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Toward Efficient Image Representation: Sparse
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Abstract— The key ingredients of matrix factorization lie in
basic learning and coefficient representation. To enhance the
discriminant ability of the learned basis, discriminant graph
embedding is usually introduced in the matrix factorization
model. However, the existing matrix factorization methods based
on graph embedding generally conduct discriminant analysis
via a single type of adjacency graph, either similarity-based
graphs (e.g., Laplacian eigenmaps graph) or reconstruction-based
graphs (e.g., L1-graph), while ignoring the cooperation of the
different types of adjacency graphs that can better depict the
discriminant structure of original data. To address the above
issue, we propose a novel Fisher-like criterion, based on graph
embedding, to extract sufficient discriminant information via two
different types of adjacency graphs. One graph preserves the
reconstruction relationships of neighboring samples in the same
category, and the other suppresses the similarity relationships of
neighboring samples from different categories. Moreover, we also
leverage the sparse coding to promote the sparsity of the coeffi-
cients. By virtue of the proposed Fisher-like criterion and sparse
coding, a new matrix factorization framework called Sparse
concept Discriminant Matrix Factorization (SDMF) is proposed
for efficient image representation. Furthermore, we extend the
Fisher-like criterion to an unsupervised context, thus yielding
an unsupervised version of SDMF. Experimental results on
seven benchmark datasets demonstrate the effectiveness and
efficiency of the proposed SDMFs on both image classification
and clustering tasks.

Index Terms— Matrix factorization, image representation,
graph embedding, Fisher-like criterion, sparse coding.

I. INTRODUCTION

HOW to make an efficient image representation is a
fundamental problem in image processing as input

images are typically of high dimensionality. One expects
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to seek a lower-dimensional hidden subspace to repre-
sent original high-dimensional images. Accordingly, matrix
factorization-based techniques, which lower down the input
dimensionality, have received considerable attentions in the
fields of image representation [1]–[3], image classification
and clustering [4], [5], image retrieval [6]–[9], and visual
tracking [10], to name a few. Specifically, given a matrix
with N images X = [x1, · · · , xN ] ∈ �m×N , each column
of the matrix is an m-dimensional sample vector correspond-
ing to one image. Matrix factorization aims to find two
lower-dimensional matrices: basis matrix U ∈ �m×r and
coefficient matrix V ∈ �r×N , satisfying X ≈ UV.

As depicted in [4] and [11]–[14], it is desired for a
matrix factorization method to find the basis matrix that is
able to uncover the intrinsic structure as well as to capture
highly discriminant information of image data. To satisfy
these requirements, the graph embedding framework [15] is
usually introduced in existing matrix factorization methods by
incorporating a graph-regularized constraint that characterizes
meaningful structures of image data into the oracle matrix
factorization model.

In unsupervised graph embedding framework, the pivotal
point is how to knit the graphs to depict the relationships
of image data. Currently, there are two major types to
build an adjacency graph, one is based on pairwise similar-
ities and the other is based on reconstruction weights [16].
In the former, the typical methods include Laplacian eigen-
maps (LE) [17] and its linearized version, i.e., locality pre-
serving projection (LPP) [18]. The target of LE and LPP
is to keep the similarity relationships between neighboring
image samples. By contrast, the latter methods [19]–[25]
assume that each image sample can be represented as a linear
combination of other samples in the same subspace. The
simplest reconstruction-based graph is LLE-graph [19], which
is usually adopted by unsupervised graph embedding methods
such as neighborhood preserving embedding (NPE) [20] to
preserve the reconstruction relationships among neighboring
image samples. However, due to the existence of noise,
e.g., illuminations, shadows and corruptions, LLE-graph may
not be amenable to reflect the intrinsic geometrical structure
of image samples because the reconstruction weights will be
seriously affected by the noise. Recently, with the huge success
of sparse representation (SR) [26], collaborative representa-
tion (CR) [27] and low rank representation (LRR) [28], three
more robust reconstruction-based graphs, i.e., L1-graph [21],
L2-graph [23] and LRR-graph [24], [25], have been developed
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Fig. 1. Comparison of existing two-graph based graph embedding strategies
and our Fisher-like criterion. S and R represent similarity-based graph and
reconstruction-based graph, respectively. The points with the same color
indicate samples in the same category.

to tolerate data noise. Specifically, L1-graph adds an L1-norm
constraint based on LLE-graph to achieve the sparsest rep-
resentations of reconstruction weights. L2-graph characterizes
the collaborative representation-based reconstruction relation-
ships with faster speed than L1-graph by replacing the L1-norm
constraint with the L2-norm one. LRR-graph recovers the
subspace structure from the corrupted image data by imposing
a low rank constraint on the reconstruction weights.

When label information of image data is available, the
above-mentioned similarity-based graphs or reconstruction-
based graphs have also been adopted by some semi-
supervised and supervised graph embedding methods [2], [13],
[29]–[31], such as supervised LPP (sLPP) [29], robust and
discriminative LRR (RDLRR) [31], robust structured subspace
learning (RSSL) [2] and discriminant sparse neighborhood
preserving embedding (DSNPE) [12], to maintain the simi-
larity or reconstruction relationships of the within-class image
samples. Moreover, some attempts [13], [32]–[34] have fur-
ther been made to use two separate graphs to characterize
the within-class structure as well as the between-class struc-
ture of image data. The typical two-graph based supervised
graph embedding methods include locality sensitive discrim-
inant analysis (LSDA) [13], discriminant locality preserving
projection (DLPP) [32], neighbourhood sensitive preserving
embedding (NSPE) [33] and discriminative sparsity preserv-
ing projection (DSPP) [34]. Although the above two-graph
based supervised graph embedding methods can better char-
acterize the discriminant structure by additionally considering
the between-class samples, they are still restricted to the mode
that uses only one type of adjacency graphs, i.e., similarity-
based graphs (e.g., LE-graph) or reconstruction-based graphs
(e.g., LLE-graph), to build both the within-class and
between-class graphs. For instance, LSDA and DLPP utilize
a similarity-based graph (i.e., LE-graph) to build both the
within-class and between-class graphs, while NSPE and DSPP
build both graphs by replacing LE-graph with LLE-graph and
L1-graph, respectively.

