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Abstract— This paper proposes an algorithm to deal with
the feature selection in Gaussian mixture clustering by an
iterative way: the algorithm iterates between the clustering
and the unsupervised feature selection. First, we propose a
quantitative measurement of the feature relevance with respect
to the clustering. Then, we design the corresponding feature
selection scheme and integrate it into the Rival Penalized EM
(RPEM) clustering algorithm (Cheung 2005) that is able to
determine the number of clusters automatically. Subsequently,
the clustering can be performed in an appropriate feature
subset by gradually eliminating the irrelevant features with
automatic model selection. Compared to the existing methods,
the numerical experiments have shown the efficacy of the
proposed algorithm on the synthetic and real world data.

I. I NTRODUCTION

Gaussian mixture (GM) clustering has been widely applied
to a variety of fields including data mining, time series
forecasting, image processing, and so forth. In general, GM
clustering needs to make the model selection, i.e. determine
the number of components in a mixture (also calledmodel
order interchangeably), and estimate the parameters of each
component in a mixture based on the observations. However,
from the practical viewpoint, the elements of each obser-
vation (also calledfeatureshereinafter) may not make the
same contribution to the data cluster structure at all. That is,
there may be some irrelevant features in the observations.
Under the circumstances, the inclusion of such irrelevant
features in the clustering will not only drastically increase the
computational complexity, but also mask the cluster structure
due to thecurse of dimensionality.

In order to perform an appropriate data partition, a refined
subset of most informative features is often expected. How-
ever, due to the absence of the ground-truth labels that could
guide the assessment of the relevance for each feature with
respect to the clustering, it is a nontrivial task to conduct the
feature selection in the unsupervised learning. The problem
becomes even more challenging when the true number of
clusters is unknowna priori, as the optimal feature subset
and the optimal number of clusters are inter-related: different
clustering results might be obtained on different feature
subsets. This suggests that the feature selection, which is
to identify the features that significantly contribute to the
grouping, should be taken into account jointly with the
clustering.

In the literature, there have been several representative
methods that address the issue of the feature selection
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for the clustering. In the approaches [1], [2], they ignore
this interrelationship between the feature selection and the
clustering task and typically choose the features prior to a
clustering algorithm. Though it may significantly reduce the
dimensionality, these selected features may not be necessarily
well suited to the mining algorithm [5]. Thus, in order to
obtain both optima for the feature subset and the clustering
structure, some approaches, e.g. see [3], [4], wrap the feature
selection around the clustering algorithm by first conducting
a combinatorial search for candidate subsets in the whole fea-
ture space, then evaluating these subsets using the clustering
algorithm. Subsequently, the best subset is chosen using a
certain criterion during the repeated wrapping around. This
kind of approaches may suffer from a heavy computational
burden with the time-consuming searching strategy and the
repeated execution of the clustering algorithms. Recently,
the approaches [5], [6] have managed to tackle these two
issues in a single optimization paradigm. The preliminary
experiments in [5], [6] have shown the promising results.
Nevertheless, such a method supposes that the explicit para-
metric form of irrelevant feature distribution is knowna
priori , which may be impossible from the practical point
of view.

In this paper, we propose an algorithm that deals with the
feature selection for the clustering in an iterative way: the
algorithm iterates between the clustering and the unsuper-
vised feature selection. First, we will present a quantitative
measurement of the feature relevance with respect to the
clustering. Then, we will design the corresponding feature
selection scheme and integrate it into an efficient clustering
algorithm, namely the Rival Penalized EM algorithm [13],
which is able to determine the number of clusters auto-
matically. Consequently, our proposed clustering method can
perform the model and feature selection in a single paradigm,
but without knowing the explicit parametric form of the
irrelevant feature distribution in advance. The numerical sim-
ulations have shown that the proposed algorithm outperforms
the existing ones on both of the synthetic and real world data.

The remainder of the paper is organized as follows. Section
II overviews the RPEM algorithm. Section III describes
the proposed feature selection procedure. Then, Section
IV presents the proposed algorithm and Section V shows
the experimental results. Finally, we draw a conclusion in
Section VI.



