval when the feature elimination was undergoing,

where|R| denotes the size of the relevant feature subset.
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Fig. 4. The results on the second synthetic data set. (a) the learning cur{@jqﬂ? ), (b) the interval when the feature elimination was undergoing,

where|R| denotes the size of the relevant feature subset.
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(a) The clustering results on the second synthetic data set obtained by the algorithm in [5], and (b) the proposed algorithm on the first two feature
with the circle marking each cluster and the “0” marking the center of each cluster. lh*(8),8 (over-fitting), and in (b)k* = 3.
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TABLE I

based on its posterior probability with a class label assigned. RESULTS OF THELO-FOLD RUNS ON THE TEST SETS FOREACH

The error rate is computed by the mismatch degree between

the obtained labels and the ground-truth class labels. The ALGORITHM

mean and the standard deviation of #reor rate, along with Data Set Method Model Order Error Rate
those of the estimated number of clusters in 10-fold runs gn mean + std mean + std

the 4 real world data sets are listed in Table II. wine RPEM 2.5+£0.7 | 0.0843 4 0.0261

algorithm in [5] 3.3£14 0.0673 £ 0.0286

TABLE | proposed method 3.2 +0.4 0.0506-+ 0.0269

THE REAL WORLD DATA SETS German RPEM 2.14+0.2 0.4620 £ 0.0531

algorithm in [5] 1.7+ 0.5 0.3510 £ 0.0716

Data set d N k* proposed method 2.6 +1.1 0.30964+ 0.0153

wine 13| 178 | 3 wdbc RPEM 1.7+0.4 0.2610 £ 0.0781

wdbe 30 | 569 > ' proposed method 2.6 +0.7 0.1044 £+ 0.0217

- ionosphere RPEM 1.8+ 0.5 0.4056 £ 0.0121

ionosphere| 34 | 351 | 2 algorithm in [5] | 3.240.6 | 0.2268 + 0.0386

proposed method fixed at 2 0.2198+ 0.0761

It could be observed from Table Il that the proposed
method has reduced the error rates on all sets compared to the TABLE I
RPEM algorithm. This is because not all features are relevant THE PROPORTION OF THE AVERAGE SELECTED FEATURES BY OUR
with respect to the partitioning task. These features with less A-GORITHM IN THE WHOLE FEATURE SET IN THE10-FOLD RUNS
discriminating power might confuse the RPEM clustering
algorithm. Due to the iterative execution of the clustering andbata | synthetic1 | synthetic2 | wine | German | wdbc | ionosphere
the feature selection, the potential optimal cluster-searching’SF | 20% 20% | 93.1% | 24.2% | 48.7% | 85.3%
space shrank, thus leading to a better performance. The
proportions of the average selected features by our algorithm
in the whole feature set for each data sets (denoted as PFfg) j. py and C. Brodley, “Feature selection for unsupervised learning”,
are reported in Table IIl. The Journal of Machine Learning Researebl. 5, pp. 845-889, 2004.
When comparing the proposed algorithm with the algo-® M- H. C. Law, M. A. T. Figueiredo and A. K. Jain, "Simultaneous
. . . feature selection and clustering using mixture moddEEE Trans-
rithm in [5], a|t_h0U9h they are compz_aratlve in termsem!‘or _ actions on Pattern Analysis and Machine Intelligeneel. 26, no. 9,
rate, our algorithm seems always given a closer estimation pp. 1154-1166, September 2004. _ _
of the model order than algorithm in [5], the latter one is (6l C. Constantinopoulos, M. K. Titsias and A. Likas, "Bayesian feature

. . . and model selection for Gaussian mixture moddEEE Transactions
more likely to use more components especially for relatively  on pattern Analysis and Machine Intelligengel. 28, no. 6, pp. 1013—

high dimensional data set. 1018, June 2006.
[7] A. P. Dempster, N. M. Laird and D.B. Rubin, “Maximum Likelihood
VI. CONCLUSION from Incomplete Data via the EM Algorithm,Journal of Royal

Statistical Society (B)vol.39, no. 1, pp. 1-38, 1977.
We have presented a feature relevance measurement agl D. Mackay, “nformation Theory, Inference, and Learning Algo-

integrated it into the RPEM algorithm. Subsequently, the ritims’, Cambridge Univ. Press, 2003.

proposed algorithm is able to find an appropriate numbe ] (z:doBéishop, ‘Pattern Recognition and Machine LearnfngSpringer,

of clusters and relevant features for GM clustering. Th@o] G. Schwarz “Estimating the dimension of a modé¥hnals of Statis-
experimental results have shown that the proposed algorithm tics, vol.6, no. 2, pp.461-464, 1978.

: [11] C. Wallace and P. Freeman,“Estimation and inference via compact
OUtperformS the RPEM and the algorlthm of [5] coding,'Journal of Royal Statistical Society (Bjol.49, no. 3, pp. 240—

265, 1987.
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