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Abstract. This paper presents a new divide-and-conquer based learning approach to radial
basis function (RBF) networks, in which a conventional RBF network is divided into sev-
eral RBF sub-networks. Each of them individually takes an input sub-space as its input. The
original network’s output then becomes a linear combination of the sub-networks’ outputs
with the coefficients adaptively learned together with the system parameters of each sub-net-
work. Since this approach reduces the structural complexity of a RBF network by describing
a high-dimensional modelling problem via several low-dimensional ones, the network’s learn-
ing speed is considerably improved as a whole with the comparable generalization capabil-
ity. The empirical studies have shown its outstanding performance on forecasting two real
time series as well as synthetic data. Besides, we have found that the performance of this
approach generally varies with the different decompositions of the network’s input and the
hidden layer. We therefore further explore the decomposition rule with the results verified by
the experiments.
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1. Introduction

Due to simple architecture and learning, radial basis function (RBF) networks
have become one of the most popular models in neural networks. In the literature,
the RBF network has been intensively studied with a lot of applications in data
mining [13], pattern recognition [18,9], time series forecasting [7,15], and so forth.
In general, the structural complexity of a RBF network depends on the size of
the hidden layer which is further somewhat proportional to the input dimension.
Hence, effective dimension reduction of the network’s input space can consider-
ably decrease the network structural complexity, whereby the network’s learning is
faster. Traditionally, principal component analysis (PCA) is a popular statistical
tool for input dimension reduction, through which first several principal compo-
nents of the inputs (also called observations interchangeably hereinafter) are cho-
sen as the RBF network new inputs. Since the PCA technique uses second-order
statistics information only, it makes the principal components de-correlated but
not really independent. Subsequently, some useful information in the nonprinci-
pal components may be discarded as well during the dimension reduction process.
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Consequently, the performance of the RBF network may become worse after PCA
preprocessing [8].

In the past decade, independent component analysis (ICA) has been widely
studied in the fields of neural networks and signal processing. It uses high-order
statistics to map the multivariate observations into new representations with their
component redundancy as reduced as possible. In the literature, it has been shown
that ICA outperforms PCA in extracting the hidden feature information and struc-
tures from the observations [2,3,11,20]. However, ICA itself does not define the
so-called “principal” order for the extracted components. Although some heuristic
approaches [1,2,6,10] have explored the component ordering under different opti-
mization criteria, the impact of different orderings on input dimension reduction
still needs to be further investigated.

Recently, Kai Tokkola [17] applied a nonlinear dimension-reducing transforma-
tion to map high-dimensional space to low-dimensional one in which a nonpara-
metric density estimator is coupled with a mutual information criterion to learn a
discriminative dimension-reducing transform. However, the computation of such a
transform is laborious because of the time-consuming density estimation. Further,
this kind of transformation may lead to the RBF network performance degraded
when the output dimension increases.

In this paper, we present a divide-and-conquer based RBF network learning
approach (DCRBF), which divides a conventional RBF network into several RBF
sub-networks. Each of them individually takes an input sub-space as its input. The
original network’s output is then a linear combination of the sub-networks’ outputs
with the coefficients learned together with the system parameters of each sub-net-
work. For short, we hereinafter denote a RBF network learned by the DCRBF
approach as DCRBF without further distinction. It can be seen that the DCRBF
is actually a natural extension of our recently proposed recurrent RBF network
named Dual Structural RBF Network [5] that models a recursive function by using
two RBF sub-networks: one sub-network models the relationship between the cur-
rent network’s output and the past ones, and the other one describes the rela-
tionship between the current output and the inputs. Since the DCRBF describes
a high-dimensional modelling problem via several low-dimensional ones, it essen-
tially provides an implicit way to reduce the structural complexity of a RBF net-
work such that its learning speed is considerably improved as a whole. We have used
a new variant of Extended Normalized RBF (ENRBF) networks [16,18] to realize
each sub-network in the DCRBF, whereby a detailed algorithm is presented to learn
the parameters of DCRBF adaptively. The experimental results have shown its out-
standing performance on forecasting two real time series as well as synthetic data in
comparison with a conventional RBF network.