II. T HE RIVAL PENALIZED EM ALGORITHM FOR THE

GAUSSIAN M IXTURE CLUSTERING

Suppose that the observation data setXN =
{x1,x2 . . .xN} is generated from a mixture ofk∗

Gaussian components, i.e.,

p(xt|Θ∗) =
k∗∑

j=1

α∗jp(xt|θ∗j ) (1)

with
k∗∑

j=1

α∗j = 1 and ∀1 ≤ j ≤ k∗, α∗j > 0,

where each observationxt(1 ≤ t ≤ N) is a vector of d-
dimensional features:[x1t, . . . , xdt]T . Furthermore,p(xt|θ∗j )
is the jth Gaussian component with the parameterθ∗j , α∗j
represents the true mixing coefficient, or the proportion of
thejth component in the mixture. The main purpose of clus-
tering analysis is to find an estimate ofΘ∗ = {α∗j , θ∗j }k∗

j=1,
denoted asΘ = {αj , θj}k

j=1, fromN observations. A general
approach is to search a set of parameters which could reach a
maxima of the fitness in terms ofmaximum likelihood(ML)
defined below:

Θ̂ML = arg max
Θ
{log p(XN|Θ)}.

The commonly used search strategy is theExpectation
Maximization(EM) algorithm [7], [8], [9]. However, there is
no penalty in the above likelihood, which means the model
order k∗ cannot be automatically determined and has to be
pre-specified. Although some model selection criteria, e.g.
see [10], [11], have been proposed in the literature, they may
require users to compare the candidate models for a range
of orders to determine the optimal one, whose computation
is laborious. Recently, an approach calledRival Penalized
EM (RPEM for short) [13] has been proposed, by which
the order is determined simultaneously with the parameter
estimation. It is achieved by introducing unequal weights into
the conventional maximum likelihood as the regularization
terms. The weighted likelihood is written below:

Q(Θ,XN ) =
1
N

N∑
t=1

log p(xt|Θ)

=
1
N

N∑
t=1

k∑

j=1

g(j|xt, Θ) log p(xt|Θ)

=
1
N

N∑
t=1

M(Θ,xt) (2)

M(Θ,xt) =
k∑

j=1

g(j|xt, Θ) log[αjp(xt|θj)]

−
k∑

j=1

g(j|xt, Θ) log h(j|xt,Θ) (3)

where

h(j|xt, Θ) =
αjp(xt|θj)
p(xt|Θ)

is the posterior probability thatxt belongs to thejth com-
ponent in the mixture, andk is greater than or equal tok∗.
g(j|xt, Θ)’s are designable weight functions, satisfying the
constraints below:

k∑

j=1

g(j|xt, Θ) = ζ, 1 ≤ t ≤ N,

and

∀j, g(j|xt,Θ) = 0 if h(j|xt, Θ) = 0,

whereζ is a positive constant. In [13], they are constructed
from the following equation:

g(j|xt, Θ) = (1 + εt)I(j|xt, Θ)− εth(j|xt, Θ)

with

I(j|x, Θ) =
{

1 if j = c ≡ arg max1≤i≤k h(i|x,Θ);
0 j = r 6= c.

(4)
and εt is a small positive quantity. This construction of
weight functions reflects the pruning scheme: when a sample
xt comes from a component that indeed exists in the mixture,
the value ofh(j|xt, Θ) is likely to be the greatest, thus this
component will be the winner. Accordingly, a positive weight
g(c|xt, Θ) will keep it in the temporary model. In contrast,
all other components fail in the competition and are treated as
the ‘pseudo-components”. As a result, the negative weights
are assigned to them as a penalty. Over the learning process
of Θ, only the genuine clusters will survive, whereas the
“pseudo-clusters” will gradually faded out from the mixture.

The RPEM gives an estimate ofΘ∗ via maximizing
weighted likelihood (MWL) in (2), i.e.,

Θ̂MWL = arg max
Θ
{Q(Θ,XN )}.

The more detailed implementation of the RPEM can be found
in [13]. In the following, we summarize its major steps in
Algorithm 1.