To the best of our knowledge, existing two-graph based
supervised graph embedding methods generally leverage the
first and the second graph embedding strategies in Fig. 1,

to learn a discriminative subspace. However, we emphasize
that the two graph embedding strategies cannot capture the
intrinsic discriminant structure of the original image data. This
can be intuitively explained as follows:

• The first graph embedding strategy targets learning a
subspace where the neighboring within-class image sam-
ples are pulled close while the neighboring between-class
samples are kept far apart. However, in this graph
embedding strategy, the crucial reconstruction structure
of the within-class image samples is ignored. As a result,
the recovered subspace structure may be skewed from the
true subspace structure.

• The second graph embedding strategy targets preserving
the reconstruction structure of the within-class image
samples while destroying the reconstruction structure of
the between-class samples. In this strategy, although the
reconstruction structure and the similarity relationships
of the within-class image samples can both be reserved,
the between-class samples may still have chance to
stay nearby because destroying the between-class recon-
struction relationships is a weaker penalty compared to
directly suppressing the similarities of the between-class
samples.

To address these issues, we develop a Fisher-like criterion by
conducting discriminant analysis across both reconstruction-
based graph and similarity-based graph. The former preserves
the reconstruction relationships of neighboring image samples
in the same category, and the latter suppresses the similarities
of neighboring samples from different categories (see the third
graph embedding strategy in Fig. 1).

To handle unlabeled data, we further extend the Fisher-like
criterion to an unsupervised context. One simple strategy
is to utilize the k-nearest neighboring image samples and
the remaining ones to build the within-class reconstruction-
based graph and between-class similarity-based graph, respec-
tively. However, this k-NN strategy is sensitive to data noise
(e.g., illumination and shadow). Alternatively, it is found that
two image samples are likely from different categories if they
neither 1) belong to the k-nearest neighbors of each other, nor
2) lie in the same subspace. We further design a more robust
heuristic strategy called hybrid nearest neighbor (H-NN).
Technically, the H-NN strategy takes advantage of k-NN
and SR to jointly select the suspected within-class and
between-class candidate samples to build both graphs.

After basis learning based on graph embedding, coefficient
representation is another key ingredient of matrix factor-
ization. In this paper, we propose a new matrix factoriza-
tion framework called Sparse concept Discriminant Matrix
Factorization (SDMF) by combining the Fisher-like criterion
with sparse coding, for efficient image representation. SDMF
features the finding of the basis that is able to 1) capture
highly discriminant information of the original image data,
2) reflect the intrinsic geometrical structure, and 3) yield
a sparse representation under the learnt discriminant basis.
Moreover, different from most existing matrix factorization
methods that alternate between updating the basis U and
coefficient V, SDMF launches a more aggressive optimization
strategy to separately optimize the basis U and coefficient V



3186 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 11, NOVEMBER 2019

by solving a sparse eigen-problem and two regressions, which
is beneficial to computational tractability.

The contributions of our work are summarized as follows:
• We develop a novel Fisher-like criterion to extract suf-

ficient discriminant information via two different types
of adjacency graphs, i.e., reconstruction-based graph and
similarity-based graph, which can provide a new insight
into the graph embedding strategies for building local
relationships of image data.

• We extend the Fisher-like criterion to an unsupervised
context by proposing two heuristic strategies, i.e., k-NN
strategy and H-NN strategy.

• By virtue of the Fisher-like criterion and sparse cod-
ing, we propose a new matrix factorization framework,
i.e., SDMF, for efficient image representation. Moreover,
for the sake of computational cost, we launch an aggres-
sive optimization strategy to solve the SDMF model.

Compared to our preliminary studies in [35], this paper
has made four major extensions. 1) We propose the H-NN
strategy for the Fisher-like criterion in unsupervised learning.
2) We supply with theoretical supports to manifest that the
solving solution of the optimal basis could address the small
sample size (SSS) problem [36] without pre-dimensionality
reduction. 3) The parameter sensitivity of SDMF is studied.
4) More extensive experiments are carried out to evaluate the
classification and clustering performance of SDMF, and com-
pared with other state-of-the-art methods, including popular
deep learning based methods.

The rest of this paper is organized as follows: In Section II,
we will introduce the proposed SDMF model in detail. The
experimental results are presented in Section III. Finally,
we give the concluding remarks in Section IV.

II. SPARSE CONCEPT DISCRIMINANT

MATRIX FACTORIZATION (SDMF)

Our SDMF framework integrates the Fisher-like criterion
and sparse coding into a unified framework, which is generic
enough to incorporate various graphs for capturing highly
discriminant information. In particular, we derive our model
with two prevalent graphs of LLE-graph and LE-graph for
the supervised SDMF. The detailed formulation and learning
algorithm are presented below in this section.

A. Formulation

Most existing matrix factorization methods, e.g., sparse
coding (SC) [37]–[39] and nonnegative matrix factoriza-
tion (NMF) [4], [11], [14] methods, usually alternate between
updating the basis U and coefficient V, which is very time-
consuming. By contrast, the SDMF model is proposed to
separately optimize the basis U and coefficient V by directly
solving the three sequential optimization problems as follows:

• Basis learning:

Y = arg min
Y

YT MwY

YT LbY
, (1)

U = arg min
U

�XT U − Y�2
F + α�U�2. (2)

Fig. 2. Fisher-like criterion in S-SDMF. The points with the same color
belong to the same category.

• Coefficient representation:

V = arg min
V

�X − UV�2
F + β�V�1. (3)

Basis learning:
• In Eq. (1), the minimization of YT MwY

YT LbY
interprets the

Fisher-like criterion, which aims to find good map-
ping Y ∈ �N×r capturing highly discriminant informa-
tion as well as the intrinsic manifold structure in the
training set. Specifically, in the supervised version of
SDMF (S-SDMF), the numerator YT MwY is generated
from LLE-graph [19] to maintain the reconstruction rela-
tionship for the image samples in the same category,
while the denominator YT LbY is extracted from the
LE-graph [17] to keep away neighboring samples from
different categories. Mw and Lb denote the within-class
and between-class scatter matrix, respectively (details
refer to Subsection II-B). On the other hand, in the
unsupervised version of SDMFs (U-SDMFs), the two
graphs that depict the local discriminant structure can be
built resorting to two heuristic strategies, i.e., k-NN and
H-NN strategies. The Fisher-like criterion in S-SDMF is
illustrated in Fig. 2.

• Eq. (2) is a relaxation of the linear equation system
XT U = Y, which enables the mapping Y to extend
to all image samples (including testing ones), and find
the corresponding basis U ∈ �m×r to inherit highly
discriminant ability of Y.

Coefficient representation: In Eq. (3), the minimization of
�V�1 aims at achieving sparse representation of the coeffi-
cients under the learnt discriminant basis, thus enabling each
image sample to be represented by a linear combination of
only few key basis vectors.