In general, the performance of the DCRBF varies with different decompo-
sitions of input space and the hidden layer. Suppose a d-dimensional input
space is decomposed into q input sub-spaces, i.e., a d-dimensional input x =
[x(1), x(2), . . . , x(d)]T (T denotes the transpose operation of a matrix) is
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decomposed into q parts. To optimize the DCRBF in a sense, we still have to
answer at least two questions

Q1. Among
(
P d

d Cd−1
q−1

)/
P

q
q decomposition combinations of an x, which one

should be chosen?
Q2. Suppose the number of hidden units in a conventional RBF network is K.

How to determine the unit number ki of each RBF sub-network i with∑q

i=1 ki = K such that the DCRBF performance is optimized in a certain
sense?

In this paper, we have heuristically given out a decomposition rule in terms of
optimizing the training speed with the experimental verification.

The paper is organized as follows: Section 2 describes the basic concept of
DCRBF and its learning scheme. Particularly, a learning algorithm is given out
when each RBF sub-network is implemented by the new ENRBF variant we
propose. Also, the performance of DCRBF is experimentally demonstrated in
comparison with the conventional RBF network. Section 3 explores the network
decomposition rule with the experimental supports in Section 4. Finally, we draw
a conclusion in Section 5.

2. DCRBF Learning Approach

2.1. dcrbf network and its algorithm

In the DCRBF, a conventional RBF network is decomposed into q RBF sub-net-
works, denoted as RBFr, r = 1,2, . . . , q, respectively, as shown in Figure 1. The
Input Decomposer of a DCRBF network decomposes the input space V into the
direct sum of q input sub-spaces, denoted as Vr , r = 1,2, . . . , q, respectively. That
is, we have

V1 ∪V2 ∪ . . .∪Vq =V (1)

and

Vi ∩Vj =0 for any i �= j. (2)

Each RBFr models the functional relationship between the current desired output
yt and the sub-input

xr,t = [x(i1)
t , x

(i2)
t , . . . , x

(idr )
t ]∈Vr , (3)

where {i1, i2, . . . , idr } ⊆ {1,2, . . . , d}, dr and d are the dimensions of Vr and V,
respectively, with

∑q

r=1 dr = d. Further, ŷt is the actual output of the DCRBF
network with
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Figure 1. Decomposition of an RBF network into q RBF sub-networks by the DCRBF learning
approach.

ŷt =
q∑

r=1

cr ẑr,t , (4)

where ẑr,t denotes the actual output of RBFr , and cr is a coefficient of linear com-
bination. At each time step t , given the desired output yt , we can calculate the out-
put residual

et =yt − ŷt . (5)

Consequently, we can learn the combination coefficients c1, c2, . . . , cq in Equation
(4) and the parameters of each RBFr ’s by minimizing the cost function

J (Θ)= 1
N

N∑
t=1

(yt − ŷt )
T (yt − ŷt ), (6)

where N is the number of input data points, C={c1, c2, . . . , cq}, and Θ =C∪Θ1 ∪
Θ2 ∪ . . . ∪ Θq with Θr being the parameters of the RBFr . In implementation, at
each time step t , we adaptively tune Θ with a small step along the gradient descent
direction of minimizing (yt − ŷt )

T (yt − ŷt ). That is, we adjust Θ by

cnew
r = cold

r +ηeT
t ẑr,t , r =1,2, . . . , q, (7)

Θnew
r =Θold

r −η
∂(yt − ŷt )

T (yt − ŷt )

∂Θr

∣∣∣∣
Θold

r

, (8)

where η is a small positive learning rate.
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The detailed steps of Equation (8) depend on the explicit implementation of
each RBFr , which can be realized by a variety of RBF network models. In this
paper, we adopt a new variant of existing ENRBFs [16, 19], whose architecture is
shown in Figure 2. There are three layers: dr -unit input layer, kr -unit hidden layer,
and n-unit output layer. Given the input xr,t = [x(1)

r,t , x
(2)
r,t , . . . , x

(dr )
r,t ]T at time step t ,

the output of RBFr network is

ẑr,t =
kr∑

j=1

Or,j (xr,t )gr,j (xr,t ), (9)

where ẑr,t = [ẑ(1)
r,t , ẑ(2)

r,t , . . . , ẑ(n)
r,t , ]T ,gr,j (xr,t ) is an n × 1 vector function whose τ th

component describes the relationship between hidden unit j and output unit τ in
the RBFr . Or,j (xr,t ) is the output of unit j in the hidden layer with