Algorithm 1 : The RPEM algorithm.
input : {x1,x2, . . . ,xN}, k, η, epochmax, initial Θ
output: The converged̂Θ

epoch count ← 0;1
while epoch count ≤ epochmax do2

for t ← 1 to N do3

Step 1: Calculateh(j|xt, Θ̂)’s to obtaing(j|xt, Θ̂)’s;4

Step 2:5

Θ̂(new) = Θ̂(old) + ∆Θ = Θ̂(old) + η
∂M(xt;Θ̂)

∂Θ

∣∣∣
Θ̂(old)

whereη is a learning rate.6
end7
epoch count ← epoch count + 1;8

end9



III. U NSUPERVISEDFEATURE SELECTION

It is found that a feature should be irrelevant to the data
cluster structure if the clusters are indistinguishable each
other when the observations are projected onto this feature.
To illustrate this scenario, we show an example using a 2-
component bivariate Gaussian mixture in Figure 1. If we
project the two clusters onto the Y axis, it is unable to
distinguish these two clusters by the feature Y, because the
observations from the two clusters are almost projected onto
the same dense region of this dimension. Hence, the feature
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Fig. 1. The feature X is relevant to the partitioning, while the feature Y
is irrelevant.

Y will not be helpful in finding the cluster structure, i.e., it is
irrelevant for the clustering. On the contrary, the projections
onto the X axis can provide the useful information regarding
the cluster structure, thus the feature X is relevant for the
clustering.

Subsequently, we define the following quantitative mea-
sure for the relevance of each feature:

SCOREl =
1
k

k∑

j=1

Scorel,j =
1
k

k∑

j=1

(1− s2
l,j

s2
l

) l = 1, . . . , d

wherek is the number of clusters,s2
l,j is the variance of the

jth cluster on thelth dimension, ands2
l is the global variance

of the whole data on thelth dimension:

s2
l =

1
N − 1

N∑
t=1

(xl,t −ml)2,ml =
1
N

N∑
t=1

xl,t

The Scorel,j indicates the relevance of thelth feature with
respect to thejth cluster. Thus, the average relevance of the
lth feature for the clustering is represented by theSCOREl.
When theSCOREl receives a value close to the maximum
value (i.e. 1), it approximately indicates that all the local
variances of thek clusters on this dimension are considerably
small in comparison to the global variance of this dimension,
which is tantamount to indicating these clusters far away
from each other on this dimension. Hence, these features
are very relevant to the partitioning task. Otherwise, the
SCOREl will receive the score close to the minimum value
(i.e. 0).

According to the score of each feature, we could obtain
the refined relevant feature subsetR

′
in the following way:

R
′
= R− {l|SCOREl < β ·max

i∈R
(SCOREi), l ∈ R}

where R is the current relevant feature subset, andβ is a
user-defined threshold value.

IV. THE ITERATIVE FEATURE SELECTION AND

CLUSTERING

Since the optimal number of clusters and the optimal
features subset are inter-related, we integrate the feature
selection scheme of Section III into the RPEM algorithm,
thus the clustering and the unsupervised feature selection
work in an iterative way. Specifically, at the end of each
epoch of the RPEM algorithm, the approximately optimal
number of clusters and the corresponding parameters can be
estimated on a given feature space. The proposed feature
selection method outputs a ranking of each feature in terms of
the discriminability with respect to areferencepartition, i.e.,
the current data partition. A new partition is performed on the
currently chosen feature space in the epoch. Subsequently,
the relevant feature subset is refined based on the current
referencepartition. Algorithm 2 presents the details of the
algorithm.