To summarize, SDMF is a two-step model for matrix
factorization, i.e, basis learning followed by coefficient repre-
sentation. In SDMF, the mapping Y, basis U and coefficient V
are optimized forward and sequentially, the flow is somewhat
different from the alternating direction iteration strategy that
optimizes one variable by fixing the values of other variables
as the outputs at the previous iteration. The SDMF model
only needs to solve a sparse eigen-problem and two regression
problems, which makes SDMF time-efficient.
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Please note that, the transition from the mapping Y to the
basis U in Eq. (2) is an innovative way to address the SSS
problem without pre-dimensionality reduction, and meanwhile
can alleviate the over-fitting in the training phase, which
has already been approved by the popular spectral regression
framework [40]. Besides, one related method named sparse
concept coding (SCC) has been reported in [41]. Although
SDMF and SCC both incorporate spectral regression and share
similar optimization scheme, SDMF is different from SCC
from two aspects. First, SCC simply uses LE-graph to charac-
terize the data structure, while SDMF leverages the two-graph
based Fisher-like criterion to uncover the intrinsic manifold
structure as well as to capture hidden discriminant information.
Second, SCC is an unsupervised method, while SDMF is
implemented in both the supervised and unsupervised forms
to tackle image classification and clustering tasks.

B. Basis Learning

The structure of basis learning process can be stated
formally as follows.

1) Graph Construction Strategy: Let G and G� denote two
adjacency graphs both over training dataset. Let Sw

i j and Sb
i j

be the reconstruction weight and affinity weight of the edge
joining vertices i and j in G and G�, respectively. We define
Nk(xi ) as the set of k nearest neighbors of xi . ci and c j

denote the class label of xi and x j , the total number and the
feature dimension of image samples are defined as N and m,
respectively.

For S-SDMF, we build the within-class graph G and the
between-class graph G� by using LLE-graph and LE-graph,
respectively. Accordingly, we let Sw

i j = arg minSw
i j

∑
i �xi −∑

j Sw
i j x j�2, if ci = c j , and Sw

i j = 0 otherwise. Sb
i j can

be defined in a “simple-minded" or “heat-kernel" way [17].
For simplicity, we use the former way to define Sb

i j ; namely,
if ci �= c j , Sb

i j = 1, otherwise Sb
i j = 0.

For U-SDMFs, two heuristic strategies, i.e., k-NN strategy
and H-NN strategy, are proposed to build the intrinsic graph G
and the penalty graph G�. Then the Sw in graph G and Sb

in graph G� can be computed according to the following
criteria.

In k-NN strategy, we simply use pair-wise Euclidean dis-
tance to measure the similarity of image samples, and select
k nearest neighboring samples to build G and the remaining
ones to build G�. Sw

i j is defined as Sw
i j = arg minSw

i j

∑
i �xi −∑

j Sw
i j x j�2 if xi ∈ Nk(x j ) or x j ∈ Nk (xi ), and Sw

i j = 0
otherwise. Subsequently, we define Sb

i j = 0, if xi ∈ Nk(x j ) or
x j ∈ Nk(xi ), and Sb

i j = 1 otherwise.
The H-NN strategy draws inspiration from a novel obser-

vation that two image samples are likely from different cat-
egories if they neither 1) belong to the k-nearest neighbors
of each other, nor 2) lie in the same subspace. Considering
that SR has been approved to possess natural discriminating
power and could characterize the data subspace structure
implicitly [22], [26], [34], we then attempt to combine the
ideas of k-NN and SR to cooperatively select the suspected
within-class and between-class candidate samples.

• First, we compute the sparse representation weight matrix
W of X by the following optimization problem:

W = arg min
W

�W�1 + γ

2
�Z�2

F

s.t . X = XW + Z, diag(W) = 0, (4)

where the L1-norm promotes the sparsity of the columns
of W, γ is a balance parameter, and Z indicates the
noise matrix. The solution W of Eq. (4) could be solved
efficiently using convex programming tools, and the
reconstruction weight matrix Sw is computed by Sw =
|W| + |W|T . For each image xi , we select the samples
with non-negative values in Sw

i to form the suspected
within-class candidate set, i.e., Nw(xi ), and the remaining
ones with zero values are then grouped to the set Nr (xi )
that are likely from different subspaces.

• Furthermore, the k-NN strategy could also make contri-
bution to the selection of neighboring samples. For each
image xi , assuming the number of samples in Nw(xi )
is kw, we then apply k-NN to get kw nearest neighboring
samples. In this case, the remaining N − kw image
samples are then grouped to the set N̂r (xi ). According
to the above observation, the suspected between-class
candidate set Nb(xi ) for image xi can be decided by the
intersection of Nr (xi ) and N̂r (xi ), i.e., Nr (xi ) ∩ N̂r (xi ).
Hence, the affinity weight Sb

i j is defined by letting Sb
i j = 1

if x j ∈ Nb(xi ) or xi ∈ Nb(x j ), and Sb
i j = 0 otherwise.

The k-NN and H-NN are both effective strategies to build
local relationships of image data for unsupervised learning.
The k-NN strategy is succinct and time-efficient. However,
it is sensitive to the imbalance of the feature distribu-
tion and data noise. By contrast, the H-NN strategy con-
structs a hybrid-graph by using both the tangent space in
the neighborhood [42] and sparse reconstructed subspace to
characterize the local geometrical structure of image data,
which can be more discriminative and robust compared to
the k-NN strategy. The clustering experiments in Section III
will validate the rationality and effectiveness of the H-NN
strategy. It is worth noting that, for k-NN strategy, there is
one parameter k needs to be manually assigned. While in
H-NN strategy, we only need to determine the value of the
balance parameter γ in Eq. (4), and the suspected within-class
and between-class candidate set Nw(xi ) and Nb(xi ) can be
obtained automatically following the H-NN procedure.

