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OMGH: Online Manifold-Guided Hashing for
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Abstract—Cross-modal hashing has recently gained an
increasing attention for its efficiency and fast retrieval speed
in indexing the multimedia data across different modalities.
Nevertheless, the multimedia data points often emerge in a
streaming manner, and existing online methods often lack of
learning capacity to handle both labeled and unlabeled data.
To alleviate these concerns, this paper proposes an Online
Manifold-Guided Hashing (OMGH) framework, which can
incrementally learn the compact hash code of streaming data while
adaptively optimizing the hash function in a streaming manner.
To be specific, OMGH first exploits a matrix tri-factorization
framework to learn the discriminative hash codes for streaming
multi-modal data. Then, an online anchor-based manifold
structure is designed to sparsely represent the old data and
adaptively guide the hash code learning process, which can well
reduce the complexity in preserving the semantic correlation
between the old data and streaming data. Meanwhile, such
anchor-based manifold embedding is adaptive to the unsupervised
and supervised learning strategies in a flexible way. Besides, an
online discrete optimization method is efficiently addressed to
incrementally update the hash functions and optimize the hash
codes on streaming data points. As a result, the derived hash codes

Manuscript received 30 July 2021; revised 2 January 2022; accepted 7 April
2022. Date of publication 12 April 2022; date of current version 8 September
2023. This work was supported in part by the Open Project of Zhejiang Lab
under Grant 2021KH0AB01, in part by the National Science Foundation of
China under Grants 61673185, 61672444, and 61976049, in part by NSFC/RGC
Joint Research Scheme under Grant N_HKBU214/21, in part by RGC General
Research Fund under Grant RGC/HKBU/12201321, in part by Hong Kong Bap-
tist University under Grants RC-FNRA-IG/18-19/SCI/03 and RC-IRCMs/18-
19/SCI/01, in part by the Innovation and Technology Fund of Innovation and
Technology Commission of the Government of the Hong Kong SAR under Grant
ITS/339/18, in part by the National Science Foundation of Fujian Province under
Grant 2020J01084, and in part by the Natural Science Foundation of Shandong
Province under Grant ZR2020LZH008. The Associate Editor coordinating the
review of this manuscript and approving it for publication was Dr. X. Li.
(Corresponding author: Xin Liu.)

Xin Liu is with the Department of Computer Science, Huaqiao University,
Xiamen, Fujian 361021, China, and also with the Key Laboratory of Intelligent
Perception and Systems for High-Dimensional Information of Ministry of
Education, Nanjing University of Science and Technology, Nanjing, Jiangsu
210094, China (e-mail: xliu@hqu.edu.cn).

Jinhan Yi is with the Xiamen Key Laboratory of Computer Vision and
Pattern Recognition and Fujian Key Laboratory of Big Data Intelligence
and Security, Huaqiao University, Xiamen, Fujian 361021, China (e-mail:
jhyi@stu.hqu.edu.cn).

Yiu-ming Cheung is with the Department of Computer Science, Hong Kong
Baptist University, Hong Kong, Hong Kong (e-mail: ymc@comp.hkbu.edu.hk).

Xing Xu is with the Center for Future Multimedia and School of Computer
Science and Engineering, University of Electronic Science and Technology of
China, Chengdu, Sichuan 611731, China (e-mail: xing.xu@uestc.edu.cn).

Zhen Cui is with the Key Laboratory of Intelligent Perception and Systems
for High-Dimensional Information of Ministry of Education, Nanjing Uni-
versity of Science and Technology, Nanjing, Jiangsu 210094, China (e-mail:
zhen.cui@njust.edu.cn).

Digital Object Identifier 10.1109/TMM.2022.3166668

are more semantically meaningful for various online cross-modal
retrieval tasks. Extensive experiments verify the advantages of
the proposed OMGH model, by achieving and improving the
state-of-the-art cross-modal retrieval performances on three
benchmark datasets.

Index Terms—Cross-modal hashing, streaming data, Anchor-
based manifold structure, online discrete optimization.

I. INTRODUCTION

W ITH the tremendous explosion of multimedia data, re-
cent years have heightened the need of cross-modal re-

trieval techniques for scalable similarity search in many real
applications. More specifically, a user can utilize a query item
of one modality to retrieve the semantically relevant items in
another different modality, e.g., users can find images that best
illustrate the topic of a textual query, or textual descriptions that
best explain the content of a visual query [1]. In recent years,
cross-modal hashing [2] is gaining significant popularity due
to its extremely low storage cost and high retrieval efficiency,
which aims to transform the high-dimensional real-valued exam-
ples into compact binary codes while preserving the semantical
similarity in the original feature space.

In the past few years, various kinds of cross-modal hashing
methods have been proposed with impressive performance [3].
Nevertheless, most existing cross-modal hashing methods intu-
itively adopt the offline learning mechanism, which, inevitably,
requiring the whole training data to be available before train-
ing [2], [4]. In practice, multimedia data usually continuously
arrive in a streaming fashion. For instance, the popular so-
cial media websites uninterruptedly upload massive amounts
of data every day, which are highly dynamic and frequently up-
dated. Under such circumstances, these offline methods have
to accumulate all the data samples to retrain the hash func-
tions and recompute the hash codes of the entire data points,
which, inevitably, result in a great deal of computational bur-
den. Besides, if the accumulated training dataset is very large,
it is impractical to load all data into memory for hash func-
tion learning. Therefore, these offline methods are unadapt-
able and inefficient to these frequently updated multimedia
database.

Advanced hashing technique is essential in processing fre-
quently changed media data. To be specific, online cross-modal
hashing aims to incrementally update hash functions from se-
quentially arriving multi-modal data, and simultaneously en-
code streaming data into compact binary codes. Since hash
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functions are updated only by newly arriving data stream, on-
line cross-modal hashing significantly reduces the computation
cost and memory requirement. Inspired by these merits, on-
line cross-modal hashing receives great attention very recently
and some works have been developed [5]–[7], in either super-
vised fashion where the labels are provided or unsupervised
manner where the labels are unavailable. Nevertheless, learn-
ing a good hash function that can well reflect the semantic
relevance between the streaming data and existing data (i.e.,
old data) is the bottleneck problem in online cross-modal re-
trieval, and the existing methods still face three challenges: 1)
The modality heterogeneity leads to a great challenge in di-
rectly measuring the semantic relevance among the streaming
multi-modal data; 2) Most online methods mainly consider the
manifold structure within the new data to preserve the seman-
tic correlation across different modalities, which often weaken
the semantic correlation between the newly arrived data and
existing data. Consequently, the learning models derived from
these methods may induce the ‘semantic forgetting’ problem
and performance degradation; 3) Current online cross-modal
hashing methods generally lack of the efficiency and flexibil-
ity to work with both labeled and unlabeled multi-modal data
simultaneously.

