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Most of the existing clustering approaches are applicable to purely numerical or categorical data only,

but not the both. In general, it is a nontrivial task to perform clustering on mixed data composed of

numerical and categorical attributes because there exists an awkward gap between the similarity

metrics for categorical and numerical data. This paper therefore presents a general clustering frame-

work based on the concept of object-cluster similarity and gives a unified similarity metric which can

be simply applied to the data with categorical, numerical, and mixed attributes. Accordingly, an

iterative clustering algorithm is developed, whose outstanding performance is experimentally demon-

strated on different benchmark data sets. Moreover, to circumvent the difficult selection problem of

cluster number, we further develop a penalized competitive learning algorithm within the proposed

clustering framework. The embedded competition and penalization mechanisms enable this improved

algorithm to determine the number of clusters automatically by gradually eliminating the redundant

clusters. The experimental results show the efficacy of the proposed approach.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

To discover the natural group structure of objects represented
in numerical or categorical attributes [1], clustering analysis has
been widely applied to a variety of scientific areas such as
computer science [2] and bioinformatics [3]. Traditionally, clus-
tering analysis concentrates on purely numerical data only. The
typical clustering algorithms include the k-means [4], EM algo-
rithm [5] and their variants. Since the objective functions of these
two algorithms are both numerically defined, they are not
essentially applicable to the data sets with categorical attributes.
Under the circumstances, a straightforward way to overcome this
problem is to transform the categorical values into numerical
ones, e.g. the binary strings, and then apply the aforementioned
numerical-value based clustering methods. Nevertheless, such a
method has ignored the similarity information embedded in the
categorical values and cannot faithfully reveal the similarity
structure of the data sets [6]. Hence, it is desirable to solve this
problem by finding a unified similarity metric for categorical and
numerical attributes such that the metric gap between numerical
and categorical data can be eliminated. Subsequently, a general
clustering algorithm which is applicable to numerical and

categorical data can be presented based on this unified metric.
During the past decades, some works which try to find a unified
similarity metric for categorical and numerical attributes have
been presented, e.g. see [7]. However, a computational efficient
similarity measure remains to be developed.

Another challenging problem encountered in clustering is how
to determine the number of clusters. To the best of our knowl-
edge, a lot of popular clustering methods, e.g. the k-means
algorithm for numerical data clustering and the k-modes algo-
rithm [8] for categorical data clustering, need to pre-assign the
number of clusters exactly. Otherwise, they will almost always
lead to a poor clustering result [9,10]. Unfortunately, in many
cases, this vital information is not always available from the
practical viewpoint. Hence, to explore an algorithm which can
conduct clustering without knowing cluster number is also a
significant work in clustering analysis. To address this issue,
variant researches have been conducted in the literature and
some feasible methods that can determine the number of clusters
for purely numerical or categorical data have been presented
[9–11]. Nevertheless, to the best of our knowledge, how to
automatically select cluster number for mixed data during clus-
tering process is still an unsolved problem.

In this paper, we will propose a unified clustering approach
that is capable of selecting the cluster number automatically for
both categorical and numeric data sets. Firstly, we present a
general clustering framework based on the concept of object-
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cluster similarity. Then, a new metric for both of numerical and
categorical attributes is proposed. Under this metric, the object-
cluster similarity for either categorical or numerical attributes has
a uniform criterion. Hence, transformation and parameter adjust-
ment between categorical and numerical values in data clustering
are circumvented. Subsequently, an iterative clustering algorithm
is introduced. This algorithm conducts a parameter-free cluster-
ing analysis and is applicable to the three types of data: numer-
ical, categorical, or mixed data, i.e., the data with the both of
numerical and categorical attributes. Moreover, empirical studies
show that the proposed algorithm has higher accuracy as well as
lower computational cost compared to the popular k-modes
algorithm for categorical data clustering. For mixed data cluster-
ing, compared to k-prototype algorithm [12], the proposed
method can get much better clustering results, but no parameter
needs to be adjusted at all. Additionally, to overcome the cluster
number selection problem, we further present a penalized com-
petitive learning algorithm within the proposed clustering frame-
work. The competition and penalization mechanisms in this
improved algorithm can gradually fade out the redundant clus-
ters. Hence, the number of clusters can be determined automa-
tically during the clustering process. Experimental results on
benchmark data sets have shown the effectiveness of this method.

The rest of this paper is organized as follows. Related works
are reviewed in Section 2. Section 3 proposes a general clustering
framework based on object-cluster similarity, whose metric is
also defined. Section 4 describes an iterative clustering algorithm
and Section 5 presents an improved one with capability of
automatically selecting cluster number. Experiments are con-
ducted in Section 6. Finally, we draw a conclusion in Section 7.

2. Related works

This section reviews the related works on: (1) data clustering
with categorical-and-numerical attributes and (2) cluster number
selection.

In the former, several methods have been presented which can
be grouped into two lines. In the first line, the algorithms are
essentially designed for purely categorical data, although they
have been applied to the mixed data as well by transforming the
numerical attributes to categorical ones via a discretization
method. Along this line, several methods have been proposed
based on the perspective of similarity metric, graph partitioning
or information entropy. For example, ROCK algorithm proposed
by Guha et al. [13] is an agglomerative hierarchical clustering
procedure based on the concepts of neighbors and links. In this
method, a pair of objects are regarded as neighbors if their
similarity exceeds a certain threshold, and the desired cluster
structure is obtained by merging the clusters sharing a pre-
assigned number of neighbors gradually. ROCK has shown its
superiority over traditional hierarchical algorithms in the experi-
ments, but its performance is generally sensitive to the setting of
similarity threshold. Also, the computation of links between
objects is quite time-consuming [14]. By contrast, CLICKS algo-
rithm proposed in [15] mines subspace clusters for categorical
data sets. This method encodes a data set into a weighted graph
structure, where each weighted vertex stands for an attribute
value and two nodes are connected if there is a sample in which
the corresponding attribute values co-occur. Experiments have
shown that CLICKS outperforms ROCK algorithm and scales better
for high-dimensional data sets. However, its performance also
depends upon a set of parameters whose tuning is quite difficult
from the practical viewpoint. Additionally, the COOLCAT algo-
rithm, an entropy-based method proposed by Barbara et al. [16],
utilizes the information entropy to measure the closeness

between objects and presents a scheme to find a clustering
structure via minimizing the expected entropy of clusters. The
performance of this algorithm is stable for different data sizes and
parameter settings. Furthermore, a scalable algorithm for catego-
rical data clustering called LIMBO [17], which is proposed based
on the Information Bottleneck (IB) framework [18], employs the
concept of mutual information to find a clustering with minimum
information loss. In general, all of the above-stated algorithms can
be applied to mixed data via a discretization process, which may,
however, cause loss of important information, e.g. the difference
between numerical values.