2) Updating Mapping Y: Let Y = [y1, · · · , yr ] ∈ �N×r be
the mapping from the graph to the real line [40]. The optimal
Y is given by optimizing the following objective functions
generated from LLE-graph and LE-graph, respectively:

min �w(Y) =
∑

i

�yi −
∑

j

Sw
i j y j�2

F , (5)

max �b(Y) = 1

2

∑
i, j

�yi − y j�2
F Sb

i j . (6)
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By employing some algebraic steps, we have:

�w(Y) =
∑

i

�yi −
∑

j

Sw
i j y j�2

F

= �(I − Sw)Y�2
F

= tr{YT [I − (Sw)T ](I − Sw)Y}
= tr{YT [I − (Sw)T − Sw + (Sw)T Sw]Y}
= tr(YT MwY),

�b(Y) = 1

2

∑
i, j

�yi − y j�2
F Sb

i j

= 1

2

∑
i, j

(yi − y j )
T (yi − y j )S

b
i j

= 1

2
tr(2YT DbY − 2YT SbY)

= tr [YT (Db − Sb)Y]
= tr(YT LbY),

where Mw = (I − Sw)T (I − Sw), Db
ii = � j Sb

i j , Lb =
Db − Sb. Then, the minimization problem in Eq. (5) and the
maximization problem in Eq. (6) can be summarized as the
following novel Fisher-like criterion:

min
Y

�w(Y)

�b(Y)
= tr(YT MwY)

tr(YT LbY)
. (7)

The above minimization problem leads to solving the follow-
ing generalized eigenvalue problem:

MwY = λLbY, (8)

where λ is the eigenvalue to the problem. The solution Y is
the eigenvectors of the above generalized eigen-problem with
respect to the smallest eigenvalues. Each row of Y can be
viewed as the flat embedding for the data points which unfold
the training data manifold [41].

3) Updating Basis U: The graph embedding approach only
provides the mapping Y for the graph vertices in the training
set. Extending to all samples, including new testing sam-
ples, our SDMF tends to learn the basis U which satisfies
XT U = Y. Then, the Eq. (8) could be converted to the
general eigen-decomposition problem in graph embedding
framework [15]:

XMwXT U = λXLbXT U. (9)

Unfortunately, in practical applications, the number of samples
is always far less than the dimension of features (N 	 m),
then we can say the linear equations system XT U = Y is
underdetermined. As a result, the matrix XLbXT could be
singular (rank(XLbXT ) < m), and the Eq. (9) doesn’t work
under the circumstance.

Unlike the conventional subspace learning methods [12],
[13], [18], [20], [22], which introduce an additional PCA [43]
projection preprocessing procedure to reduce the dimension-
ality of image features, we leverage the spectral regres-
sion framework [40] to address the above SSS problem [36].
Accordingly, we relax the linear equation system XT U = Y
as follows:

U = arg min
U

�XT U − Y�2
F + α�U�2, (10)

where α ≥ 0 is a parameter to control the amounts of
shrinkage of the above ridge regression problem. By taking
the derivative of Eq. (10) with respect to U and setting it to
zero, we can obtain the optimal basis U∗ by

U∗ = (XXT + αI)−1XY. (11)

Obviously, when α > 0, the optimal solution obtained
by Eq. (11) will not satisfy the linear equation system
XT U = Y, and U∗ cannot be the eigenvector matrix of the
eigen-decomposition problem in Eq. (9). Hence, it’s important
to find when Eq. (11) gives the exact solution of Eq. (9).
Fortunately, there exists the following Theorem 1:

Theorem 1: Suppose Y = [y1, · · · , yr ] ∈ �N×r , where y is
the eigenvector of eigen-decomposition problem in Eq. (8),
r is the eigenvector number. If y is in the space spanned
by row vectors of X, the corresponding projective basis U∗
calculated in Eq. (11) will be the exact solution in Eq. (9)
when regularization parameter α deceases to zero (Proof see
Appendix).

C. Coefficient Representation
After we get the basis U, the representation V can be calcu-

lated column by column independently through the following
lasso regression [44] problem:

min
V

�xi − Uvi�2
F + β|vi |, (12)

where xi and vi are the i-th columns of X and V, respectively.
|vi | denotes the L1-norm of vi , which is added to ensure the
sparseness of vi . Subsequently, we employ the Least Angel
Regressions (LARs) [45] to solve the following equivalent
formulation to the above regression problem in Eq. (12):

min
V

�xi − Uvi�2
F s.t . |vi | ≤ τ. (13)

It is worth noting that, LARs choose to control the sparseness
of vi by specifying the cardinality (the number of non-zero
entries) of vi instead of setting the parameter τ . Moreover,
the coefficient representation of a testing sample can also be
computed in a similar way as Eq. (13).

D. Algorithm Complexity Analysis
The proposed SDMF algorithm involves two phases: basis

learning and coefficient representation.
Basis learning can be divided into three parts, including

1) construction of the reconstruction-based graph G and
similarity-based graph G�, 2) calculation of the reconstruction
weight matrix Sw and affinity weight matrix Sb, and 3) spectral
regression. While in coefficient representation phase, the time
complexity of LARs is considered.

1) S-SDMF: In basis learning phase, the two adjacency
graphs are built directly by using label information, then the
computational time of the first part could be ignored. For
the second part, we denote the average number of samples
in each category as kc, then the complexities of computing
the reconstruction weight matrix Sw and the affinity weight
matrix Sb are O(m Nk3

c ) [46] and O(N2), respectively. The
spectral regression computation in the third part involves two
steps: response generation (calculate the eigenvectors of sparse
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Fig. 3. Some samples for one subject of seven benchmark datasets: (a) CMU PIE; (b) E-YaleB; (c) JAFFE; (d) ORL; (e) COIL20; (f) UMIST; (g) Scene15.

eigen-decomposition problem in Eq. (8)) and regularized least
squares. Let r denote the number of eigenvectors, then the
cost of the first step requires O(r Nkc) [41]. The regularized
least squares problem in Eq. (10) can be efficiently solved by
the iterative algorithm LSQR [40]. Denote t as the iteration
number of LSQR algorithm, then the cost for r projective
functions is r t (2m N + 3N + 5m). Thus the computational
complexity of the spectral regression can be O(r tm N+r Nkc).

In coefficient representation phase, LARs can compute
the entire solution path (the solutions with all the possible
cardinality on ui ) of the problem Eq. (13) in O(N3 + m N2).
Overall, because r 	 N, kc 	 N , the time complexity of
S-SDMF can be summarized as

O(N3 + m N2 + r tm N + m Nk3
c ).

Obviously, if the iteration number t is of the same order of
magnitude as N , the complexity of S-SDMF is comparable
to the ordinary non-sparse solution solved by generalized
eigen-problem (O(N3 + m N2)), i.e. sNPE [30], NSPE [33],
which is time-efficient in reality.

2) U-SDMFs: Regarding U-SDMF with k-NN strategy,
the time complexity of finding k nearest neighboring sam-
ples and the remaining ones to build both adjacency
graphs (G and G�) in basis learning is O(m N2) [47]. Similarly
for S-SDMF, the overall time complexity of U-SDMF with
k-NN strategy can be summarized as

O(N3 + m N2 + r tm N + m Nk3).