To address the aforementioned challenges, this paper pro-
poses an online manifold-guided hashing (OMGH) for flex-
ible and efficient cross-modal retrieval, which can incremen-
tally learn the hash code of new coming data while optimizing
the hash function in a streaming manner. Within the proposed
OMGH framework, an online anchor-based manifold structure is
flexibly embedded to guide the hash code learning process, while
significantly reducing the computational complexity in preserv-
ing the semantic correlations between the streaming data and old
data. Meanwhile, the label information can be selectively em-
bedded into the proposed online learning framework, which can
well adapt to the variations of data stream by adaptively training
in an unsupervised or supervised manner. The main contribu-
tions are summarized as follows:
� An efficient online manifold-guided hashing framework is

newly proposed to benefit cross-modal retrieval for stream-
ing multi-modal data, which can significantly reduce the
computational load and memory storage.

� An online anchor-based manifold embedding is flexibly
proposed to guide the hash code learning process, which
can well preserve the semantic correlations between the
newly coming data and existing data, while being adaptive
to the unsupervised and supervised scenarios.

� An online discrete optimization method is efficiently ad-
dressed to incrementally update the hash functions and op-
timize the hash codes on streaming data points.

� Extensive experiments on public benchmarks highlight the
advantages of OMGH under various retrieval tasks and
show its outstanding performances.

The rest of this paper is organized as follows: Section II sur-
veys the face-voice association works, and Section III the pro-
posed learning framework in detail. The extensive experiments
and comparisons are introduced in Section IV, and we draw a
conclusion in Section V.

II. RELATED WORK

Cross-modal hashing has recently received wide attention due
to its effectiveness in improving query speed and reducing mem-
ory cost. It is noted that the recent multi-modal hashing [8] is
designed for multimedia search when multi-modal features are
all provided at the query stage, while cross-modal hashing aims
to retrieve the most relevant objects represented by other modal-
ities for a given query characterized by one modality. In the
following, we mainly survey the cross-modal hashing works,
which can be generally divided into offline learning and online
learning branches.

A. Offline Cross-Modal Hashing

The offline cross-modal hashing assumes that all the training
data points are available before the hash function training pro-
cess. In recent years, various cross-modal hashing attempts have
been proposed, mostly in either unsupervised fashion where the
labels are unavailable, or supervised fashion where the labels
are explicitly provided. Unsupervised cross-modal hashing in-
tuitively learns the hash codes from the original feature space to
Hamming space. Along this line, cross-view hashing (CVH) [9]
first extends the spectral hashing method from single-view to
cross-view case, and then learns the hash codes from the paired
training data to preserve the similarity across different modali-
ties. Similarly, inter-media hashing (IMH) [10] first utilizes the
inter-view and intra-view consistency to obtain a common ham-
ming space, and then selects the linear regression to generate
the hash codes. Besides, collective matrix factorization hash-
ing (CMFH) [11], [12] employs the joint matrix factorization
to learn the semantically correlated hash codes for multi-modal
data, while the latent semantic sparse hashing (LSSH) [13] uti-
lizes sparse coding to extract latent semantic features and quan-
tizes such latent semantic features into hash code. Recently, fu-
sion similarity hashing (FSH) [14] learns the semantically corre-
lated hash codes from the fused similarity to achieve cross-modal
retrieval. Although these methods are able to capture the seman-
tic correlations between the heterogeneous modalities, the hash
codes learned in an unsupervised way are not discriminative
enough and their retrieval performances need further improve-
ments.

Supervised cross-modal hashing primarily leverages the se-
mantic label supervision to guide the hash code learning,
which can well mitigate the semantic gap between heteroge-
neous modalities. Along this way, semantic correlation max-
imization (SCM) [15] preserves the label similarity to learn
the hash codes while supervised matrix factorization hashing
(SMFH) [16] embeds the label supervision to perform collective
matrix factorization hashing. In addition, semantic preserved
hashing (SePH) [17] and generalized semantic preserving hash-
ing (GSePH) [18] both construct an affinity matrix via label
information to approximate hash codes. To reduce the quantita-
tive losses, discrete cross-modal hashing (DCH) [19] generates
hash codes in a bit by bit manner from the semantic labels.
Besides, recent deep cross-modal hashing works [20], [21] at-
tempt to combine the advanced feature representation learning
with hash code learning in an integrated way. It is noted that
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these methods train the hash functions on all the accumulated
data and learn the hash codes of the entire data points, which
inevitably involve high computational complexity and memory
costs when training large scale data. In case where the media
data points continuously arrive in a streaming fashion, these
methods learned in offline way need to recalculate the hash
functions on the whole database, which are computationally
inefficient.

B. Online Cross-Modal Hashing

Online hashing algorithms incrementally learn the hash func-
tion by processing the streaming data in a sequential order,
which can avoid the high computational burden and mem-
ory costs when processing large-scale datasets. In the litera-
ture, the pioneer online hashing efforts mainly focus on single
modality [22]–[24], and these methods cannot be directly ex-
tended to cross-modal retrieval scenarios. Specifically, online
multi-modal hashing [25] trains the hash model in a batch-based
mode and supports online hashing on query stage. Nevertheless,
multi-modal hashing is designed for multimedia search when
multi-modal features are all provided at the query stage, which
cannot support the retrieval across different modalities. In con-
trast to this, cross-modal hashing aims to retrieve the most rel-
evant objects represented by other different modalities. There-
fore, online multi-modal hashing cannot be directly utilized for
online cross-modal retrieval scenarios.

Online cross-modal hashing is designed for supporting the ef-
ficient search across streaming multi-modal database, and only a
few online cross-modal hashing methods are proposed to process
the streaming multi-modal data. Specifically, online cross-modal
hashing (OCMH) [5] first decomposes the hash code matrix into
a shared latent code matrix and a transition matrix, and further
utilizes the dynamic transfer matrix to incrementally update the
hash codes of new data. Later, online collective matrix factoriza-
tion hashing (OCMFH) [6] learns the hash codes for streaming
data by collective matrix factorization in an online optimiza-
tion scheme. It is noted that these two methods are unsuper-
vised learning methods, and their derived hash codes are not
discriminative enough for high retrieval performance. Remark-
ably, the semantic labels have demonstrated to be very useful on
enhancing the discriminative capability and thus significantly
improve the retrieval performance. Accordingly, online latent
semantic hashing (OLSH) [7] maps the discrete labels into a
continuous latent semantic space and utilizes the newly com-
ing data points to retrain the hash functions. With the super-
vision of semantic labels, this supervised cross-modal hashing
method has achieve impressive performance. Later, online adap-
tive supervised hashing (OASH) [26] regresses the class labels
to binary hash codes and learn the hash functions in an on-
line optimization scheme, while label embedding online hashing
(LEMON) [27] builds a label embedding framework to produce
the discriminative binary code and reduce computational com-
plexity. Although these supervised cross-modal hashing meth-
ods have delivered very promising performance, they still suffer
from the ‘semantic forgetting’ problem. To be specific, the se-
mantic correlations between the streaming data and old data are

not well preserved such that the relevant online retrieval perfor-
mances are not competitive. Meanwhile, these supervised online
methods still lack of learning capability to preserve the seman-
tic correlations between the streaming data and old data, and
these framework cannot simultaneously process the unlabelled
newly coming data. Therefore, it is still desirable to study a
flexible online cross-modal hashing technique that is capable of
processing different kinds of multi-modal data in a variety of
scenarios.