Or,j (xr,t )= φ[(xr,t −mr,j )
T

∑−1
r,j (xr,t −mr,j )]∑kr

i=1 φ[(xr,t −mr,i )T
∑−1

r,i (xr,t −mr,i )]
, (10)

where mr,j and
∑

r,j are the center vector and receptive field of the basis func-
tion φ(.), respectively, in hidden unit j . In common, the Gaussian function φ(s)=
exp(−0.5s) is chosen. Consequently, Equation (9) becomes

)1(
,trx )2(

,trx )(
,

rd
trx

)1(
,ˆ trz )2(

,ˆ trz )(
,ˆ n
trztr,ẑ

Figure 2. An Extended Normalized RBF Network model used to implement the RBF sub-network
RBFr .
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ẑr,t =
kr∑

j=1

exp[−0.5(xr,t −mr,j )
T

∑−1
r,j (xr,t −mr,j )]∑kr

i=1 exp[−0.5(xr,t −mr,i )T
∑−1

r,i (xr,t −mr,i )]
gr,j (xr,t ). (11)

In the existing ENRBF networks as shown in [16, 19], gr,j (xr,t ) is a linear
function

gr,j (xr,t )=Wr,j xr,t +βr,j , j =1,2, . . . , kr , (12)

where Wr,j is an n× dr parameter matrix, and βr,j is an n× 1 bias vector. Here,
we extend Equation (12) to

gr,j (xr,t )=Wr,j diag[sign(xr,t )]|xr,t |pr,j +βr,j (13)

with

sign(xr,t )= [sign(x
(1)
r,t ), sign(x

(2)
r,t ), . . . , sign(x

(dr )
r,t )]T ,

|xr,t |pr,j = [|x(1)
r,t |pr,j , |x(2)

r,t |pr,j , . . . , |x(d)
r,t |pr,j ]T , (14)

where sign(.) is the sign function, diag(xr,t ) is a diagonal matrix whose (i, i)th ele-
ment is x

(i)
r,t , and pr,j is the exponent of the polynomia |x(j)

r,t | that denotes the abso-
lute value of x

(j)
r,t . That is, we use a single pr,j -order polynomial term, rather than

a conventional linear one, to model the relations between a hidden unit and an
output unit. Since such a flexible polynomial regression extends the fitting abil-
ity of the linear regression used in most existing ENRBF networks, it is therefore
expected that this new variant generally has better performance in function approx-
imation under the moderate number of hidden units. By putting Equation (13) into
Equation (11), we then have

ẑr,t =
kr∑

j=1

exp[−0.5(xr,t −mr,j )
T

∑−1
r,j (xr,t −mr,j )]∑kr

i=1 exp[−0.5(xr,t −mr,i )T
∑−1

r,i (xr,t −mr,i )]
,

[Wr,j diag[sign(xr,t )]|xr,t |pr,j +βr,j ]. (15)

In Equation (15), two parameter sets should be learned. One is {mr,j ,
∑

r,j }kr

j=1 in

the hidden layer, and the other is {Wr,j , pr,j , βr,j }kr

j=1 in the output layer. In the
paper [19], the learning of parameters in the hidden layer and output layer have
been connected with the mixture-of-experts model, whereby an expectation-maxi-
mization (EM) based single-step learning algorithm is proposed. Here, for simplic-
ity, we prefer to learn the two parameter sets in the same way as the traditional
approaches [14] with the two separate steps: Learn parameters in hidden layer via
a clustering algorithm such as k-means [12], followed by learning parameters in the
output layer via minimizing J (Θ) in Equation (6). Eventually, the detailed learning
algorithm of DCRBF is given out as follows:
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Step 1: Given an input space V, we decompose it into q input sub-space:
V1,V2, ...,Vq . Subsequently, given an input xr,t ∈Vr at time step t , we learn
the parameters of RBFr by Step 2 and Step 3.