By contrast, the second line attempts to design a generalized
clustering criterion for numerical-and-categorical attributes. For
example, Li and Biswas [7] presented the Similarity Based
Agglomerative Clustering (SBAC) algorithm which is based on
Goodall similarity metric [19] that assigns a greater weight to
uncommon feature value matching in similarity computations
without the prior knowledge of the underlying distributions of
the feature values. This method has a good capability of dealing
with the mixed attributes, but its computation is quite laborious.
He et al. [20] extended the Squeezer algorithm to cluster mixed
data and proposed the usm-squeezer method, in which the
similarity measure for categorical attributes is the same as the
Squeezer while the similarity of numerical attributes is defined by
relative difference. However, the clustering effectiveness of this
method has not been sufficiently demonstrated. In [21],
an Evidence-Based Spectral Clustering (EBSC) algorithm has been
proposed for mixed data clustering by integrating the evidence
based similarity metric into the spectral clustering structure.
Moreover, the AUTOCLASS proposed by Cheeseman and Stutz
[22] assumes a classical finite mixture distribution model on
mixed data and utilizes a Bayesian method to derive the most
probable class distribution for the data given prior information.
Among this category of approaches, the most cost-effective one
may be the k-prototype algorithm proposed by Huang [12]. In this
method, the distance between two categorical values is defined as
0 if they are the same, and 1 otherwise while the distance
between numerical values are quantified with Euclidean distance.
Subsequently, the k-means paradigm is utilized for clustering.
However, since different metrics are adopted for numerical and
categorical attributes, a user-defined parameter is utilized to
control the proportions of numerical distance and categorical
distance. Nevertheless, the clustering result is very sensitive to
the setting of this parameter. A simplified version of k-prototype
algorithm namely k-modes [8,23,24], which is applicable for
purely categorical data clustering, has also been widely utilized.
Thus far, different improvement strategies on this method have
been explored, e.g. see [25–27].

In general, all of the aforementioned methods need to pre-
assign the number of clusters exactly, which is, however,
a nontrivial task from the practical viewpoint. In the literature,
a variety of methods have been proposed for cluster number
estimation. For example, some computational demanding meth-
ods choose the optimal number of clusters via different statistic
criteria, such as Akaike’s Information Criterion (AIC) [28] and
Schwarz’s Bayesian inference criterion (BIC) [29]. By contrast,
another kind of methods within the framework of competitive
learning often introduce some competitive mechanisms, such as
penalization [9,11] and cooperation [30], into the clustering
process so that the number of clusters can be automatically
selected. Nevertheless, these existing methods focus on numerical
data only and cannot be directly applied to data sets with
categorical attributes. Recently, Liao and Ng [10] have introduced
an entropy penalty term into the objective function of k-modes
algorithm. Then, by choosing different values for the regulariza-
tion parameter, variant clustering results with different cluster
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numbers can be obtained. Subsequently, the cluster number
accompanying with the most stable clustering result is selected.
As the learning process needs to be repeated for a large range of
values of regulation parameter, the computation of this method is
much more expensive than the original k-modes algorithm.

3. Clustering problem and object-cluster similarity metric

The general task of clustering is to classify the given objects
into several clusters such that the similarities between objects in
the same group are high while the similarities between objects in
different groups are low [31,32]. Therefore, clustering a set of N

objects (also called inputs interchangeably), fx1,x2, . . . ,xNg, into k

different clusters, denoted as C1,C2, . . . ,Ck, can be formulated to
find the optimal Q n via the following objective function:

Q n
¼ arg max

Q
FðQ Þ ¼ arg max

Q

Xk

j ¼ 1

XN

i ¼ 1

qijsðxi,CjÞ

2
4

3
5, ð1Þ

where sðxi,CjÞ is the similarity between object xi and Cluster Cj,
and Q ¼ ðqijÞ is an N � k partition matrix satisfying

Xk

j ¼ 1

qij ¼ 1, and 0o
XN

i ¼ 1

qijoN, ð2Þ

with

qijA ½0,1�, i¼ 1,2, . . . ,N, j¼ 1,2, . . . ,k: ð3Þ

Evidently, the desired clusters can be obtained by Eq. (1) as long as
the metric of object-cluster similarity is determined. In the following
sub-sections, we shall therefore study the similarity metric.

3.1. Similarity metric for mixed data

This sub-section will study the object-cluster similarity metric
for mixed data. Suppose the mixed data xi with d different
attributes consists of dc categorical attributes and du numerical
attributes, i.e., dcþduþd. Hence, x_i can be denoted as ½xc

i
T ,xu

i
T �T

with xc
i ¼ ðx

c
i1,xc

i2, . . . ,xc
idc
Þ
T and xu

i ¼ ðx
u
i1,xu

i2, . . . ,xu
idu
Þ
T . Then, xu

ir

ðr¼ 1,2, . . . ,duÞ belongs to R and xc
ir ðr¼ 1,2, . . . ,dcÞ belongs to

domðArÞ, where fA1,A2, . . . ,Adc
g are the dc categorical attributes and

domðArÞ contains all the possible values that can be chosen by
attribute Ar. For categorical attributes, as the value domains are
finite and unordered, domðArÞ with mr elements can be repre-
sented with domðArÞ ¼ far1,ar2, . . . ,armr g.