III. ONLINE MANIFOLD-GUIDED HASHING

This section describes the proposed OMGH framework in
detail. Without loss of generality, as shown in Fig. 1, this section
mainly focuses on online cross-modal hashing with only two
modalities (i.e., image and text), and the proposed framework
can be easily extended to more modalities.

A. Proposed OMGH Methodology

1) Cross-Modal Semantic Analysis: The objective of cross-
modal retrieval is to obtain semantically relevant data samples in
one modality for a query in another different modality. Suppose
that the training database consists of image data X1 ∈ Rd1×N

and text dataX2 ∈ Rd2×N , d1, d2 are the feature length andN is
the training number, an intuitive way is to project these heteroge-
neous data into a common a common latent subspace, formally
X1 → U1V, X2 → U2V, U1 ∈ Rd1×k, U2 ∈ Rd2×k. Then,
the hash codes can be generated by quantizing V ∈ Rk×N from
real values to {−1, 1} by sign(V). Although the correlations
between different modalities can be well connected via the com-
mon latent semantic representation, such rigid assumption may
not discriminatively characterize the heterogeneous data of dif-
ferent modalities due to their different physical meaning, dimen-
sionality and statistical properties. To alleviate this concern, we
relax this assumption and assume that each modality in an in-
stance generates similar, not exactly identical latent semantic
subspace, V1 ∈ Rk1×N for image and V2 ∈ Rk2×N for text (in
general k1 �= k2), featuring on discriminative modality-specific
representations.

For cross-modal hashing, the semantic representations of im-
age and text modalities need to be further projected into a com-
mon Hamming space [28]. Thus, we assume that the projected
representations MT

1 V1 and MT
2 V2 of two modalities can pro-

duce the same instance in the common Hamming space, i.e.,
MT

1 V1 → B and MT
2 V2 → B, M1 ∈ Rk1×r, M2 ∈ Rk2×r,

with objective functions written asminM1
‖B−MT

1 V1‖2F and
minM2

‖B−MT
2 V2‖2F , where ‖ · ‖2F is the Frobenius norm of

a matrix and r is the hash code length. It is noted that these
two functions are the ordinary least square regression problems,
which regress V1 or V2 to B. As indicated in work [29], it is
equivalent to change the regressing target with the least square
regression formulation. Inspired by this finding, we propose
to regress B to V1 or V2, i.e., minM1

‖V1 −M1B‖2F and
minM2

‖V2 −M2B‖2F , simplified as M1B → V1, M2B →
V2, and the following matrix tri-factorization framework can be
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Fig. 1. The schematic pipeline of the proposed OMGH framework.

obtained:

min α||X1 −U1M1B||2F + (1− α)||X2 −U2M2B||2F
+ γR(U1,U2,M1,M2)

s.t. B ∈ {−1, 1}r×N , (1)

where α is a trade-off parameter, R(·) = ‖ · ‖2F is the regular-
ization term utilized to avoid overfitting, and γ is a penalty
parameter. For cross-modal hashing, it is necessary to learn
the modality-specific hash functions for out-of-sample instance.
Similar to work [11], we assume that the original image and
text features can be mapped into the latent semantic space by
two projections, respectively, formulated as P1X1 → V1 and
P2X2 → V2. The overall objective function, consisting of the
collective matrix tri-factorization term, regression term and the
projection term, is given as follows:

min α||X1 −U1M1B||2F + (1− α)||X2 −U2M2B||2F
+ μ(||P1X1 −M1B||2F + ||P2X2 −M2B||2F )
+ γR(U1,U2,M1,M2,P1,P2)

s.t. B ∈ {−1, 1}r×N , (2)

where μ is a trade-off parameter.
2) Online Notation and Problem Formulation: Suppose that

the training database consists of multiple streaming image-text
data pairs. At each round t, a new data chunk [X

(t)
1 ,X

(t)
2 ]

of size Nt is added into the database, where X
(t)
1 ∈ Rd1×Nt

and X
(t)
2 ∈ Rd2×Nt , respectively, denote the feature matrices of

newly coming image and text data. Let Y(t) ∈ {0, 1}c×Nt de-
note the semantic label of new data chunk and c be the number
of all categories, the accumulated training dataset, consisting
of old data and new data, can be formulated as [X̃

(t−1)
m ,X

(t)
m ],

where X̃
(t−1)
m ∈ Rdm×(N−Nt) represents the accumulated old

data before round t, and m is the index of different modali-
ties, m = 1, 2. Similarly, Ỹ(t−1) ∈ Rc×(N−Nt) represents the
label matrix of the accumulated old data. Accordingly, the hash
code of accumulated data is written as [B̃(t−1),B(t)], where
B̃(t−1) ∈ {−1, 1}r×(N−Nt) is the hash code matrix of the accu-
mulated old data, and B(t) ∈ {−1, 1}r×Nt represents the hash
code matrix of the new data pair arriving at round t.

3) Online Anchor-Based Manifold Embedding: The data
across different modalities are inherently heterogeneous due to
different physical representations. Therefore, it is beneficial for
a retrieval model to preserve manifold structure that embed-
ded in multimedia data, while at the same time preserving the
neighborhood relationship to ensure semantic consistency. In
recent years, Memory Block Prototype [30], Cross-Modal Pro-
totypes [31] and Prototype-based Adaptive Network [32] are
proposed to preserve the manifold structure across different
modalities. Nevertheless, these methods cannot be directly ap-
plied to cross-modal hashing process. For hash code learning,
IMH [10] and FSH [14] first compute an affinity matrix S be-
tween different samples, and then utilizeS to guide the hash code
learning. Nevertheless, the affinity matrix S derived from IMH
and FSH is designed for the whole training dataset, and such
mechanism is only adaptive to the offline cross-modal hashing
works. Differently, online learning only attempts a limited num-
ber of samples at each round, and utilizes the newly arriving data
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Fig. 2. The graphical illustration of the proposed anchor-based manifold em-
bedding mechanism.

for adaptive learning. In particular, FOMH [25] first calculates
the similarity of the new data X(t) via the label information, and
then embeds it into the hash code learning by the regularization
(B(t))TB(t) → rS(t), featuring on preserving the semantic cor-
relation of new samples. However, this method often weakens
the semantic correlation between the new data and old sam-
ples, which may induce the ‘semantic forgetting’ problem and
degrade its retrieval performance for the new coming data. To
tackle this problem, we propose an online anchor-based man-
ifold embedding to adaptively preserve the manifold structure
that embedded in multimedia data, while enhancing the ability
to preserve the semantic correlation between the new data and
old samples.