Step 2: We learn {mr,j,�r,j |j = 1,2, . . . , kr} in the hidden layer of RBFr via the
RPCCL [4] rather than k-means because of its robust performance without
knowing exact cluster number. Interested readers can refer to the paper [4]
for more details. In the following, we show its main steps only.

Step 2.1: Randomly take a sample xr,t from the data set D={xr,t }Nt=1, and
for j =1,2, . . . , kr , let

I (j |Xr,t )=





1 if j = c

−1 if j = τ,

0, otherwise

(16)

with

c=arg min
j

�j‖xr,t −mr,j‖2,

τ =arg min
j �=c

�j‖xr,t −mr,j‖2, (17)

where γj = (nj )
/(∑kr

ρ=1 nρ

)
is the relative winning frequency of

the seed point mr,j in the past, and nj is the cumulative number
of the occurrences of I (j |xr,t )=1 in the past.

Step 2.2: Update the winner mr,c (i.e., I (c|xr,t )=1) and its rival mr,τ only
by

mnew
r,k =mold

r,k +�mr,k, κ = c, τ (18)

with

�mr,c =ηc(xr,t −mr,c),

�mr,τ =−ηcpτ (xr,t )(xr,t −mr,τ ),

pτ (xr,t )= min(‖mr,c −mr,τ‖,‖mr,c −xr,t‖)
‖mr,c −mr,τ‖ , (19)

where ηc is the small positive learning rate.

Steps 2.1 and 2.2 are iterated until those seed points mr,1,mr,2, . . . ,mr,kr

converge. We then directly calculate each �r,j by

�r,j =
∑N

t=1 I (j |xr,t )[(xr,t −mr,j )(xr,t −mr,j )
T ]∑N

t=1 I (j |xr,t )−1
. (20)
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Step 3: Learn {Wr,j , βr,j |j =1,2, . . . , kr} in the output layer under the least mean-
square-error (MSE) criterion. That is, we learn them as well as C by min-
imizing Equation (6). Consequently, we have

Step 3.1: Given xt and yt , we calculate ŷt via Equation (4) by fixing Θ .
Step 3.2: Update C by Equation (7). Also, we update Θr by

Wnew
r,j =Wold

r,j +η�Wr,j ,

pnew
r,j =pold

r,j +η�pr,j ,

βnew
r,j =βold

r,j +η�βr,j

with

�Wr,j= cold
r Or,j (xr,t )et |xr,t |pr,jT diag[sign(xr,t )],

�pr,j= cold
r Or,j (xr,t )�

T
r,t,j diag[sign(xr,t )]WT

r,j et ,

�βr,j= cold
r Or,j (xr,t )et , (21)

where �r,t,j = [|x(1)
r,t |pr,j ln |x(1)

r,t |, |x(2)
r,t |pr,j ln |x(2)

r,t |, . . . , |x(dr )
r,t |pr,j

ln |x(dr )
r,t |pr,j |]T .

The iterations of Steps 3.1 and 3.2 do not stop until the parameters
converge.

2.2. experimental results

On the time series forecasting, we performed three experiments to compare the
performance of the DCRBF with the conventional RBF network learning under
the MSE criterion.

Experiment 1. We generated 5100 data points, denoted as {(xt , yt )}5100
t=1 from the

following time series:

ht=0.08h2
t−1 −0.33ht−2 + sin(ht−3)+0.08ht−4

+0.2ht−5 +0.064h2
t−6ht−7 −0.6ht−8ht−9, (22)

where xt = [x(1)
t , x

(2)
t , . . . , x

(9)
t ]T = [ht−1, ht−2, . . . , ht−9]T and yt = ht are the input

and the desired output at time step t respectively. We let the first 5000 data points
be the training set, and the remaining 100 data points be the testing set.