By contrast, U-SDMF with H-NN strategy requires an addi-
tional step by solving the optimization problem in Eq. (4). As a
result, the total complexity of U-SDMF with H-NN strategy
is correlated to the selection of the optimization tools.

III. EXPERIMENTAL RESULTS

In this section, six experiments are performed to show the
effectiveness and efficiency of the proposed SDMF method
from different perspectives. The six experimental parts are
listed as follows:

• We evaluate the discriminant ability of the proposed
Fisher-like criterion in Subsection III-B.

• We evaluate the performance of S-SDMF on face recog-
nition task in Subsection III-C.

• We evaluate the performance of the U-SDMFs on image
clustering task in Subsection III-D.

• We study the parameter sensitivity of S-SDMF and
U-SDMFs in Subsection III-E.

• We test the computational time of S-SDMF and
U-SDMFs in Subsection III-F.

• We investigate the feasibility of combining S-SDMF with
deep features on challenging scene classification task in
Subsection III-G.

All experiments are carried out on a PC (CPU: Intel
Core i7-4790K 4.00GHz, RAM: 16GB).

A. Data Description and Presentation
We utilize 7 benchmark datasets, including CMU PIE,

Extended YaleB, JAFFE, ORL, COIL20, UMIST and Scene15
datasets. Fig. 3 shows some sample images of the involved
datasets, and some brief descriptions are presented below:

• CMU PIE [48] consists of 41,368 images of 68 subjects,
and each subject involves 43 different illumination con-
ditions, 13 different poses, and 4 different expressions.

• Extended YaleB (E-YaleB) [49] consists of 2414 frontal
face images of 38 subjects under 9 poses and 64 illumi-
nation conditions.

• JAFFE [50] contains 213 images of 7 facial expressions
posed by 10 Japanese female models. Each image has
been rated on 6 emotion adjectives by 60 Japanese
subjects.

• ORL [51] contains 40 individuals. Each of them includes
10 different images, which show variations in facial
expressions, facial details and poses.

• COIL20 [52] contains gray scale images of 20 objects
viewed from varying angles and each object has
72 images.

• UMIST [53] contains 20 individuals of 575 face images.
Each of them includes 19 to 48 different images, which
show variations in poses.

• Scene15 [54] includes 4,485 images from 15 outdoor
and indoor scene categories, each category contains
200 to 400 gray images.

B. Discriminant Ability Evaluation
This subsection evaluates the discriminant ability of the

proposed Fisher-like criterion by performing dimensionality
reduction and then visualizing the subspace representation.

The comparing methods include PCA [43] and 4 related
supervised graph embedding techniques, i.e., supervised
LPP (sLPP) [29], supervised NPE (sNPE) [30], LSDA [13]
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TABLE I

GRAPH EMBEDDING STRATEGIES OF THE INVOLVED METHODS

and NSPE [33]. Note that, to make a fair comparison
with these methods, we leave out the sparse representation
phase and simply utilize the projection basis learnt by the
Fisher-like criterion to obtain the lower-dimensional subspace
representation (i.e., V = UT X). For simplicity, this graph
embedding method that leverages the Fisher-like criterion is
called discriminant locality preserving embedding (DLPE)
thereinafter.

In this experiment, we randomly select 6 subjects (Sub-
ject 1-6, each subject contains 32 images) on E-YaleB dataset
for evaluation. We start by using PCA, sLPP, sNPE, LSDA,
NSPE and DLPE to reduce the dimensionality of the evalu-
ated data to 50. Then, we utilize the powerful visualization
tool, i.e., t-SNE [55], to convert the 50-dimensional repre-
sentation to a two-dimensional map. Table I summarizes the
graph embedding strategies of the involved methods, and the
visualization of the subspace representations are presented
in Fig. 4. From the 6 sub-figures in Fig.4, we have the
following observations. First, in the subspace representations,
the separability of class clusters of DLPE is obvious better
than that using PCA, sLPP, sNPE, LSDA and NSPE. Second,
the representations after PCA projection tend to be rather
scattered and the between-class marginal is not clear. Third,
the scatterings of sLPP and sNPE representations are better
than those in PCA to some degree, but there are still a large
amount of overlaps between different classes. Forth, the class
clusters of LSDA and NSPE are well separated with a small
amount of overlapping points. In a nutshell, the above sub-
figures empirically verify the superior discriminant ability of
DLPE over the comparing graph embedding methods.

The discussions of the above experimental phenomena are
presented below:

• sLPP and sNPE are both one-graph based graph
embedding methods. The two methods respectively use
LE-graph and LLE-graph to maintain the similarity or
reconstruction relationships of the within-class image
samples, while ignoring punishing the between-class
samples. As a result, there exist a large amount of
overlaps between different classes after sLPP and sNPE
projections.

• LSDA, NSPE and DLPE are all two-graph based graph
embedding methods. LSDA uses LE-graph to build the
within-class graph and between-class graph, while NSPE
leverages LLE-graph to build both graphs. By addition-
ally considering the between-class image samples, LSDA
and NSPE can achieve better subspace distributions than
sLPP and sNPE. However, in LSDA, preserving the
within-class LE-graph cannot maintain the reconstruction

Fig. 4. Visualization of the subspace representations after (a) PCA, (b) sLPP,
(c) sNPE, (d) LSDA, (e) NSPE, and (f) DLPE projections on E-YaleB dataset.

structure in each class cluster; while in NSPE, destroy-
ing the between-class LLE-graph is a weak penalty
which may not successfully keep away the neighboring
between-class image samples. Hence, there are still a
small amount of overlapping points after LSDA and
NSPE projections. By contrast, DLPE combines the
advantages of LLE-graph and LE-graph, which success-
fully preserves the within-class reconstruction structure
and meanwhile maximizing the between-class marginal.
Consequently, DLPE outperforms LSDA and NSPE with
respect to the discriminant ability.

C. Face Recognition Experiments

In this subsection, the recognition performance of S-SDMF
is evaluated on CMU PIE [48] and E-YaleB [49], respectively.
For CMU PIE dataset, we select a subset of 1700 images
of 10 subjects that contain five near frontal poses (C05, C07,
C09, C27, C29) for evaluation. l images (l = 45, 65, 85) are
randomly selected from the image gallery of each individual
to form the training set Gm (G45, G65, G85), and the
remaining 170 − l images are taken to form the testing set
Pn (P125, P105, P85). For E-YaleB dataset, we randomly take
1280 images of 20 subjects for evaluation. A random subset
with Gm (G16, G24, G32) is taken to form the training set,
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TABLE II

THE TOP AVERAGE RECOGNITION RATES OF DIFFERENT METHODS ON CMU PIE DATASET

TABLE III

THE TOP AVERAGE RECOGNITION RATES OF DIFFERENT METHODS ON E-YALEB DATASET

and the remaining part Pn (P48, P40, P32) as the testing set.
The images in two face datasets are all cropped to 32 × 32,
and the recognition experiments are repeated 5 times for each
training-testing partition.