As shown in Fig. 2, the data chunk [Q1,Q2] of size Nq and
its corresponding hash codes Bq are selected as the anchor
points, which are heuristically chosen from the old samples
in the memory. Note that, these anchors are the sparse repre-
sentation of old data, which could reduce the computational
complexity in measuring the semantic correlation between
the old data and new data. To preserve the semantic consis-
tency of data points across different modalities, the manifold
regularization is often utilized to maintain the neighboring
relationships during the hash code learning process. Given a
normalized affinity matrix S(t), the manifold regularization
1
2

∑Nt

i=1

∑Nt

j=1 ‖bi(t) − b
(t)
j ‖2

F
S
(t)
ij = −Tr(B(t)S(t)(B(t))T)

is often utilized to preserve the neighboring relationships and
semantic consistency among the new data samples [33].

Remarkably, the proposed anchor-based manifold embedding
aims not only to preserve the neighboring relationships among
the data points, but also to establish an internal semantic relation-
ship between the hash codes of new data and old data. To be spe-
cific, when learning the hash codeB(t) of new data at each round
t, the proposed framework not only preserves the correlation of
new data embedded in itself (i.e., S(t)

xx → S(X(t)
m ,X

(t)
m ),m =

1, 2), but also considers the semantic correlation between the
anchor data and new data (i.e.,S(t)

qx → S(Qm,X
(t)
m )). As shown

in Fig. 2, these two manifold embeddings enable the online learn-
ing model to preserve the intra-modal and inter-modal manifold
structure during the online updating process. By normalizing
these two affinity matrices, the following objective function is
obtained:

min −
(
Tr(B(t)S(t)

xx(B
(t))T) + Tr(BqS

(t)
qx (B

(t))T)
)

s.t. B(t) ∈ {−1, 1}r×Nt . (3)

For practical application, the designed framework also needs
to provide a flexible online cross-modal hashing work, which
can handle both supervised learning scenario and unsupervised
learning scenario. To this end, we construct the formulation of
S
(t)
xx and S

(t)
qx in either supervised case or unsupervised cases. In

the following, we introduce the formulation S
(t)
qx in detail, and

the S
(t)
xx can be obtained in the similar way.

Supervised scenario (OMGH-su): If the label information
of data is provided, Sqx can be obtained directly from the cosine
similarity of semantic label information. To enlarge the margin
between the similar pair and dissimilar pair, we further regular-
ize the similarity of similar examples as the positive direction
and dissimilar examples as the negative direction, specifically
formulated as follows:

S(t)
qx (i, j) =

{
l
(i)
q ·l(j)x

||l(i)q || ||l(j)x || if l(i)q ·l(j)x �= 0

−1 otherwise
, (4)

where l
(i)
q , l

(j)
x ∈ {0, 1}c×1 are respectively the label informa-

tion of the i-th sample in Qm and j-th sample in Xm, and
l
(i)
q ·l(j)x �= 0 means that the i-th sample of Qm and j-th sam-

ple of Xm share at least one same category value. Meanwhile,
the supervised solution of S(t)

xx can be obtained in the similar
way.

Unsupervised scenario (OMGH-un): If the label is unavail-
able, the manifold structure of one instance can be modeled by a
nearest neighbor graph in the instance space. Similarly, we regu-
larize the similarity of similar examples as the positive direction
and dissimilar examples as the negative direction, whereby the
margin between the similar and dissimilar pairs can be enlarged.
For image and text samples, the local similarity is utilized to
model the intra-modal similarity:

S1(t)
qx (i, j)=

{
1 if X(t)

1,i ∈ Nk(Q
(t)
1,j) or Q

(t)
1,j ∈ Nk(X

(t)
1,i)

−1 otherwise
,

(5)

S2(t)
qx (i, j)=

{
1 if X(t)

2,i ∈ Nk(Q
(t)
2,j) or Q(t)

2,j ∈ Nk(X
(t)
2,i)

−1 otherwise
,

(6)

whereNk(·) is the top-k nearest neighbor set. Consequently, we
fuse these two similarities as S

(t)
qx = αS

1(t)
qx + (1− α)S

2(t)
qx to

jointly exploit the semantic correlation between anchor data and
new data, where α is a trade-off parameter as illustrated in (2).
Meanwhile, the unsupervised solution of S(t)

xx can be obtained
in the similar way.
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4) Overall Objective Function: The process of learning the
discriminative hash representations and modality-specific hash
functions can be conducted by jointly optimize the objec-
tive function illustrated in cross-modal semantic analysis and
anchor-based manifold embedding. By integrating the online
learning and anchor-based manifold embedding, the final objec-
tive function is formulated as:

min
U1,U2,M1,M2,P1,P2,B(t)

G(U1,U2,M1,M2,P1,P2,B
(t))

(7)
where

G = α||X(t)
1 −U1M1B

(t)||2F + (1− α)||X(t)
2 −U2M2B

(t)||2F
− λ

(
Tr(B(t)S(t)

xx(B
(t))T) + Tr(BqS

(t)
qx (B

(t))T)
)

+ μ(||P1X
(t)
1 −M1B

(t)||2F + ||P2X
(t)
2 −M2B

(t)||2F )
+ γR(U1,U2,M1,M2,P1,P2)

s.t. B(t) ∈ {−1, 1}r×Nt . (8)

B. Online Discrete Optimization

The main objective of the proposed OMGH framework is to
sequentially process the arriving data chunks, while incremen-
tally updating the hash function and producing high-quality hash
codes. That is, if the new data chunk [X

(t)
1 ,X

(t)
2 ] is accumlated

at round t, the online representation of the objective function (8)
can be expressed as:

min G(t) = minG(t−1) + α||X(t)
1 −U1M1B

(t)||2F
+ (1− α)||X(t)

2 −U2M2B
(t)||2F

− λ
(
Tr(B(t)S(t)

xx(B
(t))T)+Tr(BqS

(t)
qx (B

(t))T)
)

+ μ(||P1X
(t)
1 −M1B

(t)||2F + ||P2X
(t)
2

−M2B
(t)||2F )+ γR(U1,U2,M1,M2,P1,P2)

s.t. B(t) ∈ {−1, 1}r×Nt . (9)