Firstly, we focus on the difference between categorical attri-
butes and numerical attributes. For categorical attributes, each
attribute can usually represent an important feature of the given
object. Therefore, when we conduct classification or clustering
analysis, we often investigate the categorical attributes one by
one such as Decision Tree method. By contrast, the numerical
attributes are often treated as a vector and handled together in
clustering analysis. That is, we pay more attention to the total
effect of numerical attributes. Based on these observations, for the
mixed data xi, the numerical part xu

i can be treated as a whole but
the dc categorical attributes should be investigated individually.
Consequently, although the dimensionality of xi is d, the number
of features that contributes to clustering analysis will be dcþ1
(i.e., dc categorical features and 1 numerical vector). Let the
object-cluster similarity between xi and cluster Cj, denoted as
sðxi,CjÞ, be the average of the similarity calculated based on each
feature, we will then have

sðxi,CjÞ ¼
1

df
½sðxc

i1,CjÞþsðxc
i2,CjÞþ � � � þsðxc

idc
,CjÞþsðxu

i ,CjÞ�

¼
1

df

Xdc

r ¼ 1

sðxc
ir ,CjÞþ

1

df
sðxu

i ,CjÞ, ð4Þ

where df ¼ dcþ1. If we denote the similarity between xc
i and Cj as

sðxc
i ,CjÞ, we can get

sðxc
i ,CjÞ ¼

1

dc

Xdc

r ¼ 1

sðxc
ir ,CjÞ ¼

Xdc

r ¼ 1

1

dc
sðxc

ir ,CjÞ: ð5Þ

Then, Eq. (4) can be further rewritten as

sðxi,CjÞ ¼
dc

df

Xdc

r ¼ 1

1

dc
sðxc

ir ,CjÞþ
1

df
sðxu

i ,CjÞ ¼
dc

df
sðxc

i ,CjÞþ
1

df
sðxu

i ,CjÞ,

ð6Þ

where sðxc
i ,CjÞ is the similarity on categorical attributes and

sðxu
i ,CjÞ is the similarity on numerical attributes. Subsequently,

the object-cluster similarity metric can be obtained based on the
definitions of sðxc

i ,CjÞ and sðxu
i ,CjÞ.

3.1.1. Similarity metric for categorical attributes

In Eq. (5) we have assumed that each categorical attribute has
the same contribution to the calculation of similarity on catego-
rical part. But in practice, due to the different distributions of
attribute values, categorical attributes each often have unequal
importance for clustering analysis. In light of this characteristic,
Eq. (5) should be further modified with

sðxc
i ,CjÞ ¼

Xdc

r ¼ 1

wrsðxc
ir ,CjÞ, ð7Þ

where wr is the weight of categorical attribute Ar satisfying
0rwr r1 and

Pdc

r ¼ 1 wr ¼ 1. That is, the object-cluster similarity
for categorical part is the weighted summation of the similarity
between the cluster and each attribute value. The weight factor wr

describes the importance of each categorical attribute and is
utilized to control the contribution of attribute-cluster similarity
to object-cluster similarity.

Definition 1. The similarity between a categorical attribute value
xc

ir and Cluster Cj, iAf1,2, . . . ,Ng, rAf1,2, . . . ,dcg, jAf1,2, . . . ,kg, is
defined as

sðxc
ir ,CjÞ ¼

sAr ¼ xc
ir
ðCjÞ

sAr aNULLðCjÞ
, ð8Þ

where sAr ¼ xc
ir
ðCjÞ counts the number of objects (also called

instances hereinafter) in Cluster Cj that have the value xc
ir for

attribute Ar, NULL refers to the empty, and sAr aNULLðCjÞmeans the
number of objects in Cluster Cj that have the attribute Ar whose
value is not equal to NULL.

From Definition 1, we can find that this metric of attribute-
cluster similarity is defined from probabilistic viewpoint and has
the following properties:

(1) 0rsðxc
ir ,CjÞr1;

(2) sðxc
ir ,CjÞ ¼ 1 only if all the instances belonging to Cluster Cj have

the value xc
ir for attribute Ar, and sðxc

ir ,CjÞ ¼ 0 only if no instance
belonging to Cluster Cj has the value xc

ir for attribute Ar.

According to Eqs. (7) and (8), the object-cluster similarity for
categorical part can be therefore calculated by

sðxc
i ,CjÞ ¼

Xdc

r ¼ 1

wrsðxc
ir ,CjÞ ¼

Xdc

r ¼ 1

wr

sAr ¼ xc
ir
ðCjÞ

sAr aNULLðCjÞ
, ð9Þ

where iAf1,2, . . . ,Ng and jAf1,2, . . . ,kg.
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Remark 1. Since 0rsðxc
ir ,CjÞr1 and

Pdc

r ¼ 1
wr ¼ 1, we have

sðxc
i ,CjÞ ¼

Xdc

r ¼ 1

wrsðx
c
ir ,CjÞZ

Xdc

r ¼ 1

ðwr � 0Þ ¼ 0,

and

sðxc
i ,CjÞ ¼

Xdc

r ¼ 1

wrsðx
c
ir ,CjÞr

Xdc

r ¼ 1

ðwr � 1Þ ¼
Xdc

r ¼ 1

wr ¼ 1:

That is, for any iAf1,2, . . . ,Ng and jAf1,2, . . . ,kg, the value of
sðxc

i ,CjÞ will fall into the interval ½0,1�.

Next, we discuss how to estimate the importance of each
categorical attribute. From the view point of information theory,
the significance of an attribute can be regarded as the inhomo-
geneity degree of the data set with respect to this attribute.
Furthermore, according to the Measure III proposed in [33], if the
information content of an attribute is high, the inhomogeneity of
the data set is also high for this attribute. Hence, the importance
of an arbitrary attribute A can be quantified by the following
entropy metric:

HA ¼�

Z
pðxðAÞÞlog ðpðxðAÞÞÞ dxðAÞ, ð10Þ

where x(A) is the value of attribute A, and pðxðAÞÞ is the probability
density function of x(A) along this dimension. For categorical
attributes, since the possible attribute values are finite, discrete
and independent, the information content of an attribute can be
estimated by the average information content of all possible
attribute values and the probability of each attribute value can
be computed by counting its frequency in the whole data set.
Consequently, the importance of any categorical attribute Ar

ðrAf1,2, . . . ,dcgÞ can be calculated by

HAr
¼�

Xmr

t ¼ 1

pðartÞlog pðartÞ, ð11Þ

with

pðartÞ ¼
sAr ¼ art

ðXÞ

sAr aNULLðXÞ
, ð12Þ

where art AdomðArÞ, mr is the total number of values that can be
chosen by Ar and X is the whole data set. Furthermore, according
to Eq. (11), the more different values an attribute has, the higher
its significance is. However, in practice, an attribute with too
many different values may have little contribution to clustering.
For example, the ID number of instances is unique for each
instance, but this information is useless for clustering analysis.
Hence, Eq. (11) can be further modified with