In the DCRBF, we decomposed the input space into three sub-spaces with the
input dimension d1 = 2, d2 = 3, d3 = 4, respectively. We further let the number of
hidden units in each sub-network be k1 =2, k2 =2, k3 =2, respectively. For compari-
son, we also implemented a conventional RBF network hereinafter by the ENRBF
network described in Section 2, whose input is xt and the hidden-layer size is k =
k1 + k2 + k3 = 6. In other words, the DCRBF has decomposed the conventional
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RBF into three sub-networks in this regard. During the experiment, we simply
fixed the learning rate η=0.0001, and repeatedly scan the training data set for 100
epochs. We plotted the MSE values of the DCRBF and the conventional RBF net-
work on testing set in Figure 3. It can be seen that the converged performance of
DCRBF on the testing set was the same as the conventional RBF network, but the
former converged much faster. Actually, the DCRBF has reached the MSE value
much lower than the conventional RBF network after the first epoch, although
their parameters were initialized in the same way. This scenario implies that the
underly mechanism of DCRBF can indeed reduce the structural complexity of a
RBF network in effect. Subsequently, the learning speed is considerably improved.
In this experiment, the convergence of DCRBF parameters needs only 6 epochs in
contrast to 60 epochs of the conventional RBF network.

Experiment 2. In this experiment, we used 4774 FOREX daily foreign exchange
rates of 9 countries, which are from the famous Rob Hyndman’s Time Series Data
Library, during the period between December 31, 1979 and December 31, 1998.
We let the first 4674 data be the training set, and the remaining 100 data be
the testing set. Also, we set the dimension of input space to d = 9, and decom-
posed it into three subspaces with d1 =2, d2 =3, d3 =4. Subsequently, the DCRBF
consisted of three RBF sub-networks whose input dimensions are d1, d2 and d3,
respectively. Further, we let their hidden-layer size be k1 = 2, k2 = 3, and k3 = 3.
Similar to Experiment 1, we implemented the conventional RBF network by set-
ting d = d1 + d2 + d4 = 9 and k = k1 + k2 + k3 = 8 for comparison. We plotted the
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Figure 3. The performance comparison between the DCRBF network and the conventional RBF one
on the synthetic time-series data in Experiment 1.
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MSE values of the DCRBF and the conventional RBF network on testing set, as
shown in Figure 4(a). It can be seen again that the DCRBF network converges
faster than the conventional one. Actually, the performance of DCRBF tended to
converge within the first training epoch. Furthermore, we found that the DCRBF
gives a slight improvement on the generalization error as shown in Figure 4(b).
This scenario implies that, through reducing the network’s structural complexity,
the DCRBF learning is capable of circumventing the over-fitting problem, and
reducing the possibility of the system parameters falling into some sub-optimal
solutions.

Experiment 3. We applied the DCRBF to forecast the time series of sunspot from
year 1700 to 1979, observed by Rudolph Wolf. We used the first 250 data to be
the training set, and the remaining 30 to be the testing set. The number of hidden
units of the conventional RBF network was k = 8, while the hidden units of the
three sub-networks in DCRBF were k1 = 2, k2 = 3, k3 = 3. We let the input dimen-
sion of the conventional RBF network be d =9, and the input dimension of three
decomposed sub-network in DCRBF be d1 = 3, d2 = 3, d3 = 3. The experimental
results are shown in Figure 5. Once again, we found that the DCRBF converges
much faster than the conventional one with slightly better generalization ability.

3. The Decomposition Rule for DCRBF

In general, as shown in Section 2.2, the performance of DCRBF varies with the
different input and hidden-layer decompositions. Supposing a DCRBF consists of
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Figure 4. (a) The performance comparison between the DCRBF network and the conventional RBF
network on FOREX daily foreign exchange data in Experiment 2; (b) The slight better convergent per-
formance of the DCRBF in contrast to the conventional one.
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Figure 5. The performance comparison between the DCRBF and the conventional RBF networks on
sunspot data in Experiment 3.

q RBF sub-networks, we can heuristically determine an appropriate input decom-
position in the previous Step 1 by the following two sub-steps:

Step 1.1 Give an appropriate order of the d input variables in V;
Step 1.2 Separate these ordered d input variables into q groups, each of which

spans an input sub-space accordingly.