1) Comparing Methods: In face recognition experiments,
13 representative comparing methods, including 10 popu-
lar subspace learning methods, i.e., PCA [43], graph-based
LDA [18], sparse preserving projection (SPP) [22], super-
vised LPP (sLPP) [29], supervised NPE (sNPE) [30],
LSDA [13], NSPE [33], DSNPE [12], low-rank preserv-
ing embedding (LRPE) [25] and DSPP [34], 2 recent
representation based classifiers, i.e., sparse representation
classifier (SRC) [26] and collaborative representation clas-
sifier (CRC) [27], and the state-of-the-art dictionary learn-
ing method, i.e., Fisher discrimination dictionary learning
(FDDL) [56], are used for comparison.

2) Parameter Settings: PCA, SPP and LRPE are unsuper-
vised subspace learning methods, and the major parameter for
adjusting is the subspace dimension. The model parameters
for sLPP, sNPE, LSDA and NSPE are empirically set in
accordance with [35]. For DSNPE and DSPP, the values of
the trade-off parameter γ in DSNPE and ρ in DSPP are set
as γ = 1 and ρ = 0.0002 according to the suggestions
in [12] and [34], respectively. SRC and CRC both generate
eigenfaces to perform dimensionality reduction, the values
of the regularization parameter λ for SRC and CRC are
searched from {0.01, 0.05, 0.1, 0.5, 1}. For FDDL, the para-
meters are chosen via cross-validation as depicted in [56]. For
the proposed S-SDMF, we construct two adjacency graphs
by directly using label information, so we only need to
set the value of ridge regularization parameter α. For two
recognition experiments, we empirically set α = 0.01 on both
datasets. It is worth noting that, to avoid the SSS problem,
the comparing subspace learning methods, including LDA,
sLPP, sNPE, LSDA, NSPE, SPP, LRPE, DSNPE and DSPP,
all require an additional preprocessing step to reduce the input
dimensionality (m) to the number of samples (N) by PCA.

3) Recognition Results: Table II and Table III list the top
average recognition rates of S-SDMF and the comparing
methods on CMU PIE and E-YaleB datasets, respectively.
From the two tables, we have the following observations.
First, S-SDMF consistently outperforms the subspace learning
methods and representation based classifiers in all the cases we

have tried. Particularly, on E-YaleB dataset, S-SDMF boosts
the average recognition rates over DSPP and DSNPE by
6% and 7.7%, respectively. In addition, on CMU PIE dataset,
S-SDMF also increases over 5% improvement compared with
NSPE and LSDA, and nearly 8% improvement compared with
sNPE and sLPP, w.r.t. the average recognition rates. Second,
S-SDMF obtains comparable or even better recognition results
compared to the state-of-the-art FDDL over both datasets with
much less training time (refer to Subsection III-F), which con-
firms the effectiveness and efficiency of the proposed S-SDMF.
Third, the unsupervised SPP and LRPE perform better than
PCA, and even achieve similar results with some supervised
subspace learning methods such as LDA and sLPP on E-YaleB
dataset, again demonstrating the implicit discriminating power
of the L1-graph and LRR-graph.

Fig.5 (a)-(c) and Fig. 6 (a)-(c) show the top average recog-
nition rates of S-SDMF and the comparing subspace learning
methods versus the variation of feature dimensions on CMU
PIE and E-YaleB datasets, respectively. It is clear to see that
SDMF outperforms the comparing subspace learning methods
almost across all the dimensions. Besides, we also observe
that S-SDMF still achieves promising recognition performance
even when the number of dimensions is small (e.g., less
than 100). It maybe because the highly discriminant ability
of the Fisher-like criterion and the sparse constraint on coef-
ficient, which enables the new representations of S-SDMF to
capture the hidden discriminative semantic concept even in the
low-dimensional subspace. Moreover, the spectral regression
in the S-SDMF model can also contribute to the recognition
performance by reserving the original information (avoid-
ing pre-dimensionality reduction) as well as alleviating the
over-fitting in the training phase.

D. Image Clustering Experiment
In this subsection, we evaluate the clustering performance

of U-SDMFs with k-NN and H-NN strategies, on COIL20,
UMIST, JAFFE and ORL four benchmark datasets. For sim-
plicity, the U-SDMF with k-NN strategy and U-SDMF with
H-NN strategy are called U-SDMF1 and U-SDMF2, respec-
tively. In order to randomize the experiments, we evaluate the
clustering performance with different number of clusters for
each evaluated dataset. For each given cluster number (except
the total cluster number), 10 tests are conducted on different
randomly chosen classes.
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Fig. 5. The top average recognition rates on CMU PIE dataset versus feature dimensions from 5 to 200 of (a) G45/P125, (b) G65/P105, and (c) G85/P85,
respectively.

Fig. 6. The top average recognition rates on E-YaleB dataset versus feature dimensions from 10 to 250 of (a) G16/P48, (b) G24/P40, and (c) G32/P32,
respectively.

1) Comparing Methods: In the clustering experiment,
9 popular clustering methods including K-means (base-
line), graph regularized nonnegative matrix factorization
(GNMF) [11], graph regularized nonnegative matrix factoriza-
tion with sparse coding (GRNMFSC) [57], Laplacian sparse
coding (LapSC) [37], sparse concept coding (SCC) [41],
LRR [28], Latent LRR (LatLRR) [58], the state-of-the-art
sparse subspace clustering (SSC) [59] and robust graph reg-
ularized nonnegative matrix factorization (RGNMF) [60], are
selected as the comparing methods.