HAr
¼�

1

mr

Xmr

t ¼ 1

pðartÞlog pðartÞ: ð13Þ

That is, the importance of an attribute is quantified by its average
entropy over each attribute value. The weight of each attribute is
then computed as

wr ¼
HArPdc

t ¼ 1 HAt

, r¼ 1,2, . . . ,dc: ð14Þ

Subsequently, the object-cluster similarity on categorical part can
be given by

sðxc
i ,CjÞ ¼

Xdc

r ¼ 1

HArPdc

t ¼ 1 HAt

�
sAr ¼ xc

ir
ðCjÞ

sAr aNULLðCjÞ

 !
: ð15Þ

In practice, for an attribute Ar, if all the instances to be classified
have the same value a, it can be obtained from Eqs. (12) and (13)
that the importance of this attribute will be zero as pðaÞ ¼ 1. Then,
the corresponding attribute weight will also be zero. This implies

that this attribute will have no contribution at all to the whole
clustering learning.

3.1.2. Similarity metric for numerical attributes

Since the distance between each vector xu
i can be numerically

calculated, the similarity metric for numerical attributes can be
defined based on the measure of distance.

Definition 2. The object-cluster similarity between numerical
vector xu

i and cluster Cj, iAf1,2, . . . ,Ng, jAf1,2, . . . ,kg, is given by

sðxu
i ,CjÞ ¼

expð�0:5Disðxu
i ,cjÞÞPk

t ¼ 1 expð�0:5Disðxu
i ,ctÞÞ

, ð16Þ

where cj is the center of all numerical vectors in cluster Cj and
Disð�Þ stands for a distance function. It can be seen that the values
of this similarity metric also fall into the interval [0, 1].

In practice, if the Mahalanobis distance metric is adopted, we
will have

Disðxu
i ,cjÞ ¼ ðx

u
i �cjÞ

TS�1
j ðx

u
i �cjÞ, ð17Þ

where Sj is the covariance matrix of numerical vectors in jth
cluster. Further, if we utilize the Euclidean distance, the similarity
metric can become

sðxu
i ,CjÞ ¼

expð�0:5Jxu
i �cjJ

2
ÞPk

t ¼ 1 expð�0:5Jxu
i �ctJ

2
Þ
: ð18Þ

Actually, it can be derived that this similarity metric is equivalent
to the posterior probability of xu

i belonging to cluster Cj provided
that the probability density function of each vector is a mixture of
standard normal distribution with equal mixture coefficients.

3.2. Object-cluster similarity metric

According to Eqs. (6), (15) and (16), the object-cluster similar-
ity metric for mixed data is defined as

sðxi,CjÞ ¼
dc

df
sðxc

i ,CjÞþ
1

df
sðxu

i ,CjÞ ¼
dc

df

Xdc

r ¼ 1

HArPdc

t ¼ 1 HAt

�
sAr ¼ xc

ir
ðCjÞ

sAr aNULLðCjÞ

 !

þ
1

df

expð�0:5Disðxu
i ,cjÞÞPk

t ¼ 1 expð�0:5Disðxu
i ,ctÞÞ

, ð19Þ

where i¼ 1,2, . . . ,N, j¼ 1,2, . . . ,k. It can be seen that the defined
similarities for categorical and numerical attributes in Eq. (19) are
in the same scale. That is, the values for sðxc

i ,CjÞ and sðxu
i ,CjÞ are

within the interval ½0,1�. Hence, unlike k-prototype method,
additional parameters to control the proportions of numerical
and categorical distances are not needed any more.

Specially, if the data to be classified contain categorical
attributes only, there does not exist the numerical vector xu

i of
each object xi. Then, we can get xi ¼ xc

i , dc ¼ d and df ¼ d. There-
fore, for purely categorical data, the object-cluster similarity is
calculated with

sðxi,CjÞ ¼
Xd

r ¼ 1

HArPd
t ¼ 1 HAt

�
sAr ¼ xir

ðCjÞ

sAr aNULLðCjÞ

 !
: ð20Þ

By contrast, when clustering analysis is conducted on purely
numerical data, with dc¼0 and df¼1, the defined object-cluster
similarity metric will degenerate to

sðxi,CjÞ ¼
expð�0:5Disðxi,cjÞÞPk

t ¼ 1 expð�0:5Disðxi,ctÞÞ
: ð21Þ
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4. Iterative clustering algorithm

In this section, we will present an iterative clustering algo-
rithm based on the proposed object-cluster similarity metric to
conduct clustering analysis.

This paper concentrates on hard partition only, i.e., qijAf0,1g,
although it can be easily extended to the soft partition in terms of
posterior probability. Under the circumstances, given a set of N

objects, the optimal Q n
¼ fqn

ijg in Eq. (1) can be given by

qn

ij ¼
1 if sðxi,CjÞZsðxi,CrÞ 81rrrk,

0 otherwise,

(
ð22Þ

where i¼ 1,2, . . . ,N and j¼ 1,2, . . . ,k. That is, each object xi will be
assigned to the cluster that has the largest object-cluster similarity
with it among the k clusters. Therefore, an iterative algorithm can
be conducted as Algorithm 1 to implement the clustering analysis.

Algorithm 1. Iterative clustering learning based on object-cluster
similarity metric (OCIL).

Input: data set X ¼ fx1,x2, . . . ,xNg, number of clusters k

Output: cluster label Y ¼ fy1,y2, . . . ,yNg

1. Calculate the importance of each categorical attribute
according to Eq. (11), if applicable
2. Set Y ¼ f0,0, . . . ,0g and select k initial objects, one for each
cluster

repeat Initialize noChange¼true.
for i¼1 to N do

3. yðnewÞ
i ¼ argmaxjA f1,...,kg½sðxi,CjÞ�

if yðnewÞ
i ayðoldÞ

i then

noChange¼ false

4. Update the information of clusters CyðnewÞ
i

and C
yðoldÞ

i

,

including the frequency of each categorical value and
the centroid of numerical vectors.

end if
end for

until noChange is true
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Fig. 1. Illustration of OCIL algorithm on synthetic data.