In Step 1.1, we use PCA ordering, i.e., the inputs x(1), x(2), . . . , x(d) in V are trans-
formed into x(i1), x(i2), . . . , x(id ), where i1, i2, . . . , id is the decreasing order of the
eigen values of the covariance matrix of x. In Step 1.2, we uniformly decompose
the ordered input variables into q groups. That is, the dimension of each input
sub-space should be as equal as possible. In the following, we will present a theo-
rem to show that such a uniform input separation leads to an optimal decomposi-
tion in a sense of training time cost. Moreover, when the total number of hidden
units is fixed, the theorem tells us that the number of hidden units in each RBF
sub-network should be uniformly distributed as well. Before presenting the theo-
rem, we first give out some definitions.

DEFINITION 1. Let di, i = 1,2, . . . , q, be positive integers. A q-tuple (d1, d2,

. . . , dq) is called qdecomposition of d if d1 +d2 +· · ·+dq =d.

DEFINITION 2. If a qdecomposition makes the training time cost of a DCRBF min-
imized, it is called time optimal decomposition (TOD).
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DEFINITION 3. The total number K of hidden units in DCRBF is defined as the
module of DCRBF, written as ‖DCRBF‖=K, where K is the sum of those hidden
radial function units in each RBF sub-network.

DEFINITION 4. A product among the parameters and constants in the DCRBF is
called a basic computation term (BCT).

The theorem is then presented as follows.

THEOREM 1.
1. Let the dimension of input space V be d and (d1, d2, . . . , dq) be a qdecomposition

of d. A conventional RBF network is therefore decomposed into the DCRBF con-
sisting of q sub-networks with input dimension d1, d2, . . . , dq , respectively.

2. Let ‖DCRBF‖=K, and (k1, k2, . . . , kq) be a qdecomposition of K;
3. The time cost of each BCT in the DCRBF is equal.

The qdecomposition of (d1, d2, . . . , dq) and (k1, k2, . . . , kq) is TOD if and only if

d1 =d2 =· · ·=dq = d

q
, (23)

k1 =k2 =· · ·=kq = K

q
. (24)

To prove Theorem 1, we first give out the lemma as follows.

LEMMA 1. Given the objective function

f (ξ1, ξ2, · · · , ξq, ς1, ς2, · · · , ςq)=
q∑

i=1

ξiς2
i (25)

with the constraints

q∑
i=1

ξi =Q,

q∑
i=1

ςi =K, ξi >0, ςi >0, i =1,2, . . . , q (26)

the necessary and sufficient condition for a minimum point of f (ξ1, ξ2, . . . , ξq, ς1,
ς2, . . . , ςq is

ξ1 = ξ2 =· · ·= ξq = Q

q
, (27)

ς1 =ς2 =· · ·=ςq = K

q
. (28)
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Proof. We construct the Lagrange function as follows:

L(ξ1, ξ2, . . . , ξq, ς1, ς2, . . . , ςq, λ1, λ2)=
∑q

i=1
ξ2
i ς2

i +λ1

(
Q−

∑q

i=1
ξi

)

+λ2

(
K −

∑q

i=1
ςi

)
. (29)

We let the partial derivatives of L with respect to ξi, ςi, λ1, λ2, i = 1,2, . . . , q be
zero, i.e.,

∂L

∂ξi

=ς2
i −λ1 =0, (30)

∂L

∂ςi

=2ξiςi −λ2 =0, (31)

∂L

∂λ1
=

(
Q−

q∑
i=1

ξi

)
=0, (32)

∂L

∂λ2
=

(
K −

q∑
i=1

ςi

)
=0. (33)

From Equations (30) and (31), we have

ξ1 = ξ2 =· · ·= ξq, (34)

ς1 =ς2 =· · ·=ςq. (35)

Substitute Equations (34) and (35) into Equations (32) and (33), Lemma 1 is there-
fore proved.