2) Parameter Settings: As to the parameter settings,
we report the matrix factorization based methods (except
for K-means, LRR, LatLRR and SSC) with the number of
basis vectors equal to the number of clusters. For LRR,
LatLRR and SSC, the rank of adjacency graph (the number
of subspaces) is also set as the number of clusters. GNMF,
GRNMFSC and RGNMF are solved by multiplicative updates,
the maximum iterations of the above three NMF variants are
all set as 1000, and the sparsity regularization parameter λ
in GRNMFSC is set as 0.01. The parameters of SCC and
LapSC are set according to the suggestion in [41]. There are
two parameters in U-SDMF1: the number of nearest neighbors
k and the ridge regularization parameter α. We empirically set
k = 4 and α = 0.02 over four evaluated datasets. Regarding
the U-SDMF2, in this work we use Alternating Direction

Method of Multipliers (ADMM) [61] framework to solve the
sparse optimization problem in Eq. (4). As a result, there are
also two parameters in U-SDMF2: the balance parameter γ
(actually, we scale γ with γ = γ̂

mini max j �=i |xT
i x j | ) and the

ridge regularization parameter α. We empirically set γ̂ = 4
for UMIST dataset, and γ̂ = 6 for the other three datasets.
In addition, the parameter α is also fixed as 0.02 in U-SDMF2.

a) Evaluation Metrics: The clustering result is evaluated
by comparing the obtained label of each sample with the label
provided by the dataset. Three metrics, the accuracy (ACC),
the normalized mutual information metric (NMI) and purity
are used to measure the clustering performance.

i) ACC: As depicted in [62], the clustering ACC is
defined as follows:

ACC = �N
i=1δ(ci , map(li ))

N
, (14)

where N is the total number of samples, ci stands for the
provided label, map(li) is a mapping function that maps the
obtained cluster label li to the equivalent label from the data
corpus. δ(x, y) is the delta function that equals 1 if x = y and
equals 0 otherwise.

ii) NMI: Let C denote the set of clusters obtained from
the ground truth and Ĉ obtained from our algorithm. Their
mutual information metric M I (C, Ĉ) is defined according
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TABLE IV

CLUSTERING PERFORMANCE ON COIL20 DATASET

TABLE V

CLUSTERING PERFORMANCE ON UMIST DATASET

to [11]:

M I (C, Ĉ) =
∑

ci∈C ,̂c j∈Ĉ

p(ci , ĉ j ).log
p(ci , ĉ j )

p(ci )p(̂c j )
, (15)

where p(ci ) and p(̂c j ) denote the probabilities that a sample
arbitrarily selected from the data set belongs to the clus-
ters ci and ĉ j , respectively. p(ci , ĉ j ) is the joint probability
that the arbitrarily selected sample belongs to the clusters
ci and ĉ j at the same time. In our experiment, we use
the normalized MI (NMI) metric to evaluate the clustering
performance:

N M I (C, Ĉ ) = M I (C, Ĉ)

max(H (C), H (Ĉ))
, (16)

where H (C) and H (Ĉ) are the entropies of C and Ĉ , respec-
tively. NMI metric reflects the similarity of the distribution of
C and Ĉ , if the two sets of clusters are identical, NMI equals
to 1, otherwise NMI falls in between 0 and 1.

iii) Purity: Purity [60] measures the extent to which
each cluster contains data points from primarily one class.
Accordingly, the purity of a clustering is computed as follows:

Puri ty = 1

N

K∑
i=1

max(n j
i ), (17)

where n j
i is the number of data points in the j th cluster that

belong to the i th class, K is the number of the clusters, and
N is the total number of the data points.

b) Image Clustering Results: Tables IV-VII list the ACC,
NMI and purity of different methods over four benchmark
datasets, the mean and standard error of the performance are
reported in the four tables.

From Tables IV-VII, we have the following observations.
First, the two versions of U-SDMFs always result in inspir-
ing clustering performance in all the cases we have tried.
By simply using k-means on the low-dimensional sparse repre-
sentation, U-SDMF1 and U-SDMF2 achieve better clustering
results compared with the state-of-the-art SSC and RGNMF



3194 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 11, NOVEMBER 2019

TABLE VI

CLUSTERING PERFORMANCE ON JAFFE DATASET

TABLE VII

CLUSTERING PERFORMANCE ON ORL DATASET

algorithms in almost all cases. Second, although SCC shares
similar optimization scheme with U-SDMFs, the performance
of our methods is much better than that of SCC. For example,
on UMIST dataset, U-SDMF1 has a gain over SCC by
10.1%, 9.2% and 11.3% w.r.t. the average ACC, NMI and
purity, respectively. This significant improvement is because,
SCC simply uses LE-graph to preserve the similarities of
the neighboring image samples, while U-SDMFs leverage
the Fisher-like criterion to 1) maintain the reconstruction
structure of the suspected within-class candidate samples, and
2) keep the suspected between-class candidate samples distant.
Consequently, U-SDMFs can better capture the discriminant
information of image data than SCC. Third, U-SDMF2 per-
forms better than U-SDMF1 over four datasets by delivering
1.1%-5.0%, 1.5%-2.4% and 2.6%-5.6% of improvements w.r.t.
the average ACC, NMI and purity, respectively, which con-
firms the superiority of the H-NN strategy. Forth, LatLRR and
LRR cannot always obtain satisfactory clustering results over
four datasets. For example, LatLRR and LRR achieve goodish
clustering results next to U-SDMF2 on JAFFE dataset, but per-
form quite poor on COIL20 and UMIST datasets. The reason
can be that, although LatLRR and LRR are multi-subspace

Fig. 7. Performance of S-SDMF with different α values on (a) CMU PIE
and (b) E-YaleB datasets, respectively.

learning methods with error correction, the two methods both
ignore analyzing the hidden discriminant structure of image
data. As a result, they may not be amenable to deal with
different types of image variations. Fifth, RGNMF performs
better than GRNMFSC, GNMF and LapSC, while K-means
performs the worst among the comparing methods.

E. Study of Parameter Selection
This subsection further probes the effects of the parameters

in S-SDMF and U-SDMFs. Fig. 7 shows the recognition
results of S-SDMF as α varies from 0.01 to 1. We observe that
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Fig. 8. Clustering accuracies of U-SDMF1 with different combinations of k and α values. (a)-(d) show the performance on COIL20, UMIST, JAFFE and
ORL datasets, respectively.

Fig. 9. Clustering accuracies of U-SDMF2 with different combinations of γ̂ and α values. (a)-(d) show the performance on COIL20, UMIST, JAFFE and
ORL datasets, respectively.