In step 3 of Algorithm 1 (also called OCIL algorithm herein-
after), the object-cluster similarity sðxi,CjÞ is calculated with Eqs.
(19), (20) or (21) for mixed, categorical, or numerical data,
respectively. Additionally, in order to update the cluster informa-
tion conveniently in step 4, two auxiliary matrices for each
cluster are maintained. One matrix is to record the frequency of
each categorical value occurring in this cluster, and the other
matrix stores the mean vector of the numerical parts of all
objects belonging to this cluster. Moreover, like the existing
clustering algorithms with similar framework, the positions of
initialized k seed points in step 2 will somewhat influence the
final clustering accuracy. In the literature, different initialization
methods for clustering performance improvement have been
presented, such as Refs. [34,35] for numerical data clustering
and Refs. [25,26] for categorical data clustering. However, to the
best of our knowledge, such initialization refinement for mixed
data clustering has not been studied yet. As the studies of this
issue have been beyond the scope of this paper, we shall therefore
utilize the random initialization method with multiple repetition
to get the statistic information for clustering performance
evaluation.

To illustrate the learning process of OCIL algorithm, we have
generated a set of three-dimensional mixed data for clustering
analysis as shown in Fig. 1(a). The different point patterns stand
for the two categorical values and the numerical values are
randomly distributed in the space of ½1,5� � ½1,3�. Specially, we
have selected two points which are very close to each other as the
seed points of the two clusters. After one learning epoch, i.e., a
scan of the whole data set, the obtained cluster membership by
OCIL has been visualized in Fig. 1(b). It can be seen that most data
points have been assigned to a reasonable cluster except four
points. Subsequently, during the second learning epoch, these
inaccurate points are reassigned and the final result is obtained.
Furthermore, in the clustering space, we have drawn the moving
trace for the center of all numerical vectors in each cluster as
shown in Fig. 1(d). These traces give us a visual description about
the change of members in the two clusters during the iterative
learning of OCIL algorithm.
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In practice, when Algorithm 1 is applied to purely numerical
data and Euclidean distance is utilized to calculate Disðxi,cjÞ,
according to the similarity metric defined by Eq. (21), we can get

sðxi,CjÞZsðxi,CrÞ3
expð�0:5Jxi�cjJ

2
ÞPk

t ¼ 1 expð�0:5Jxi�ctJ
2
Þ

Z
expð�0:5Jxi�crJ

2
ÞPk

t ¼ 1 expð�0:5Jxi�ctJ
2
Þ

3expð�0:5Jxi�cjJ
2
ÞZexpð�0:5Jxi�crJ

2
Þ

3Jxi�cjJ
2rJxi�crJ

2, ð23Þ

where ‘‘3’’ means ‘‘equivalent to’’. Then, the clustering criterion
formulated by Eq. (22) can be simplified as

qn

ij ¼
1 if Jxi�cjJ

2rJxi�crJ
2
81rrrk,

0 otherwise:

(
ð24Þ

That is, each object will be assigned to the cluster whose centroid
is closest to it. Under the circumstances, the proposed algorithm
is equivalent to the k-means method.

Next, we further give the time complexity analysis of OCIL
algorithm. It can be observed that the computation cost of step
1 is OðmNdcÞ. For each iteration, the cost of the ‘‘for’’ statement is
OðmNkdcþNkduÞ, where m is the average number of different
values that can be chosen by each categorical attribute. Therefore,
the total time cost of this algorithm is OðtðmNkdcþNkduÞÞ, where t

is the number of iterations. From the practical viewpoint, we
often have k5N, m5N and t5N. Subsequently, the time com-
plexity of this algorithm is O(dN). Hence, the proposed algorithm
is efficient for data clustering, particularly for a large data set.

5. Automatic selection of cluster number

Similar to the k-prototype [12] and k-modes [8,27] algorithms,
the OCIL algorithm proposed in Section 4 still suffers from a
selection problem of cluster number. That is, the cluster number k

should be preassigned exactly equal to the true one; otherwise,
OCIL will lead to an incorrect clustering result. To overcome this
problem, in the following, we further present a penalized compe-
titive clustering algorithm based on the object-cluster similarity
metric. The competition and penalization mechanisms in this
improved method will enable it to do automatic cluster number
selection by gradually eliminating the redundant clusters.

5.1. Competition mechanism

Suppose N objects come from kn unknown clusters. Initially,
we set k ðkZkn

Þ clusters fC1,C2, . . . ,Ckg, and assign one object as a
seed point to each cluster. According to the competitive learning
proposed in [36], given an input xi each time, the winner Cv

among the k clusters is determined by the dissimilarity between
xi and each cluster as well as the winning frequency of this cluster
in the past. In our proposed method, the newly defined object-
cluster similarity sðxi,CjÞ is utilized to estimate the similarity
between an object and a cluster. Since the value of sðxi,CjÞ falls
into the interval ½0,1�, we can evaluate the dissimilarity between
object xi and a cluster Cj with ð1�sðxi,CjÞÞ. Then, the clustering
task based on the object-cluster similarity metric formulated by
Eq. (1) can be rewritten as

Q n
¼ arg min

Q

Xk

j ¼ 1

XN

i ¼ 1

qijð1�sðxi,CjÞÞ

2
4

3
5: ð25Þ

Actually, Q n obtained from Eq. (25) is equal to that obtained from
Eq. (1), because we have

arg min
Q

Xk

j ¼ 1

XN

i ¼ 1

qijð1�sðxi,CjÞÞ

2
4

3
53arg min

Q

Xk

j ¼ 1

XN

i ¼ 1

ðqij�qijsðxi,CjÞÞ

2
4

3
5

3arg min
Q

Xk

j ¼ 1

XN

i ¼ 1

qij�
Xk

j ¼ 1

XN

i ¼ 1

qijsðxi,CjÞ

2
4

3
5

3arg min
Q

N�
Xk

j ¼ 1

XN

i ¼ 1

qijsðxi,CjÞ

2
4

3
5

3arg max
Q

Xk

j ¼ 1

XN

i ¼ 1

qijsðxi,CjÞ

2
4

3
5: ð26Þ

Subsequently, analogous to [36], given an object xi each time,
the winner Cv among the k clusters is determined by

