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Abstract

The typical information-theoretic approaches such as INFOMAX
and MMI perform independent component analysis (ICA) by using
a fixed nonlinearity function. Consequently, they can only separate
either sub-Gaussian or super-Gaussian source sighals, but not both.
This article considers a flexible nonlinearity function that is a single
polynomial term with the exponent learnable. The separation ability
of this function is analysed, and a new ICA algorithm is proposed.
The experiments have shown that this algorithm can successfully
separate the mixture of sub-Gaussian and super-Gaussian sources.
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1. Introduction

Due to attractive application on wireless communication,
speech recognition, time series analysis, and the like, blind
signal separation formulated as the independent compon-
ent analysis (ICA) problem has recently received much
attention. Here, we consider the instantaneous invertible
linear mixture ICA problem. That is, each observed signal
x with x = [z1,...,z4)7 is a mixture of k hidden inde-
pendently and identically distributed (i.i.d.) source signals
(simply called sources) si, s3,. .., si through:

x = As

(1)

where A is an unknown full-column d x k mixing matrix
and s = [s1,82,..., sx]7. Hereafter, we assume that each
source mean is zero without loss of generality. Otherwise,
we can always make a transformation from (1) such that
the assumption is held.

The objective of an [CA approach is to recover s from
x up to an unknown constant scale and any permutation
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of indices by finding out an appropriate de-mixing matrix
W such that:

y = Wx = WAs = PAs (2)

where P is a permutation matrix and A is a diagonal
matrix. It should be noted that the statistical indepen-
dence among several Gaussian sources is invariant to the
rotation transformation of them. Hence, ICA generally
can separate non-Gaussian sources only with at most one
Gaussian source, due to the fact that it exclusively uses
the information of independence among the sources.

In the past, many information-theoretic-based ICA
approaches have been proposed, such as INFOMAX [1, 3]
and MMI [2]. In these algorithms, the nonlinearity func-
tions are pre-assigned without any adjustability to match
a variety of source signals in implementation, which may
violate the ICA separating conditions as shown in [4].
A lot of experiments have shown that these algorithms with
fixed nonlinearities can separate either sub-Gaussian or
super-Gaussian signals, but not both. To circumvent this
drawback, some improvements have been made. For exam-
ple, the use of a mixture of logistic densities for modelling
the marginal density has been made by Pearlmutter and
Parra [5] under the name of maximum likelihood density
estimation. Also, an approach called learned parametric
mizture-based ICA algorithm (LPM) has been proposed
in [6, 7], where the nonlinearity function is modelled by
a parametric mixture of densities, and this mixture is
learned together with the learning of W. As the den-
sity parameters are adaptively learned, the nonlinearity
function can be well chosen automatically such that the
LPM successfully separates a combination of sub-Gaussian
and super-Gaussian signals. In general, these mixture-of-
density-based methods often generate a set of new extra
parameters that need to be learned as well as W. As
a tesult, the increased algorithm complexity not only
needs considerable extra efforts in implementation, but
also makes the analysis of their separation abilities more
difficult.

This article considers an alternative flexible non-
linearity function that is a single polynomial term with the
exponent learned together with the de-mixing matrix W.



Not only is the separation ability of this function there-
fore analysed, but a new ICA algorithm is also proposed.
Compared to INFOMAX and MMI approaches, this new
algorithm has only one extra parameter to be learned.
Hence, little extra effort is needed in implementation.
The experiments have shown that this algorithm can suc-
cessfully separate any combination of sub-Gaussian and
super-Gaussian sources we have tried so far.

2. Terminology

This section outlines the terminology used in this work.
Here, we consider the variables to be real-valued only. The
definitions are similar in discrete cases so long as we replace
the integral [ by the summation >, and use probability
function to instead of probability density function (pdf).

Statistical independence. Given a set of random vari-
ables X1, Xa,...,Xn, they are statistically independent if
and only if:

N

JXN) = H p(xs)

t=1

.3

p(Xl,Xg, PN

Note that E(xy) = E(x)E(y) if x and y are statistically
independent. The reverse, however, does not generally
hold.

Super-Gaussian and sub-Gaussian signals. A pdf
p(z) is said to be super-Gaussian if dzg € R such that:

(4)

for Vz > 2o, where p(zx) is the normalized pdf of p(x), that
is, the pdf with zero mean and variance 1, and g(z) is the
standard Gaussian pdf. Similarly, a pdf p(z) is said to be
sub-Gaussian if 3z¢ € Rt such that:

plz) < g(x)

(5)

for Vz > zo. The signal with the super-Gaussian or sub-
Gaussian distribution is called super-Gaussian signal or
sub-Gaussian signal, respectively. Compared to the Gauss-
jan signal, the shape of unimodal super-Gaussian signal
is sharper near the mean point, whereas a unimodal sub-
Gaussian signal is more even.