Now we present the proof of Theorem 1 as follows.
Proof. Let (d1, d2, . . . , dq) be a qdecomposition of d, ζ be the training time of

DCRBF, and ζr be the training time of RBFr with r =1,2, . . . , q, respectively. We
have

ζ =
q∑

r=1

ζr . (36)

Since ζr depends on the number of BCT only in the learning process, we therefore
just need to consider the BCT in the following term:

[xr −mr,j ]T �−1
r,j [xr −mr,j ], (37)

where j =1,2, . . . , dr , r =1,2, . . . , q, and xr ∈Vr is a vector. It can be seen that the
number of BCT in (37) is d2

r as given xr . Without loss of generality, we suppose
the computing time cost of each BCT is one time unit. Hence, ζr is a function of
dr and kr , which can be further expressed as

ζr (dr , kr )=krd
2
r . (38)
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Putting Equation (38) into Equation (36), we then have

ζ(d1, d2, . . . , dq, k1, k2, . . . , kq)=
q∑

r=1

krd
2
r . (39)

That is, we try to optimize the following constraint problem:

minimize ζ(d1, d2, . . . , dq, k1, k2, . . . , kq)=
∑q

r=1
krd

2
r , (40)

subject to
∑q

r=1
dr =d,

∑q

r=1
kr =K, dr >0, kr >0. (41)

It can be seen that, as ξj = dj and ςj = kj with j = 1,2, . . . , q, the solution of
this problem actually becomes the special case of Lemma 1. Hence, Theorem 1 is
held. �

4. Experimental Simulations

4.1. experiment 1 and 2

To justify the above theorem, we showed two experiments to compare the train
time cost of DCRBF with the different decompositions. The experimental environ-
ment is given in Table I. In Experiment 1, we used 8100 data points generated
from the nonlinear function

yt =x
(1)
t cos(x(2)

t )+x
(3)
t sin(x

(4)
t )−0.4(x(5)t)2

+0.5x
(6)
t x

(7)
t +0.2(x

(8)
t )2x(9) + εt ,

where xt = [x(1)
t , x

(2)
t , x

(3)
t , x

(4)
t , x

(5)
t , x

(6)
t , x

(7)
t , x

(8)
t , x

(9)
t ]T is the input of RBF net-

work, yt is the desired output of RBF network, and εt is zero-mean Gaussian
white noise with the variance being 0.001. We let ‖DCRBF‖=9 and decomposed
the input space of the conventional RBF network into the direct sum of three
input sub-spaces. The decomposition of input space and experimental results are
shown in Table II. It can be seen that the learning speed of uniform decomposi-
tion is the fastest in all cases we have tried so far.

In Experiment 2, we performed an experiment on the benchmark data acquired
from the famous Rob Hyndman’s Time Series Data Library. We used the FOREX
daily foreign exchange rates of Australia to USA from December 31, 1979

Table I. The experimental environment.

CPU Pentium III 650 MHZ
Memory 256M
Operating System Windows 2000
Running software Matlab 5.3
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Table II. The training time cost of DCRBF under different input decompositions.

3-Decomposition of d 3-Decomposition of k
∑q

r=1 krd
2
r Mean training time

(3,3,3) (3,3,3) 81 11.1723
(3,3,3) (2,2,5) 81 11.2679
(2,2,5) (3,3,3) 99 11.6658
(2,3,4) (2,2,5) 106 11.7269
(2,2,5) (2,2,5) 141 12.0171

to December 31, 1998 with the 4774 data points, written as {ht }4774
t=1 . In the

experiment, we let the input of RBF network be xt = [ht−1, ht−2, ht−3, ht−4,
ht−5, ht−6, ht−7, ht−8, ht−9]T , and yt =ht be the desired output. Similar to Exper-
iment 1, we also let ‖DCRBF‖ = 9, and decomposed the input space of RBF
network into three input sub-spaces. Table III shows the results under different
decompositions. Again, the DCRBF with the uniform decomposition needs the
least training time cost.