v¼ arg min
1r jrk

½gjð1�sðxi,CjÞÞ�, ð27Þ

with the relative winning frequency gj of Cj defined as

gj ¼
njPk

t ¼ 1 nt

, ð28Þ

where nj is the winning times of Cj in the past. That is, the winning
chance of a cluster is controlled by the object-cluster similarity as
well as its winning frequency in the past competitions. Here,
reducing the winning rate of frequent winners is to solve the
dead-unit problem encountered by competitive learning [36].
After selecting out the winning cluster Cv, we assign xi to it and
update the statistic information of Cv, which includes the center
of numerical part cv and the frequency of each categorical value
accompanying with xi in Cv. Meanwhile, the winning times of Cv

is adjusted by

nðnewÞ
v ¼ nðoldÞ

v þ1: ð29Þ

Therefore, a competitive learning version of the OCIL algorithm
can be summarized as Algorithm 2.

Algorithm 2. Competitive learning based on object-cluster simi-
larity metric (CL-OC).

Input: data set X, number of clusters k

Output: cluster label Y ¼ fy1,y2, . . . ,yNg

1. Select k initial objects, one for each cluster, and set

Y ¼ f0,0, . . . ,0g, nj¼1 for j¼ 1,2, . . . ,k.
repeat

Initialize noChange¼true.
for i¼1 to N do

2. v¼ arg min1r jrk½gjð1�sðxi,CjÞÞ�

3. Let yðnewÞ
i ¼ v, nðnewÞ

v ¼ nðoldÞ
v þ1, and update the statistic

information of Cv based on xi.

if yðnewÞ
i ayðoldÞ

i then

noChange¼ false

end if
end for

until noChange is true

5.2. Penalization mechanism

It has been demonstrated in [9,11] that the penalization
mechanism can enable the clustering algorithm to select the
cluster number automatically during the learning process by
gradually fading out the redundant clusters. Hence, in this paper,
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we also utilize this mechanism to solve the selection problem of
cluster number.

The basic idea of the penalization mechanism is that, for each
input xi, not only the winning cluster is updated based on xi, but
also the rival nearest to the winner (i.e., the runner-up) is
penalized according to a specific criterion. Generally, in this kind
of method, the cluster number k is initialized not less than the
true one (i.e., kZkn) and the main task is to fade out the
redundant clusters. Therefore, in our approach, a weight is
assigned to each cluster. This weight is utilized to measure the
importance of each cluster to the whole cluster structure. Speci-
fically, all clusters with an equal weight means that each of them
has the same contribution to the cluster structure. In case a
cluster has a very low weight, then the number of objects
assigned to it will decrease and finally this cluster will be
eliminated. Subsequently, similar to Eq. (27), given an object xi

each time, the winner Cv among k clusters satisfies

v¼ arg min
1r jrk

½gjð1�ljsðxi,CjÞÞ�, ð30Þ

and its nearest rival Cr is determined by

r¼ arg min
jav
½gjð1�ljsðxi,CjÞÞ�, ð31Þ

where lj is the weight of cluster Cj and the similarity between xi

and Cj is further regulated by it.
After selecting out the winning cluster and its nearest rival, on

the one hand, we assign xi to the winner Cv and update the
statistic information of this cluster as well as its winning times.
On the other hand, we further reward the winner by increasing its
weight according to

lðnewÞ
v ¼ lðoldÞ

v þZ, ð32Þ

and meanwhile penalize the nearest rival Cr by decreasing its
weight with

lðnewÞ
r ¼maxð0,lðoldÞ

r �Zsðxi,CrÞÞ, ð33Þ

where Z is a small learning rate and the ‘‘maxð Þ’’ function is to
make sure that all the cluster weights are nonnegative. From
Eq. (33), we can see that the rival-penalized strength increases

with the similarity between xi and the rival. Consequently, the
main steps of the penalized competitive leaning based on the
object-cluster similarity can be summarized as Algorithm 3.

Algorithm 3. Penalized competitive learning based on object-
cluster similarity metric (PCL-OC).

Input: data set X, learning rate Z and a initial value of k (kZkn)
Output: cluster label Y ¼ fy1,y2, . . . ,yNg and cluster number kn

1. Select k initial objects, one for each cluster, and set

Y ¼ f0,0, . . . ,0g, nj¼1 and lj ¼ 1 for j¼ 1,2, . . . ,k.

repeat
Initialize noChange¼true.
for i¼1 to N do

2. Determine v and r according to Eqs. (30) and (31),
respectively.

3. Let yðnewÞ
i ¼ v, nðnewÞ

v ¼ nðoldÞ
v þ1, and update the statistic

information of Cv based on xi.

4. Update lv and lr using Eqs. (32) and (33), respectively.

if yðnewÞ
i ayðoldÞ

i then

noChange¼ false

end if
end for

until noChange is true

After the clustering learning using Algorithm 3 (also called PCL-

OC algorithm hereinafter), if there exists a cluster to which no
objects belong, it will be regarded as a redundant one and simply
neglected. In Fig. 2, we have visualized the learning process of PCL-
OC algorithm with the same synthetic data set that was utilized in
Section 4. Initially, the cluster number was set at three and an
equal weight 1.0 was assigned to each cluster. Since this data set is
very simple, the optional value range of learning rate Z is relatively
large. In our illustration, we have set Z¼ 0:01 to get a fast
convergence speed. After one learning epoch, we can find that
the weight of the second cluster has decreased because it has
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Fig. 2. Illustration of PCL-OC algorithm on synthetic data.
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suffered the most penalization and gained the least cluster mem-
bers. This penalization has been transmitted and strengthened
during the following iterations and after the fourth epoch, no data
points were assigned to the second cluster due to its low weight. If
the iteration continues, one more epoch later we can get l2 ¼ 0,
which indicates that this cluster has been totally eliminated from
the hypothetic cluster model.