The optimization problem in (9) is non-convex and intractable
due to its discrete constraint, and it is very difficult to learn the
discrete hash code directly. Fortunately, the objective function
is convex to any one variable while fixing the others, and such
optimization problem can be handled by using an alternating
optimization, i.e., updating one variable while fixing the oth-
ers until convergence. The detailed online discrete optimization
procedure is elaborated as follows:

Update U1, U2: Learn U1 and U2 by fixing other variables.
Since the solution of U2 is exactly similar to the solution of
U1, we first clarify the detailed steps of updating the U1 and
then give the solution of U2 directly. Since the projection U1 is
relevant to all accumulated data, (9) can be simplified as:

min
U1

α||[X̃(t−1)
1 ,X

(t)
1 ]−U1M1[B̃

(t−1),B(t)]||2F + γ||U1||2F

s.t. B(t) ∈ {−1, 1}r×Nt . (10)

By setting the derivative of (10) w.r.t U1 to 0, the analytic
solution can be obtained:

U1 = E
(t)
1 MT

1

(
M1H

(t)MT
1 +

γ

α
I
)−1

, (11)

E
(t)
1 = [X̃

(t−1)
1 ,X

(t)
1 ]

[
(B̃(t−1))T

(B(t))T

]
= E

(t−1)
1 +X

(t)
1 (B(t))T,

(12)

H(t) = [B̃(t−1),B(t)]

[
(B̃(t−1))T

(B(t))T

]
= H(t−1) +B(t)(B(t))T,

(13)

whereE(t−1)
1 = X̃

(t−1)
1 (B̃(t−1))T,H(t−1) = B̃

(t−1)
1 (B̃(t−1))T,

respectively, correspond to the results related to the accumulated
old image data and their values can be directly obtained in pre-
vious learning round. Therefore, this updating step only needs
to calculate X

(t)
1 (B(t))T and B(t)(B(t))T.

Similar to U1, the solution expression for U2 is:

U2 = E
(t)
2 MT

2

(
M2H

(t)MT
2 +

γ

α
I
)−1

, (14)

where E
(t)
2 = X̃

(t−1)
2 (B̃(t−1))T +X

(t)
2 (B(t))T, and the item

X̃
(t−1)
2 (B̃(t−1))T corresponds to the result related to the accu-

mulated old text data. Similarly, its value can be directly obtained
in previous learning round.

Update M1, M2: Learn M1 and M2 by fixing other irrel-
evant variables. Similarly, we first clarify the detailed steps of
updating the M1 and then give the solution of M2 directly. Ac-
cordingly, (9) can be simplified as:

min
M1

α||[X̃(t−1)
1 ,X

(t)
1 ]−U1M1[B̃

(t−1),B(t)]||2F

+ μ||P1[X̃
(t−1)
1 ,X

(t)
1 ]−M1[B̃

(t−1),B(t)]||2F
s.t. B(t) ∈ {−1, 1}r×Nt . (15)

By setting the partial derivative of (15) w.r.t M1 to 0, the
analytic solution can be obtained:

M1 = (αUT
1 U1 + μI)−1(αUT

1 E
(t)
1 + μP1E

(t)
1 )(H(t))−1

(16)
Similarly, the solution expression for M2 is formulated as:

M2 = (αUT
2 U2 + μI)−1(αUT

2 E
(t)
2 + μP2E

(t)
2 )(H(t))−1.

(17)
Update P1, P2: Learn P1 and P2 by fixing other irrelevant

variables. Also, we first elaborate the detailed solution of P1

and then show the solution of P2 directly. Similarly, (9) can be
simplified as:

min
P1

μ||P1[X̃
(t−1)
1 ,X

(t)
1 ]−M1[B̃

(t−1),B(t)]||2F + γ||P1||2F

s.t. B(t) ∈ {−1, 1}r×Nt . (18)

By setting the partial derivative of (18) w.r.t P1 to 0, the
analytic solution can be obtained:

P1 = M1(E
(t)
1 )T

(
E

(t)
3 +

γ

μ
I

)−1

, (19)
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where E
(t)
3 = X̃

(t−1)
1 (X̃

(t−1)
1 )T +X

(t)
1 (X

(t)
1 )T, and the item

X̃
(t−1)
1 (X̃

(t−1)
1 )T corresponds to the result related to the ac-

cumulated old image data and its value can be directly obtained
in previous learning round.

Similar to P1, the solution expression for P2 is:

P2 = M2(E
(t)
2 )T

(
E

(t)
4 +

γ

μ
I

)−1

, (20)

where E
(t)
4 = X̃

(t−1)
2 (X̃

(t−1)
2 )T +X

(t)
2 (X

(t)
2 )T, and the item

X̃
(t−1)
2 (X̃

(t−1)
2 )T corresponds to the result related to the ac-

cumulated old text data, and its value can be directly obtained
in previous learning round.

Update B(t): Learn B(t) by fixing other irrelevant variables,
(9) can be rewritten as follows:

min
B(t)

α||X(t)
1 −U1M1B

(t)||2F +(1−α)||X(t)
2 −U2M2B

(t)||2F

− λ
(
Tr(B(t)S(t)

xx(B
(t))T) + Tr(BqS

(t)
qx (B

(t))T)
)

+ μ(||P1X
(t)
1 −M1B

(t)||2F + ||P2X
(t)
2 −M2B

(t)||2F )
s.t. B(t) ∈ {−1, 1}r×Nt . (21)

To solve such minimization problem, the discrete optimiza-
tion algorithm is selected. Specifically, the constant terms in (21)
is removed, and its formulation can be simplified as:

min
B(t)

− Tr((B(t))T(αMT
1 U

T
1 X

(t)
1 + (1− α)MT

2 U
T
2 X

(t)
2

+ μMT
1 P1X

(t)
1 + μMT

2 P2X
(t)
2 + λB(t)Sxx + λBqSqx))

s.t. B(t) ∈ {−1, 1}r×Nt . (22)

Consequently, an efficient close-form solution of B(t) can be
approximated by:

B(t) = sign(αMT
1 U

T
1 X

(t)
1 + (1− α)MT

2 U
T
2 X

(t)
2

+ μMT
1 P1X

(t)
1 + μMT

2 P2X
(t)
2 +λB(t)Sxx + λBqSqx).

(23)

C. Online Anchor Point Updating

For online cross-modal retrieval, multimedia data points often
continuously arrive in a streaming fashion, and the anchor-based
manifold embedding should be adaptive to such fashion. At
round t− 1, suppose we have the anchor data chunk [Q1,Q2] of
size Nq and its corresponding hash code matrix Bq, a new data

chunk [X
(t)
1 ,X

(t)
2 ] is arrived at round t and its corresponding

hash code matrix B(t) is calculated by the proposed framework.
To be specific, we take the image data for reference and adap-
tively update the anchor points as follows:

Q1 =

{
Rand

(
Q1,

Nq ·Nq

Nq +Nt

)
, Rand

(
X

(t)
1 ,

Nq ·Nt

Nq +Nt

)}
,

Q2 =

{
Corr

(
Q2,

Nq ·Nq

Nq +Nt

)
, Corr

(
X

(t)
2 ,

Nq ·Nt

Nq +Nt

)}
,

Algorithm 1: Online Discrete Optimization for OMGH

Input: new data chunk [X
(t)
1 ,X

(t)
2 ] at round t;

Output: B(t), U1, U2, M1, M2, P1, P2;
1: Obtain U1, U2, M1, M2, P1, P2 in round r − 1;
2: Compute Sxx and Sqx via Section III-A3;
3: Initialize B(t) with random values;
4: repeat
5: Update U1 via (11), and U2 via (14);
6: Update M1 via (16), and M2 via (17);
7: Update P1 via (19), and P2 via (20);
8: Compute B(t) via (23);
9: until (convergency or reaching maximum iterations)

10: Update anchor data points via (24);
11: Put B(t) into the hash table B = [B,B(t)]:
12: return U1, U2, M1, M2, P1, P2 and B(t);

Bq =

{
Corr

(
Bq,

Nq ·Nq

Nq +Nt

)
, Corr

(
B(t),

Nq ·Nt

Nq +Nt

)}
,

(24)

where function Rand(X , Nnum) represents a random selection
of Nnum examples from data X , and Corr(X , Nnum) denotes
the corresponding selection related to the index of random selec-
tion. Accordingly, the hash code matrix Bq of the anchor points
can be adaptively updated to the hash codes corresponding to
the updated anchor data points [Q1,Q2]. Since the number of
anchor points is fixed to be Nq , no additional storage space is
needed.

D. Complexity Analysis

The optimization process of the proposed OMGH framework
is shown in Algorithm 1. As the proposed OMGH framework in-
crementally learns hash functions and hash codes in a streaming
manner, we analyze its computational complexity at each learn-
ing round. Although the matrix variables U1, U2 M1, M2, P1

and P1 are updated at each learning round, the auxiliary matrix
variables E

(t)
1 , E(t)

2 , E(t)
3 and E

(t)
4 retain the results related to

the accumulated old data and the time complexity of updating
these variables is only related to the new coming data chunk,
i.e., O(Nt). Since the number Nq of anchor data set is fixed
and relatively small, the time complexities of calculating these
variables are O(Nt). Experimentally, the proposed framework
requires very fewer iterations and it is appropriate to set the iter-
ation number at 2 in the implementation. Therefore, the overall
complexity of each learning round is linear to the new data size,
which is very practical for online cross-modal hashing tasks.

E. Hash Codes for Out-of-Sample Extension

For any image or text data that is not enrolled in the training
set, we can obtain its semantic representation by the modality-
specific projections. To be specific, for any unseen instances x1

and x2, we can obtain their corresponding hash codes b1 and
b2 as follows:

b1 = sign(MT
1 P1x1), b2 = sign(MT

2 P2x2) (25)
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IV. EXPERIMENTS

In this section, we conduct a series of quantitative experiments
on public benchmarks and verify the effectiveness of the pro-
posed OMGH approach on various cross-modal retrieval tasks,
including retrieving text with given image (I→T) and retrieving
image with given text (T → I).

A. Datasets and Evaluation Protocol

In the experiments, three popular image-text datasets,
i.e., MIRFlickr, PASCAL-VOC and NUS-WIDE are selected
for evaluation, and their brief descriptions are stated as
follows:

MIRFlickr [34] dataset consists of 25,000 image-text pairs
annotated from 24 semantic labels and taken from the Flickr
website. Each image is represented by 150-dimensional edge
histogram vector, while each text is characterized by 500-
dimensional PCA feature vector. Similar to the work [35], we
remove the instances without labels or textual tags appearing less
than 20 times, resulting the 16,738 instances in total. Accord-
ingly, we randomly select 836 image-text pairs to serve as the
query set, while leaving the remaining pairs as the training set.
For online learning, the training set is split into 16 data chunks,
each of the first 15 data chunks contains 1000 pairs, and the last
chunk contains 902 pairs.

PASCAL-VOC[36] dataset includes 9963 images of 20 cat-
egories and each image is annotated with 399 semantic tags.
This data set is divided into train, val, and test subsets, and we
conduct experiments on trainval and test splits. By dropping
those pairs without text annotation, the trainval and test splits,
which, respectively, contain 5,000 training pairs and 4,919 test
pairs, are selected for evaluation. Each image is represented as
a 4096-dimensional CNN feature vector derived from the last
fully connected layer of VGG19 model [37], while each text
is characterized by a 399-dimensional bag-of-words vector. For
online learning, the training set is split to 10 data chunks, and
each of the chunk contains 500 pairs.

NUS-WIDE [38] dataset contains 269,648 image-text pairs
with 81 semantic concepts. Each image is characterized by a
500-dimensional SIFT feature vector, while the text is described
by a 1,000-dimensional bag-of-words vector. Since a large part
of semantic concepts contain little samples, we select pictures
from top 10 most frequent concepts, and finally obtain 186,577
examples. Accordingly, we randomly select 100,000 labeled
image-text pairs for evaluation, with 5% percent pairs as the
query set and the remaining parts as the training set. For online
learning, the training set is split to 10 data chunks, each of the
first 9 chunks contains 10000 pairs, and the last chunk contains
5000 pairs.

The popular mean Average Precision (mAP), precision-recall
curve and topK-precision [39], [40] are utilized to evaluate the
cross-modal retrieval performance. In particular, mAP@100 is
selected to evaluate the retrieval effectiveness because the sim-
ilar data samples are expected to be indexed in the top retrieval
list. In general, a higher topK-precision curve or precision-recall
curve indicates better performance.