TABLE VIII

THE TRAINING TIME AND THE RECOGNITION ACCURACIES OF DIFFERENT METHODS ON CMU PIE (G45/P125)

TABLE IX

THE CLUSTERING TIME AND THE PERFORMANCE OF DIFFERENT METHODS ON UMIST (K = 20)

the recognition rates of S-SDMF present a gradual decreasing
tendency with the increase of the value of α, and obtain
promising results ranging from 0.01-0.1 over both CMU PIE
and E-YaleB datasets. Fig. 8 and Fig. 9 show the effects of
two parameters: k (γ̂ ) and α on the clustering accuracies
of U-SDMF1 and U-SDMF2 over COIL20, UMIST, JAFFE
and ORL datasets. It is clear that the clustering accuracy of
U-SDMF1 is sensitive to the neighborhood size k. By contrast,
the clustering accuracy of U-SDMF2 is quite insensitive to
the ridge regularization parameter α, and can achieve stable
clustering results when the value of γ̂ exceeds some certain
threshold (i.e., γ̂ ≥ 4). Through experiments, we also observe
that the clustering performance of U-SDMFs using the other
two metrics (NMI and purity) shares the similar trend with
accuracy when tuning the values of the two parameters.1

F. Computational Time Evaluation
In this subsection, we first list the training time of

S-SDMF on CMU PIE (G45/P125), then compare it with

1The results are available in https://pan.baidu.com/s/1jJI8p5W.

PCA, LDA, LSDA, NSPE, SPP, DSNPE, DSPP, LRPE and
FDDL in Table VIII. For ease of observation, we also report
their recognition performance in Table VIII. It is clear that
S-SDMF achieves the best performance with a reasonable low
time cost. Specifically, the training time of S-SDMF is just
comparable to NSPE and even achieves order-of-magnitude
speedup over the other subspace learning methods, i.e., SPP,
DSPP, LRPE, DSNPE, and the dictionary learning FDDL
method. Moreover, we also compute the average recognition
time of a testing sample for S-SDMF as 0.0078 seconds, which
is fast and far less than the acceptable 0.5 seconds.

Furthermore, we list the clustering time of U-SDMFs
on UMIST (K = 20), then compare it with K-means,
SCC, GNMF, GRNMFSC, RGNMF, SSC, LRR and LatLRR
in Table IX. For reference, the clustering performance of
these methods have also been reported in Table IX. As shown
in Table IX, U-SDMF1 is time-efficient and reduces much time
compared with the NMF variants and LRR, LatLRR and SSC.
In contrast, the clustering time of U-SDMF2 is close to that
of SSC, as it requires an additional step to solve the problem
in Eq. (4) via ADMM framework. However, please note
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that our U-SDMF2 also harvests 8.3%, 2.7% and 9.8% of
improvements over the state-of-the-art SSC w.r.t. the ACC,
NMI and purity, respectively.

G. Scene Classification With Deep Features
In this subsection, we further evaluate the classifica-

tion performance of S-SDMF with deep features on the
challenging Scene15 dataset. Following the setting in [63],
we use 50 images per category for training, and the rest
images for testing. We employ the MatConvNet [64] toolbox,
with a 21-layer VGG16 [65] pre-trained on ImageNet [66]
being used. Then, we choose the vector-based feature
(dimension = 1000) generated from the 20th layer as the
input feature for S-SDMF. The classification accuracies of
the VGG16+S-SDMF and the comparing ImageNet-VGG16,
ImageNet-AlexNet [63] and ImageNet-GoogLeNet [63] are
reported as 90.3%, 86.2%, 84.1% and 85.0%, respectively.
The inspiring results demonstrate the discriminating power of
the deep features and offer the new direction by combining
SDMF with deep features to handle the practical scene clas-
sification tasks.

IV. CONCLUDING REMARKS

In this paper, we have proposed a novel Fisher-like
criterion to capture the intrinsic discriminant structure of
image data by conducting discriminant analysis across both
reconstruction-based graph and similarity-based graph. Fur-
thermore, by incorporating the Fisher-like criterion with sparse
coding, we further propose a new SDMF framework for effi-
cient image representation. SDMF enables the learnt basis to
capture highly discriminant information as well as the intrinsic
manifold structure of original data, and meanwhile to ensure
the sparseness of new representations under the learnt basis.
As a result, these promising properties guarantee each image
sample can be represented by a linear combination of only few
key basis vectors, thus making SDMF particularly suitable for
image classification and clustering. The experimental results
have demonstrated the effectiveness and efficiency of SDMFs
on both image classification and clustering tasks.

Please note that, SDMF framework is generic enough to
incorporate various graphs for capturing highly discriminant
information. In this paper, we derive SDMF model with
two prevalent graphs of LLE-graph and LE-graph for sim-
plicity. To further promote the classification and clustering
performance, the LLE-graph and LE-graph can be replaced
by some more complex reconstruction-based graphs and
similarity-based graphs with an increase in computational cost.
Hence, in practical classification and clustering applications,
it is desired to design flexible combinations of graphs to
balance the time, accuracy and robustness requirements, which
can be a potential direction in our future study.

APPENDIX

THE PROOF OF THEOREM 1

Proof: Assume rank(X) = k, then X can be factorized
by singular vector decomposition (SVD) as follows:

X = Û�V̂
T
,

where � = diag(σ1, · · · , σk), Û ∈ �m×k , V̂ ∈ �N×k ,
and Û

T
Û = V̂

T
V̂ = I, the column vectors of Û and

V̂ are linear independent. y is known to be in the space
spanned by row vectors of X, thus y can also be uniquely
represented as the linear combination of the column vectors
of V̂. Suppose the combination coefficients are represented as
a = [a1, · · · , ak]T ∈ �k , we have:

V̂a = y ⇒ V̂
T

V̂a = V̂
T

y ⇒ Ia = V̂
T

y.

Then, we can easily obtain V̂V̂
T

y = y. Subsequently, we intro-
duce the concept of pseudo inverse, which is denoted as (.)+
hereinafter. We denote the pseudo inverse of X as X+, which
can be computed via two different ways: X+ = (Û�V̂

T
)+ =

(V̂
T
)+�+Û

+ = V̂�−1Û
T

or X+ = limα→0(XT X+αI)−1XT .
The two ways to express X+ are feasible even if XT X is sin-

gular and (XT X)−1 does not exist. Hence, when α decreases
to 0, the regularized least squares solution in Eq. (11) could
be rewritten as: U∗ = (XXT + αI)−1XY = (XT )+Y =
Û�−1V̂

T
Y. Since V̂V̂

T
y = y, we thus have

XT U∗ = V̂�Û
T

U∗

= V̂�Û
T

Û�−1V̂
T

Y

= V̂V̂
T

Y

= Y.

�
Hence, when α decreases to zero, U∗ obtained by Eq. (11) is
the exact solution in Eq. (9).
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