6. Experiments

This section investigates the effectiveness of the proposed
approaches for data clustering. We applied them to various data
sets obtained from UCI Machine Learning Data Repository (URL:
http://archive.ics.uci.edu/ml/) and compared their performance
with the existing counterparts. In the experiments, the clustering
accuracy [37] was estimated by

ACC¼

PN
i ¼ 1 dðci,mapðliÞÞ

N
,

where N is the number of instances in the data set, ci stands for
the provided label, mapðliÞ is a mapping function which maps the
obtained cluster label li to the equivalent label from the data
corpus, and the delta function dðci,mapðliÞÞ ¼ 1 only if ci ¼mapðliÞ,
otherwise 0. Correspondingly, the clustering error rate is com-
puted as e¼ 1�ACC. The algorithms were coded with MATLAB
and all the experiments were implemented by a desktop PC
computer with Intel(R) Core(TM)2 Quad CPU, 2.40 GHz main
frequency, and 4 GB DDR2 667 RAM.

6.1. Performance evaluation of OCIL algorithm

In this part, we experimentally investigated the performance
of proposed OCIL algorithm. For comparative studies, the results
of OCIL algorithm have been compared with k-means [4],
k-prototype [12], and k-modes [8,27] algorithms because of two
reasons: on the one hand, these algorithms all have the same time
complexity: i.e., O(dN). On the other hand, they have similar
framework and procedure so that the effectiveness of the pro-
posed similarity metric can be well evaluated. Please note that the
OCIL algorithm is equivalent to the k-means algorithm as shown
in Section 4 if the data have the numerical attributes only. Under
the circumstances, the effectiveness of OCIL algorithm on numer-
ical data set therefore becomes transparent and will not be
investigated any more. In the following sub-sections, we shall
focus on investigating the clustering performance of OCIL on
mixed and categorical data sets, respectively.

6.1.1. Experiments on mixed data sets

Firstly, we investigated the performance of OCIL algorithm on
mixed data. The information of the selected data sets is shown in
Table 1. The performance of OCIL method on mixed data has been
compared with k-prototype algorithm and k-means algorithm.
Each algorithm has been executed 100 times on each data set and
the clustering results are statistically summarized in Table 2. In
k-prototype method, the distance regulation parameter g was set
at 0:5s, where s is the average standard deviation of numerical
attributes. As for k-means, we utilized the single number repre-
sentation method to covert categorical attributes into numerical
ones. That is, each categorical value was represented by an
arbitrarily chosen integer. Additionally, Euclidean distance metric
was adopted to estimate the distances between numerical vectors
in each method.

From Table 2, it can be observed that, with random initializa-
tions, the proposed parameter-free algorithm OCIL outperforms
the k-prototype and k-means methods in terms of clustering

accuracy. Further, as shown in Table 1, the ratios of categorical
attributes to numerical attributes in the utilized data sets are
different from each other, especially the Dermatology data, which
has only one numerical feature but 33 categorical ones. Never-
theless, the OCIL has achieved a satisfactory clustering result. This
indicates that the proposed object-cluster similarity metric is
applicable to data in variant compound styles without using any
parameter to adjust between categorical and numerical attri-
butes. Additionally, for the last three data sets (i.e., German,
Adult, and Dermatology) which have very uneven class distribu-
tions, the OCIL algorithm can give much improved accuracies
compared to the other two methods. This result shows that, in
comparison with numerically representing the distance between
categorical values, the presented similarity metric in this paper is
a more reasonable measurement for cluster analysis on mixed
data and can well reveal the inherent cluster membership for
either heterogeneous or homogeneous clusters. Moreover, com-
paring the average running time of OCIL and k-prototype

Table 1
Statistics of the mixed data sets.

Data set Instance Attribute (dcþdu) Class Class probabilities

Statlog heart 270 7þ6 2 55.56% 44.44%

Heart disease 303 7þ6 2 54.13% 45.87%

Credit approval 653 9þ6 2 54.67% 45.33%

German credit 1000 13þ7 2 70.0% 30.0%

Adult 30,162 8þ6 2 75.11% 24.89%

Dermatology 366 33þ1 6 30.6% 16.67% 19.67%

13.39% 14.21% 5.46%

Table 2
Clustering errors of OCIL on mixed data sets in comparison with k-prototype and

k-means.

Data set k-Means k-Prototype OCIL

Statlog 0.404770.0071 0.230670.0821 0.176170.0059
Heart 0.422470.0131 0.228070.0903 0.168770.0033
Credit 0.448770.0016 0.261970.0976 0.243770.0866

German 0.329070.0014 0.328970.0006 0.305770.0009

Adult 0.386970.0067 0.385570.0143 0.249070.0001
Dermatology 0.700670.0216 0.690370.0255 0.302670.0973

Table 3
Comparison of the average convergence time between k-prototype and OCIL.

Data set k-Prototype (s) OCIL (s)

Statlog 0.0519 0.0498
Heart 0.0639 0.0491
Credit 0.1323 0.1282
German 0.2999 0.3342

Adult 15.2795 3.5447
Dermatology 0.3674 0.1811

Table 4
Statistics of the categorical data sets.

Data set Instance Attribute Class Class probabilities

Soybean 47 35 4 21.28% 21.28% 21.28% 36.16%

Breast 699 9 2 65.52% 34.48%

Vote 435 16 2 61.38% 38.62%

Zoo 101 16 7 40.59% 19.8% 4.95% 12.87% 3.97%

7.92% 9.9%
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algorithms listed in Table 3, we can find that the total running
time of OCIL is no more than the one of k-prototype although OCIL
needs additional time to calculate the weight of each categorical
attribute. That is because OCIL converges faster than k-prototype
in most cases.

6.1.2. Experiments on categorical data sets

Next, we further investigated the performance of OCIL algo-
rithm on purely categorical data. The information of utilized four
different benchmark data sets has been summarized in Table 4. To
conduct comparison study, we have also implemented the other
two existing categorical data clustering algorithms: original
k-modes (H’s k-modes) [8] and k-modes with Ng’s dissimilarity
metric (N’s k-modes) [27].