Kullback-divergence. The Kullback-divergence, also
called relative entropy or cross-entropy, is a measure of
the “distance” between two distributions p(x) and ¢(x).
It is defined as:

p(z) > g(z)

KL(p(x), q(x)) = /p(x>1n3(—"—)dx (6)

q(x)

The Kullback-divergence has three major properties:

1. KL(p(x),q(x)) > 0 for Vp(x),¢(x). The “=" holds
if and only if p(x) = q(x).

2. In general, KL(p(x), q(x)) # KL(g(x), p(x)).

3. The Kullback-divergence is invariant to a linear
transformation. That is, let y = Ax + b; we have:

KL(p(y),q(y)) = KL(p(x), q(x)) (7)
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Rotation transformation. Suppose R is a kxk
orthogonal matrix. Given a vector x €R*, the rotation
transformation of x is R x x.

3. Review of Information-Theoretic
ICA Approaches

The information-theoretic-based approaches obtain the
de-mixing matrix W in (2) by minimizing the following
Kullback-divergence function:

p(y)
5 95(w;)

J(W) = /p(y)ln dy (®)
where y=Wx, and g;(y;), j=1,...,k is a marginal
pdf of y;. With some mathematical computation, the
minimization of J(W) is equivalent to maximize the
function:

k
L(W) = In det(W)| + 3 Ing; (y;) (9)

where det(W) denotes the determinant of W.
It has been shown in [1] that W can be adaptively
learned by the gradient descent method:

wrer = W LW+ g(y)xT] (10)
or by the improved natural gradient descent [2]:
W = W 1+ o(y)y W (11)

where 7 is a small positive learning rate, 1 is the k x k
identity matrix, and (y) = [¢1(y1), @2(y2), - & ()]
with ¢;(y;) = (81Ing;(y;)/dy:) is the nonlinearity function.

Most of the learning rules in different information-
theoretic-based algorithms can be unified as (11). The
major distinction of these algorithms is the selection of
different nonlinearity functions ¢(y). For example, INFO-
MAX [1] assigns g;(y;) to be a sigmoid function, MMI
[2] approximates g;(y;) by Gram-Charlier expansion, and
LPM [6, 7] uses an adaptively learned mixture of densities
to estimate g;(y;)-

4. Polynomial Nonlinearity and Separation Ability

For a general form of nonlinearity functions, [4] has given
the following results:

Theorem 1. The separating solution is a stable equilib-
rium of learning equation (11) if and only

mi+1>0 (12)
k; >0 (13)
afcrjz-kikj > 1 (14)

for all 4,j (i # j) under the normalization condition that
vr, B(8(y-)y-] = 1, where of = Efy7], b = Eloi(yi)l;
m; = Ely?¢i(ys)], and ¢i(y:) = doi(y:)/dyi-



In particular, when the nonlinearity function in (11) is
the form:

oi(y;) = —sign(y;)ly; 1P 1<j<k (15)

with p > 0. the conditions in Theorem 1 then become:

< EllyPt] )( Elly; [P*t]
Ellyi?1Elly:iP='] ) \ Elly; 12 Elly;1P~1]

) <p® (16)

Here, we further generalize (15) to be:

o;(y;) = —sign(y;)ly; 7 1<j<k (17)

with p; > 0; we then obtain the following result.

Corollary 1. Given a nonlinearity function ¢(y) as
shown in (17), if and only if:

( Elly;{Pit1] >( Elly; [Pt
Ellyi*1E yilP=1]) \Elly; 21 y;1P 1]

for all 4, j (i547), there must exist at least one stable
separating solution that the converged W in (11) will
successfully separate k sources 81, so,..., 8.

The mathematical proof is given in Appendix A.
Hence, for each source s;, if there exists a positive exponent
p; such that:

) <pp; (18)

E|s;[P+]

E||s;]2]E]s;]pi~1 (19)

< pj
] J

there is at least one stable separating solution when W
is learned by (11). In the following, we assume that the
exponent set P ={p;, pa,...,px} with p; satisfying (19)
always exists, which is also actually true for most sub-
Gaussian and super-Gaussian sources. For example, when
s; is a unimodal sub-Gaussian source, we have p; =3,
which satisfies (19).

5. New Approach: Adaptive Polynomial Power
Learning Estimation-Based ICA Algorithm
(APPLE-ICA)

As ¢;(y;) = —sign(y;)|y;1P7, the cost function in (9)
becomes:

L(W)=Q(W, P)

k
= In[det(W)| + ) Ing;(y;) (20)
i=1
G
= In |det(W)| — Pitl L ¢
ndet(W)| ;pj+1'y'

where C is a constant term. Hence, we can adaptively learn
the parameter P as well as W by maximizing the cost
function Q(W, P). To ensure each p; > 0, we further let
p; = Ae¥, 1 < j < k, where A is a positive constant. Sub-
sequently, we learn u;’s instead. The detailed APPLE-ICA
algorithm is as follows:

Step 1. Initialize W and a parameter
[uy, ug, ..., uk]T with 1 <j < k.

U:
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Step 2. Given an observed signal x, let:

y = Wx
p; =X 1<j<k (21)
®5(y;) = —sign(y;)|y; 177
Step 3. Update W and U by:
W = WO il + ¢ (y)y T |W
HQ(W,P)
new __ ,,old )
with:
SQ(W,P)  pily,[Pt! 1
L T G
Ou; p;j+1 \p;+1

Steps 2 and 3 are repeated until both W and P converge.