B. Baseline and Experimental Settings

As surveyed in Section II, there exist limited online cross-
modal hashing works, and five well known online cross-modal
hashing methods, i.e., OCMH [5], OCMFH [6], OLSH [7],
OASH [26], LEMON [27], are selected for evaluation. Mean-
while, we also train the offline model with all training dataset in
only one round, and select eight offline methods (i.e., IMH [10],
CMFH [11], FSH [14], SCM [15], SMFH [16], SePH [17],
GSePH [18] and DCH [19]) for meaningful comparisons. Re-
markably, OCMH, OCMFH, IMH, CMFH and FSH methods are
unsupervised learning approaches, while OLSH, SCM, SMFH,
SePH, GSePH, and DCH m are supervised learning methodolo-
gies. For selected baselines, we utilize the source codes kindly
provided by the respective authors, and the parameters are ini-
tialized as the authors have given in their original papers. Be-
sides, we refer to the batch based training scheme [6] and also
enable some representative offline methods to work with the
streaming data chunks. That is, the hash function obtained in
the previous round is utilized as the initializer for the next train-
ing round, specially abbreviated as IMH-b [10], CMFH-b [11],
FSH-b [14], GSePH-b [18] and DCH-b [19]. It is noted that
some recent unsupervised cross-modal retrieval work [41] can-
not incrementally update the hash functions from sequentially
arriving multi-modal data, and it is inappropriate to select these
approaches as the baselines. Within the proposed OMGH frame-
work, we fixα = 0.5, λ = 100, μ = 1, γ = 10−3 andNq = 500
in the experiments. Meanwhile, the dimensions of image and
text semantic representation are set at k1 = 100 and k2 = 50.
For unsupervised learning, top-10 nearest neighbors are selected
to construct the manifold structure.

C. Results of Retrieval Accuracy

The quantitative comparisons with state-of-the arts on three
datasets are summarized in Table I, where the upper half parts
of each retrieval task categorize the unsupervised methods and
the lower half parts aggregate the supervised methods. It can
be found that the proposed OMGH approach have delivered
very promising cross-modal retrieval performances in different
learning strategies and outperforms most baselines on different
datasets. Comparing with traditional offline learning methods,
the online method is prone to loss of retrieval accuracy due to
the limited training numbers at each training round. Fortunately,
the mAP@100 scores obtained by the proposed OMGH-un and
OMGH-su method are still competitive to the results obtained
by the competing offline methods that require the whole train-
ing data to train the hash functions, e.g., SMFH, FSH, GSePH.
Specifically, DCH has reported the better T → I performance
on 16 and 32 bits. Note that, DCH is also an offline learning
algorithm, which require all the accumulated data to train the
hash functions. Meanwhile, these offline methods significantly
degrade their performance when the hash functions are trained in
a streaming manner, i.e., DCH-b. For instance, the competitive
DCH-b approach has reported the lower accuracy than the re-
sult obtained by traditional DCH. That is, these offline methods
are unadaptable to the multimedia data points that continuously
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TABLE I
THE MAP@100 SCORES TESTED ON MIRFLICKR, PASCAL-VOC AND NUS-WIDE DATASETS

arrive in a streaming fashion. In contrast to this, the proposed
OMGH approach only select a limited amount of data for train-
ing at each learning round, and have delivered the comparable
or in most cases the better performance than that generated by
DCH. Importantly, the proposed OMGH approach is designed
for processing of streaming multi-modal data, while being adap-
tive to the unsupervised and supervised scenarios.

Comparing with the competitive online learning methods,
i.e., OCMH, OCMFH, OLSH, OASH and LEMON, the pro-
posed OMGH-un and OMGH-su methods generally yield higher
mAP@100 scores in most cases, respectively, evaluated on un-
supervised and supervised learning mechanisms. On the one
hand, the proposed OMGH-un approach has delivered compa-
rable or in most cases the better performance than that generated
by unsupervised online learning methods, e.g., OCMH [5] and
OCMFH [6]. The main reason lies in that the proposed OMGH-
un framework seamlessly preserve the manifold correlation be-
tween the anchor data and new data during the online learning
process, whereby the learnt hash codes are semantically mean-
ingful to correlate the old data and new arriving data. As a result,
the proposed OMGH-un approach generally boosts the retrieval
performances in different hash length settings, especially when
tested on PASCAL-VOC and NUS-WIDE datasets. On the other
hand, the proposed OMGH-su approach also yields competitive

or even the better retrieval performances than that generated by
the supervised online methods, i.e., OLSH [7], OASH [26] and
LEMON [27]. For instance, the proposed OMGH-su method
has delivered the best I → T or T → I retrieval performance on
PASCAL-VOC and NUS-WIDE datasets. The possible reasons
contribute these competing performances are threefold: 1) The
hash codes derived from matrix tri-factorization framework re-
tain more semantic information between the high-dimensional
feature space and binary space; 2) The embedding of anchor-
based manifold structure is able to efficiently guide the hash code
learning process, which can well preserve the semantic correla-
tions between the streaming data and old data; 3) The proposed
online discrete optimization can well optimize the hash codes
with less quantization errors. The experimental results demon-
strates the flexibility and effectiveness of the learning framework
on various cross-modal retrieval scenarios.

Further, the precision-recall curves and topK-precision curves
tested on different datasets are shown in Figs. 3 and 4, respec-
tively. On the one hand, it can be observed that the precision-
recall curves show that the proposed OMGH-un and OMGH-su
methods have delivered the better retrieval performances in
most cases, respectively, than the results generated by the un-
supervised and supervised baselines. On the other hand, topK-
precision curves indicates the change of precision with respect
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Fig. 3. The precision-recall curves evaluated on MIRFlick, PASCAL-VOC and NUS-WIDE datasets.

Fig. 4. The representative topK-precision curves tested on MIRFlick, PASCAL-VOC and NUS-WIDE datasets.

to the number of top-ranked K instances indexed by the search-
ing algorithm. It can be observed that the proposed OMGH-un
and OMGH-su methods generally have yielded the highest pre-
cision scores than the corresponding baselines with the number
of retrieved instance (K) changes, both in unsupervised and
supervised learning strategies. This indicates that the proposed
OMGH approach is able to search much more similar samples
at the beginning, which is of crucial importance to a practical
retrieval application.

Besides, we further evaluate the online retrieval performance
on different learning rounds, in which only the new data chunk
is added to train the hash function and optimize the hash code
of new arriving data. Fig. 5 shows the mAP@100 scores of on-
line cross-modal hashing methods that evaluated at each learn-
ing round (hash length: 32 bits). It can be observed that the
mAP@100 scores derived from the online methods increase
with the growth of available training data points, and gradually

achieve a stable value when the round number is large. This indi-
cates that the online methods are adaptive to process the stream-
ing multi-modal data. Remarkably, the proposed OMGH-un and
OMGH-su methods often perform better than the corresponding
baselines with the increasing of learning round, while exhibit-
ing a more stable curve. For instance, the mAP@100 score does
not increase significantly when the learning round is larger than
8 when tested on NUS-WIDE dataset. That is, the proposed
OMGH method always converge faster to the better results with
less training data, which is of crucial importance to the online
retrieval system.

D. Result of Training Time

The computational complexity of the proposed OMGH frame-
work mainly accumulates from the online training process,
which only involves the newly arriving data for learning. Note
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Fig. 5. The mAP scores tested on MIRFlick, PASCAL-VOC and NUS-WIDE datasets at each learning round.