In the experiment, each algorithm was conducted with ran-
dom initializations. Table 5 lists the average value and standard
deviation in error obtained by OCIL and the other two algorithms,
respectively. It can be seen that, for categorical data learning, the
proposed clustering method has competitive advantage in terms
of clustering accuracy and robustness compared with the other
two methods. This superiority of OCIL method mainly owes to
two merits of the object-cluster similarity metric. The first one is
that, in the proposed metric, the similarity between given
categorical attribute value and a cluster depends on the distribu-
tion of this value within the cluster, but not the numerical
distance between this value and the corresponding attribute
value of the cluster mode. In N’s k-modes, when calculating the
distance between an object and a cluster mode, the frequencies of
attribute values within the cluster are considered if the object and
cluster mode have the same values. Hence, the performance of N’s
k-modes is better than H’s k-modes on all the data sets we have
tried so far. However, when the object and cluster mode have
different attribute values, N’s k-modes also simply assumes the
distance is 1. The other merit is that we do not utilize mode to
represent each cluster but calculate the similarity based on the
cluster’s statistic information in this new metric. In k-modes
algorithms, a cluster mode is represented by the most frequent
attribute values within the cluster. That is, only one value is
selected as the representation for each attribute even though
there may be some value with proximate frequency. Hence, the
information of a cluster actually cannot be completely presented
by the defined mode for categorical data.

Additionally, we further evaluated the convergence speed of
the proposed method on categorical data clustering. Table 6 lists
the average convergence time over 100 runs cost by each method.

It can be observed that the convergence time of the proposed
method is much faster than the k-modes with the improvement
of 60% on average in all cases we have tried so far. Based on the
analysis of experimental results, the significant advantage of
running time with OCIL algorithm on categorical data can be
owed to the following two aspects: on the one hand, the
convergence speed of OCIL is faster than k-modes as the number
of learning epoches needed by OCIL is smaller than that needed
by k-modes on average; on the other hand, the computational
cost of OCIL in each learning epoch is less than the k-modes
because k-modes needs to update the cluster modes in each
learning step while the OCIL need not.

6.2. Performance evaluation of PCL-OC algorithm

To investigate the effectiveness of the proposed penalized
competitive learning method, we have applied it to different real
data sets, including purely categorical data and mixed data.
Moreover, to the best of our knowledge, clustering algorithm
with automatic cluster number selection for mixed data has not
been studied yet in the literature. Therefore, in our experiments,
we only take the k-prototype algorithm as an example to
comparatively show the outstanding performance of PCL-OC that
is capable of determining the number of clusters automatically.

As a rule of thumb, the learning rate Z in the penalization
mechanism can be set as rðk=NÞ, where r is a small coefficient
and N is the number of objects in the given data set. That is, the
optimal learning rate increases with the initial cluster number k

but decreases with N. The value of r also has small variation for
different size of data set. Generally, a too small value of r will lead
to an insufficient penalization process and the redundant clusters
cannot be completely driven out from the input space. Conver-
sely, a too large value of r will cause an excessive penalization,
whereby the initial clusters will be over-eliminated. By the rule of
thumb, it is appropriate to set the value of r between 0.001 and
0.003 for Soybean data that contains 47 instances only. For other
data sets with hundreds of instances, r can be set between 0.003
and 0.006. In the following two experiments, the value of r is set
at 0.001 and 0.005, respectively.

In the first experiment, we took the Vote data set for instance to
show PCL-OC algorithm’s ability of automatical cluster number
selection on real data set. To show the details of learning process,
we utilized ajðtÞ to record the proportion of objects among the whole
data set that has been assigned to the jth cluster during the tth

Table 5
Comparison of the clustering errors obtained by three different methods on

categorical data sets.

Data set H’s k-modes N’s k-modes OCIL

Soybean 0.169170.1521 0.096470.1404 0.101770.1380
Breast 0.165570.1528 0.135670.0016 0.093470.0009
Vote 0.138770.0066 0.134570.0031 0.121370.0010
Zoo 0.287370.1083 0.273070.0818 0.268170.0906

Table 6
Comparison of the average convergence time between k-modes and OCIL.

Data set H’s k-modes (s) N’s k-modes (s) OCIL (s)

Soybean 0.0176 0.0189 0.0058
Breast 0.1044 0.1515 0.0540
Vote 0.0733 0.0862 0.0354
Zoo 0.0418 0.0514 0.0098
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Fig. 3. Learning curves of ajs obtained by PCL-OC on Vote data with k¼5.
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learning epoch. Initially, five clusters were generated and the seed
points were randomly selected in the input space. The learning curves
of ajs over the epoches obtained by the PCL-OC algorithm are shown
in Fig. 3. It can be seen that the values of three ajs have converged to
around zero after about 150 learning epoches. It means that these
three redundant clusters have been eliminated from the whole
clustering structure because few objects will be assigned to them.
Meanwhile, the obtained values of the other two ajs are 0.6069 and
0.3862, which are approximate to the proportions of the two true
clusters in the data set. Hence, the PCL-OC algorithm has successfully
identified the true cluster number during the learning process.

In the second experiment, we investigated the performance of
PCL-OC on different data sets with variant settings of k. In total,
four data sets were utilized: two mixed data sets with numerical
and categorical attributes and two with purely categorical attri-
butes. These data sets have different cluster numbers and class
distributions. For each data set, the PCL-OC has been executed 50
times and the learning results are summarized in Table 7. It can be
seen that the PCL-OC algorithm can give a good estimation of the
cluster number in each setting of k. For comparison, we have also
implemented k-prototype algorithm [12] under the same environ-
ment as PCL-OC. Evidently, the k-prototype algorithm needs to pre-
assign the number of clusters exactly without the capability of
selecting the cluster number automatically. As a result, the
clustering accuracy of the k-prototype is seriously degraded when
the number k of clusters is not selected appropriately in advance.

7. Conclusion

In this paper, we have proposed a general clustering framework
based on object-cluster similarity, through which a unified similarity
metric for both categorical and numerical attributes has been
presented. Under this new metric, the object-cluster similarity for
categorical and numerical attributes are with the same scale, which
is beneficial to clustering analysis on various data types. Subse-
quently, an iterative algorithm has been introduced to implement
the data clustering. The advantages of the proposed method have
been experimentally demonstrated in comparison with the existing
counterparts. Additionally, to overcome the cluster number selec-
tion problem, a penalized competitive learning algorithm has been
presented within the proposed clustering framework. The competi-
tion and penalization mechanisms embedded in this method are
capable of selecting number of clusters automatically by gradually
fading out the redundant clusters during the clustering process.
Experiments on different benchmark data sets have shown the
effectiveness and efficiency of the proposed approach.
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