Algorithm 2 : The RPEM with Iterative Feature Selec-
tion.

input : {x1,x2, . . . ,xN}, kmax, η, epochmax, initial Θ
output: The converged̂Θ onR̂, the relevant feature subset̂R

R̂ ← {all features};1
epoch count ← 0;2
while epoch count ≤ epochmax do3

for t ← 1 to N do4

Step 1: Calculateh(j|xt, Θ̂)’s to obtaing(j|xt, Θ̂)’s on R̂;5

Step 2: Update parameterŝΘ on R̂;6

Θ̂(new) = Θ̂(old) + ∆Θ = Θ̂(old) + η
∂M(xt;Θ̂)

∂Θ

∣∣∣
Θ̂(old)

end7

R̂
′ ← FeatureSelection (R̂);8

R̂ ← R̂
′
;9

epoch count ← epoch count + 1;10
end11

Procedure FeatureSelection( R)
input : R
output: R

′

CalculateSCOREl, l ∈ R;1

R
′ ← R− {l|SCOREl < β ·maxi∈R(SCOREi), l ∈ R};2

The rationale behind this iterative execution of clustering
and the feature selection can be interpreted as follows:
Although the optimal feature subset on which an optimal
clustering may be obtained is not knowna priori, we can
expect to obtain a potential optimal clustering result on the
current given subset. By evaluating on the current reference
clustering, it then performs the feature selection procedure



to further refine the relevant feature subset, which may lead
to an even better partition in the next epoch.

In the above algorithm, the weight functiong(j|xt, Θ)’s
are designed as:

g(j|xt,Θ) = I(j|xt, Θ) + h(j|xt,Θ), j = 1, . . . , kmax

where theI(j|xt, Θ) is defined by (4). It is easy to verify
that the above design still satisfies the required constraints on
the g(j|xt,Θ). Obviously, such a design gives the winning
component only, i.e., thecth component, at each time step an
extra award whose value isI(c|xt, Θ) = 1. This weight de-
sign actually penalizes those rival components in an implicit
way. Consequently, it is able to automatically determine an
appropriate number of components as well.

Since the RPEM algorithm is able to prune the redundant
components, the relevance score calculation in each epoch
should be therefore adjusted as:

SCOREl =
1

knz

knz∑

j=1

Scorel,j =
1

knz

knz∑

j=1

(1−s2
l,j

s2
l

) l = 1, . . . , d

where knz is the number of the clusters in the current
referencepartition with

knz = kmax − |K|, K = {j|αj ≡ 0, j = 1, . . . , kmax}.
|K| is the cardinality of the setK, which contains the index
variables marking the clusters whose weights have been
pruned towards zero. In general, we should not include such
components in the feature relevance score calculation.

V. EXPERIMENTAL RESULTS

This section shows the experimental results on two syn-
thetic data sets and four real world benchmark data sets
from the UCI repository [14]. In all the experiments, the
initial number of componentskmax should be large enough
so that the initialization properly covers the data. We used
the following inequality to estimate the appropriate initial
number of components suggested in [12]:

k >
log σ

log(1− αmin)

where αmin = min{α1, . . . , αk} is the mixing proportion
of the component which is mostly likely to be missed in
the initialization. Under the circumstances, if we desire the
probability of a successful initialization is no lower than
1 − σ = 0.95, and supposeαmin = 0.2, k should be
greater than 12. We therefore setkmax = 20, and the initial
component weightsαj = 1/kmax (j = 1, . . . , kmax). The
initial centers of each clustersmj ’s were randomly chosen
from data points, the initial variances of the clusters on
each dimension were set to a fraction (e.g., we arbitrary
set it at 1/5) of the global variance on thelth dimension:
s2

l,j = 1
5s2

l , and the constantβ was set to 0.2. We found that
the initialization to these parameters performed reasonably
well.

Firstly, we investigated the capability of the proposed algo-
rithm on the model and feature selections using a synthetic

data. We appended 8 independent variables, sampled from
a standard normal distribution, to each data generated from
the following bivariate Gaussian mixture structure, yielding
a 10-dimensional data set with 1000 points.

0.3 ∗N
[(

1
1

)
;

(
0.1 0.0
0.0 0.1

)]
+ 0.4 ∗N

[(
1
5

)
;

(
0.1 0.0
0.0 0.1

)]

+0.3 ∗ N
[(

5
5

)
;

(
0.1 0.0
0.0 0.1

)]

Apparently, the last 8 dimensions are unimodal and irrele-
vant to the clustering. The objective is to detect the clustering
on the first two dimensions and identify the last 8 irrelevant
features. We ran the proposed algorithm 10 times, the 3
components and the irrelevant features were always correctly
found in all runs we have tried so far. Figure. 2 shows the
learning curves of the component weights and the size of
relevant features subset in a typical run.