6. Simulation Results

To investigate the performance of APPLE-ICA algorithm
on all combinations of sub-Gaussian and super-Gaussian
source signals, we consider k=3, which results in four
possible source combinations:

Three sub-Gaussian sources.
Two sub-Gaussian and one super-

Combination 1.
Combination 2.
Gaussian sources.
Combination 3.
Gaussian sources.
Combination 4.

One sub-Gaussian and two super-

Three super-Gaussian sources.

Therefore, we perform four experiments hereafter.
In Experiment i with 1 < i < 4, we use three source signals
whose types are specified in Combination <.

In all experiments, we let sub-Gaussian sources be
uniformly distributed and super-Gaussian ones be human
speech signals. Furthermore, we set the true mixing matrix:

1.0 0.6 08
A=107 1.0 04 (24)
0.3 0.7 1.0

and fix the learning rate n=0.0001, and A= 1.5. In addi-
tion, the de-mixing matrix W was randomly initialized in
each simulation run.

We measure the performance of APPLE-ICA algo-
rithm by signal-to-noise ratio (SNR) defined by:

2
SNR(sj,y;) = 10logp—=mt—v 1<j<k (25)
( J 3) IOMSE(SJ,y])
where 02 is the variance of source signal s;, and

MSE(s;, gjj) is the mean square error between source signal
s; and its recovered signal y;. As agyi is irrelevant to the
algorithm performance, we can further ignore it and use a
simplified SNR with:

SNR(s;,y;) = —10log,o MSE(s;,y;)

1<j<k (26)
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Figure 1. The SNR performance graphs of APPLE-ICA algorithm in: (a) Experiment 1; (b) Experiment 2; (¢) Experiment 3
and (d) Experiment 4, where the dotted line is the SNR of an individual signal and the real line is the averaged SNR that i

calculated by (1/k)Y_5_ SNR(s;, ;).
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Table 1
Snapshot Values of W and W x A after APPLE-ICA Algorithm Converges

0.3919 -—-0.0273 —0.2999 0.3877 —0.0254 —0.2965
W = | —0.3167 0.4129 0.0881 W =] -0.3136 0.4132 0.0816
Experiment 1 0.1021 -0.2784 0.3131 Experiment 2 0.1947 —0.5337 0.5915
0.2828 —0.0021 0.0027 0.2810 —0.0003 0.0036
W x A=1{-00013 0.2845 —0.0001 W x A= 0.0001 0.2821 -0.0041
0.0012 0.0020 0.2834 —0.0014 —0.0028 0.5338
0.3850 —0.0235 —0.2933 8.9010 —0.4935 —6.9232
W = | -0.5646 0.7217 0.2019 W = | -2.6076 3.4556 0.7083
Experiment 3 0.4090 —1.0798 1.1741 Experiment 4 0.3776 -—-1.0075 1.1299

0.2805 0.0021  0.0052 6.4786 0.0009 0.0002

W x A= 00011 0.5242 0.0389 W x A= 00238 2.3869 0.0045

0.0054 —-0.0125 1.0694 0.0113 0.0100 1.0290
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To make the SNR computation invariant to scaling, we
normalize both the sources and its recovered counterpart
into the range [—1, 1].

The performance of APPLE-ICA algorithm in different
cases is shown in Fig. 1, where we obtained the averaged
SNR about 44.0dB, 45.7dB, 46.1dB, and 70.9dB in four
experiments, respectively. Table 1 lists a snapshot of con-
verged W as well as W x A in all experiments, where
we found that the significant elements in W x A are just
the diagonal ones in all cases. That is, the converged W
has made W x A be a diagonal matrix. Hence, from ICA
model in (2), we know that the wave forms of unknown
sources s have been successfully recovered in all cases we
have tried so far.

7. Conclusion

From the information-theoretic framework, we have pre-
sented an alternative ICA algorithm, which uses a flexible
polynomial nonlinearity function with its exponent adap-
tively learned, as well as the de-mixing matrix W.
Consequently, an appropriate nonlinearity function for sep-
arating a variety of source signals can be automatically
selected. As shown in the accompanied experiments, our
proposed algorithm can successfully separate a mixture of
sub-Gaussian and super-Gaussian source signals.
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Appendix A
Proof of Corollary 1

Given (17), conditions (12) and (13) in Theorem 1 are
always satisfied, as:

mi = Bly?éi(y)] = piElly:"*'] > 0 (27)
ki = El6i(ui)] = piBllys|P*~"] > 0. (28)
Furthermore, condition (14) becomes:

oio3kik; = pip; B Elluil" ) Ely3) Elly;[» ) > 1.
(29)

Because V7, E[¢(y,)yr] = 1, we therefore have:
EllyePrt)=1 r=1,2,...,k. (30)

Putting (30) into (29), we then have:

Ely:|PitY) Ely;|Pit1] ol
(E“yz[z Iyg ]) (E[|yj[2]E[Jyj|ni—1]) < PiDj- (‘31)
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