4.2. experiment 3

In the above experiments, we have investigated the uniform decomposition on
the learning speed of DCRBF without considering the net’s generalization capa-
bility. In the following, we will further demonstrate the generalization capa-
bility of DCRBF when uniform decomposition and PCA input-variable order-
ing are used. We set xt = [x(1)

t , x
(2)
t , . . . , x

(11)
t ]T to be the input of DCRBF,

where x
(2)
t , x

(4)
t , x

(6)
t , x

(7)
t , x

(8)
t , x

(9)
t were uniformly distributed, x

(1)
t , x

(3)
t , x

(11)
t were

Gaussians and x
(5)
t , x

(10)
t were from a mixture of two Gaussians. The desired out-

puts of the network were given by

yt =x
(1)
t cosx

(2)
t +x

(3)
t sin x

(4)
t cosx

(10)
t − (x

(5)
t )2 sin x

(12)
t +0.5x

(6)
t x

(7)
t

+0.2(x
(8)
t )2x

(9)
t sin x

(11)
t + et ,

where et is white noise.
We generated 1100 data points. The first 1000 were the training data, and

the remaining 100 data were the testing data. In the experiment, the PCA

Table III. The training time cost of DCRBF under different input decompositions.

3-Decomposition of d 3-Decomposition of k
∑q

r=1 krd
2
r Mean training time

(3,3,3) (3,3,3) 81 15.4161
(3,3,3) (2,2,5) 81 15.4914
(2,2,5) (3,3,3) 99 15.7441
(2,3,4) (2,2,5) 106 15.9068
(2,2,5) (2,2,5) 141 16.2129
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Table IV. The MSE of DCRBF on testing set under differ-
ent decompositions, where

⊕
denotes the direct sum of input

sub-spaces.

Trials Input space k MSE

1 (x2,x1,x2,x4,x5)
⊕

(x11,x10,x9,x8,x7,x6) (5,6) 0.3200
2 (x3, x4, x5, x10, x11)

⊕
(x1, x2, x6, x7, x8, x9) (5,6) 0.3235

3 (x1, x2, x11)
⊕

(x3, x4, x5, x6, x7, x8, x9, x10) (3,8) 0.3451
4 (x4, x5)

⊕
(x1, x2, x3, x6, x7, x8, x9, x10, x11) (2,9) 0.3534

5 (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) 11 0.4322

order of input is x(11), x(10), x(9), x(8), x(7), x(6), x(3), x(1), x(2), x(4), x(5). We decom-
posed the inputs into two parts: x(1)={

x(11), x(10), x(9), x(8), x(7), x(6)
}

and x(2)={
x(3), x(1), x(2), x(4), x(5)

}
. Further, we fixed the learning rate to 0.001. During the

network learning process, the MSE curve on the testing set was shown in Figure 6.
After scanning training set data 200 times, a snapshot of the MSE value on the
testing set was 0.32 as shown in the Trial 1 of Table IV. In contrast, we also inves-
tigated another input uniform decomposition in Trial 2 without considering PCA
ordering. Table IV shows that the performance of DCRBF deteriorates a little bit
in comparison with Trial 1. Further, in Trial 3 and Trial 4, we tested two other
different input decompositions without uniform decomposition and PCA ordering.
It can be seen that the performance of DCRBF has been further moderately dete-
riorated, but they were better than the DCRBF without input decomposition (i.e.,
a DCRBF has degenerated to a conventional RBF network) as shown in Trial 5
of Table IV. Actually, Figure 6 has shown that the DCRBF with PCA ordering
and uniform decomposition learns much faster than the conventional RBF net-
work, and has a moderately improved generalization capability.

5. Conclusion

We have presented a divide-and-conquer learning approach to RBF network that
is a hybrid system consisting of several RBF sub-networks. Each RBF sub-net-
work takes an input sub-space as its own input. The whole DCRBF network out-
put is a combination of RBF sub-networks’ outputs. Since this system divides a
high-dimensional modelling problem into several low-dimensional ones, its struc-
tural complexity is generally lower than a conventional RBF network. The experi-
ments have shown that the learning of the proposed approach is much faster than
the conventional RBF network learning. Furthermore, we have studied the decom-
positions in the DCRBF network. Not only is the PCA input-variable ordering
suggested, but also a uniform decomposition is presented on both the number of
inputs and the number of hidden units, which is optimal in the sense of learning
speed. The numerical results have justified such a decomposition.
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Figure 6. The MSE curve of DCRBF and a conventional RBF network on the testing set in Experiment
3 of Section 4.2, where the solid line is from the DCRBF, and the dashed line is from the conventional
one.
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