We then compared our algorithm with the one proposed by
Law et, al [5]. The algorithm in [5] makes thesoft decisions
on whether the feature is relevant for the clustering or not,
and has to pre-assume the irrelevant features conformed to a
Gaussian distribution. Otherwise, its performance would be
degraded to a certain degree. For example, we appended 8
variables uniformly distributed between 0 and 5, to the data
from the above bivariate mixture structure, provided that the
distribution of the irrelevant features is the Gaussian when
using the algorithm in [5]. It is found that the algorithm of
[5] was unable to give a proper inference about the clusters
any more. Instead, it always largely over-fitted the data as
illustrated in Figure 3. This implies that the algorithm of [5]
is sensitive to the distribution of irrelevant features.

In contrast, the proposed algorithm circumvents this sen-
sitivity. As shown in Figure 3, it has succeeded to infer
the clustering structure in the original feature space. The
reason is that we assume all the features are relevant at
first, and then prune the features from the relevant feature
subset, according to the “scoring” derived upon thereference
clustering in the current epoch. In our method, we need not
assume the explicit form of the distribution of the irrelevant
features. Figure 4 demonstrates its learning curves of the
component weights and the size of the relevant feature
subset. It is interesting to note that, both in Figure 2 and
4, the components weights were gradually converged over
the epochs when the feature elimination was undergoing,
indicating that the feature selection had indeed facilitated
the clustering.

Further, we show the proposed algorithm on 4 benchmark
real-world data sets [14] in comparison to the RPEM algo-
rithm and the algorithm in [5]. The characters of the data are
summarized in Table I. Each data set hasN data points with
d features fromk∗ classes. We evaluate the accuracy of the
obtained partition with theerror rate index. After dividing
the original data set into the training set and the testing set
of the equal size, we executed the above algorithms on the
training set to obtain the parameters of the Gaussian mixture
model, then each data point in the testing set was classified
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Fig. 2. The results on the first synthetic data set. (a) the learning curve of ({α̂j}kmax
j=1 ); (b) the interval when the feature elimination was undergoing,

where|R| denotes the size of the relevant feature subset.
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Fig. 3. (a) The clustering results on the second synthetic data set obtained by the algorithm in [5], and (b) the proposed algorithm on the first two features,
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Fig. 4. The results on the second synthetic data set. (a) the learning curve of ({α̂j}kmax
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based on its posterior probability with a class label assigned.
The error rate is computed by the mismatch degree between
the obtained labels and the ground-truth class labels. The
mean and the standard deviation of theerror rate, along with
those of the estimated number of clusters in 10-fold runs on
the 4 real world data sets are listed in Table II.

TABLE I

THE REAL WORLD DATA SETS

Data set d N k∗

wine 13 178 3

German 24 1000 2

wdbc 30 569 2

ionosphere 34 351 2

It could be observed from Table II that the proposed
method has reduced the error rates on all sets compared to the
RPEM algorithm. This is because not all features are relevant
with respect to the partitioning task. These features with less
discriminating power might confuse the RPEM clustering
algorithm. Due to the iterative execution of the clustering and
the feature selection, the potential optimal cluster-searching
space shrank, thus leading to a better performance. The
proportions of the average selected features by our algorithm
in the whole feature set for each data sets (denoted as PFS)
are reported in Table III.

When comparing the proposed algorithm with the algo-
rithm in [5], although they are comparative in terms oferror
rate, our algorithm seems always given a closer estimation
of the model order than algorithm in [5], the latter one is
more likely to use more components especially for relatively
high dimensional data set.

VI. CONCLUSION

We have presented a feature relevance measurement and
integrated it into the RPEM algorithm. Subsequently, the
proposed algorithm is able to find an appropriate number
of clusters and relevant features for GM clustering. The
experimental results have shown that the proposed algorithm
outperforms the RPEM and the algorithm of [5].
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