Fig. 6. The training times obtained by different approaches at each learning round.

TABLE II
THE TOTAL TRAINING TIME (IN SECOND) TESTED ON MIRFLICK DATASET

that, the offline methods need to reload all the accumulated data
for training. Fig. 6 records the training time of representative
baselines on different learning rounds. Since the training times
of offline methods are much larger than that obtained by the
online methods, the figures draw the log value of seconds to
represent the y-coordinate. It can be observed that the execution
times obtained from the offline learning methods increase sig-
nificantly with the increase of the training data sizes, because all
the accumulated training data points are enrolled to train hash
functions at each round. In contrast to this, the online learning
methods perform sufficient fast over the offline methods, and
generally show a relatively stable curve on different learning
rounds.

Table II displays the total time evaluated on MIRFlick dataset.
It can be found that the proposed OMGH-un and OMGH-su

methods always perform faster than the corresponding baselines.
The main reason lies that the anchor-based manifold structure is
able to significantly reduce the size of affinity matrix, which can
well reduce the computational load during the online updating
process. In addition, the proposed online discrete optimization
method has a close-form solution to the hash code learning,
which often requires fewer iterations to optimize hash codes.
That is, the proposed OMGH framework not only achieves the
high cross-modal retrieval accuracy, but also holds a competitive
training efficiency.

E. Result of Ablation Studies

The proposed OMGH framework assumes that each modal-
ity in an instance generates similar, not exactly identical latent
semantic subspace, i.e., M1B for image and M2B for text. To
evaluate its effectiveness, we further utilize the same semantic
representation for both modalities and therefore let V1 = V2 to
learn the hash codes (abbreviated as OMGH1). Fig. 7 reports the
mAP@100 values of OMGH and OMGH1 tested on different
datasets. It can be seen that the proposed OMGH method always
performs better than OMGH1, both in unsupervised and super-
vised cases. This indicates that the relaxed assumption is able to
discriminatively represent the heterogeneous modalities, and the
hash codes derived from the matrix tri-factorization framework
are more semantically meaningful for better performance.

Meanwhile, we vary the dimension values (k1 and k2) of
semantic representation in different modalities and report the
cross-modal retrieval results by different combinations. Fig. 8
reports the mAP@100 scores with different k1 and k2 values,
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Fig. 7. The ablation results tested on three datasets with different hash code lengths.

Fig. 8. The mAP scores obtained by different k1 and k2 on three datasets (32 bits).

Fig. 9. The mAP scores obtained by different numbers of anchor points (Nq).

it can be found that the larger dimension does not always im-
prove the cross-modal retrieval performance and the optimum
retrieval results are not usually achieved by the equal dimen-
sions. For instance, the best retrieval results tested on the MIR-
Flickr amd PASCAL-VOC dataset are generated by combina-
tion k1 = 100, k2 = 50, while the best retrieval results tested
on the NUS-WIDE dataset are generated by combination k1 =
100, k2 = 200. Therefore, the proposed matrix tri-factorization
framework is able to provide different semantic representations
for heterogeneous modalities, which could discriminatively and
flexibly characterize the heterogeneous modalities for high re-
trieval performance.

In addition, the proposed OMGH framework innovates an
anchor-based manifold embedding to guide the hash code learn-
ing, while simultaneously preserving the semantic correlation
between the streaming data and old data. Specifically, the an-
chors are the sparse representation of old data, and the anchor
numberNq balances the importance between the semantic corre-
lation mining and computational complexity. Further, we select
OMGH-su to report the mAP@100 scores with different anchor
number Nq , and representative results are shown in Fig. 9. It
can be observed that a small number of Nq often degrades the
retrieval performances, for reason that the limited anchor points
cannot comprehensively reveal the semantic manifold informa-
tion embedded the old data. Meanwhile, a large numberNq does
not significantly boost the retrieval performance because some
of the anchor points almost have no contribution to the semantic
correlation due to their redundancy. Note that, a large number
could bring more computational load during the online updating

process. Fortunately, the proposed framework shows a relatively
high mAP@100 score when Nq is greater than 500. This indi-
cates that the proposed OMGH framework only require a limited
number of anchor points to adaptively guide the hash code learn-
ing during the online training process. The experimental results
have shown its outstanding performance.

F. Parameter Sensitivity Analysis

There are four main parameters involved in OMGH, i.e., α,
λ, μ, and γ. Specifically, α balances the importance of each
modality. Since our work aims to achieve cross-modal retrieval
between image and text, it is natural to set α = 0.5 for balanc-
ing two modalities. Similar to work [6], γ is the regularization
parameter to prevent overfitting, it is generally set γ = 10−3

in most cases. Specifically, λ controls the learning influence of
manifold embedding module, while μ regularizes the influence
of semantic projections. Accordingly, we further evaluate the
proposed OMGH-su method with different λ and μ values, and
the mAP@100 scores tested on different datasets are shown in
Fig. 10. It can be observed that the proposed method has achieved
very stable performance when λ is greater than 1, which vali-
dates the importance of the proposed anchor-based manifold
embedding module. In addition, different settings of μ just in-
duce a minor fluctuation on the retrieval performance, and its
value can be selected within a wide range such as [10−4, 10].
Therefore, μ is insensitive to the cross-modal retrieval
performance.
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Fig. 10. The mAP scores tested with different λ and µ values on three datasets (32 bits).

V. CONCLUSION

In this paper, we present an efficient and flexible online
manifold-guided hashing method to benefit cross-modal re-
trieval, which incrementally learns hash codes for the current
arriving data and adaptively updates hash function in a stream-
ing manner. Specifically, a matrix tri-factorization framework
is efficiently developed to decompose the high-dimensional
features into more effective modality-specific semantic repre-
sentation and more discriminative hash codes. In addition, an
anchor-based manifold structure is newly proposed to guide hash
code learning process, which can well preserve the correlation
between the streaming data and old data. Meanwhile, the pro-
posed manifold embedding module is adaptive to unsupervised
and supervised cross-modal retrieval scenarios. Further, the pro-
posed discrete optimization algorithm could directly solve the
binary optimization problem without relaxation, which can well
reduce the quantization error for discriminative hash code learn-
ing. Extensive experiments have shown its outstanding perfor-
mance.

Along the line of the present work, several open problems
also deserve our further research. For example, the current on-
line learning model mainly focus on dealing with the balanced
multi-modal data collections, which may not be directly applied
to deal with the imbalanced multi-modal data. Therefore, it is
also imperative to pay attention on training different kinds of
imbalanced data collections. Besides, the fine-grained correla-
tion learning would also have an influence on the cross-modal
retrieval results, and more robust correlation mining methods
deserve further investigation. We shall leave these studies in our
future works.
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