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SIR-HCL: Semantic-Inconsistency Reasoning and
Hybrid Contrastive Learning for Efficient
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Abstract—Cross-emotion anomaly detection is an emerging
and challenging research topic in cognitive analysis field, which
aims at identifying the abnormal emotion pair whose semantic
patterns are inconsistent across different emotional modali-
ties. To the best of our knowledge, this topic has yet to be
well studied, which could potentially benefit lots of valuable
cognitive applications such as autistic children diagnosis and
criminal deception detection. To this end, this article proposes an
efficient cross-emotion anomaly detection approach via semantic-
inconsistency reasoning and hybrid contrastive learning (SIR-
HCL), which is the first attempt to detect the anomalous
emotional pairs across the audio–visual emotions. First, the pro-
posed framework utilizes dual-branch network to obtain the deep
emotional features in each modality, and then employs the shared
residual block to derive the semantically compatible features.
Subsequently, an efficient hybrid contrastive learning approach is
designed to enlarge the semantic-inconsistency among abnormal
emotional pair with different affective classes, while enhancing
the semantic-consistency and increasing the feature correlation
between normal emotional pair from the same affective class.
At the same time, an efficient bidirectional learning scheme
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is employed to significantly improve the data utilization and
a two-component Beta Mixture Model is adaptively utilized
to reason the anomalous emotion pairs. Extensive experiments
evaluated on two benchmark datasets show that the proposed
SIR-HCL method can well detect the anomalous emotional
pairs across audio-visual emotional data, and brings substantial
improvements over the state-of-the-art competing methods.

Index Terms—Audio–visual emotion, beta mixture model,
cross-emotion anomaly detection, hybrid contrastive learning,
semantic-inconsistency reasoning.

I. INTRODUCTION

EMOTION recognition is one of the most attractive inter-
disciplinary research topics in artificial intelligence [1],

which has drawn much attention recently and led to the ad-
vancement of a wide range of applications, such as sentiment
analysis, psychological evaluation, the assessment of fatigue
and depression. Many cognitive studies lend sufficient credence
to the hypothesis that the perception of human emotion plays
a vital role in their everyday lives. To be specific, anomaly
detection in emotional data refers to identifying the human’s ab-
normal emotional patterns that are significantly different from
other numerous normal emotional patterns, which is an im-
portant sentiment analysis technique due to the fact that the
anomalous emotions often provide significant and critical in-
formation to the evaluation of psychological counseling, autism
diagnosis, and healthcare treatments [2]. For instance, many
studies in cognitive science have shown that anomaly detection
in facial emotions is of crucial importance to the evaluation
of depression, while anomalous pattern identification in voice-
conversation plays an important role in diagnosing and screen-
ing autistic children.

In the literature, most existing abnormal emotion detection
methods predominately focus on examining the emotional data
from a single source, e.g., facial data, voice data, or social
media data [3]. In recent years, there has been a growing in-
terest in the research of multimodal emotion analysis, due to
its potential in providing rich information and robustness to
sensor noise [4]. Under such circumstances, anomaly detection
from multimodal emotional data is highly desirable in many
applications such as disease monitoring and abnormal behav-
ior analysis. For instance, anomaly detection in multimodal
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conversation data focuses on identifying abnormal sentiment
patterns and their temporal dynamics [5], which can be well
utilized to perform psychological evaluation on the speaker.
Moreover, the analysis of multi-modal emotional data collected
by innovative imaging sensors and user interactions can provide
automatic remote monitoring of Parkinson’s patients, aiding in
early health-related event detection. Besides, recent cognitive
studies have shown substantial evidence that autistic children
struggle with cross-modal integration during expressive tasks
[6]. Nevertheless, the subtle movements in facial dynamics may
not be easily captured by manual visual inspection alone. As
such, traditional unimodal abnormal emotion detectors cannot
discover multimodal emotional anomalies.

In fact, it is found that some of the multimodal emotions are
often not anomalous when they are viewed separately in each
individual modality, but which contain inconsistent responses
when multiple modalities are jointly considered. Audio–visual
emotion may probably be the most natural multi-modal ex-
pression to achieve emotion analysis, favored for its unique
advantages including ease of use and is less invasive to humans
[7], [8]. In the literature, most recent audio–visual emotion anal-
ysis methods primarily concentrate on fusing the heterogeneous
features extracted from facial and vocal modalities, with limited
exploration of semantic inconsistencies across different emo-
tional modalities. Although recent multiview anomaly detection
algorithms have been designed to detect the anomalous samples
that have abnormal behaviors in each view or have inconsistent
behaviors across different views, they are not directly appli-
cable to dynamic and heterogeneous audio–visual emotional
data. Besides, there has been little discussion about semantic-
inconsistency analysis across different emotional modalities.

In this article, we focus on a relatively new topic in the
abnormal emotion detection field, i.e., cross-emotion anomaly
detection, particularly for audio–visual emotional data. It aims
at identifying the abnormal emotional data pair whose affec-
tive patterns are inconsistent across different emotional modal-
ities, which may benefit lots of valuable cognitive applications
such as psychological disease diagnosis and abnormal behavior
monitoring. For instance, suspects may attempt to hide their
emotions in criminal or judicial cases, whose emotions might
have incongruity between facial microexpression and speech
emotion. Under such circumstances, abnormal emotion detec-
tion across different emotional modalities is beneficial to assist
potential deception detection. Besides, recent cognitive studies
have shown substantial evidence that autistic children often pro-
duce emotional sentences with weak cross-modal consistency
across speech and facial expressions [6]. As shown in Fig. 1,
the emotions conveyed through their facial expressions could be
positive, while the relevant emotions surveyed by their speeches
are negative. Evidently, developing a computational approach
to detecting the cross-modal emotional inconsistency, if any,
is capable of providing a new promising way for the early
screening of autistic children.

To the best of our knowledge, cross-emotion anomaly
detection across audio-visual modalities has yet to be well
studied and there are still three main challenges. 1) Weak
emotional representation: the multimodal emotions acquired

Fig. 1. Illustration of the difference between multimodal emotion analysis
and cross-emotion anomaly detection.

from different modalities may cover different dynamic
representations, and it is generally difficult to extract the
most relevant, comprehensive and discriminative expression
from each modality [9]. 2) Modality heterogeneity: audio
and visual emotions are captured by different sensors, and
there exists a huge modality gap between audio and visual
emotion representations. 3) Complex semantic correlation:
most existing audio–visual emotion analysis methods often
fuse the information from various modalities to learn a richer
multimodal representation, which inherently ignores the
semantic relevance and difference between different emotional
modalities. Therefore, it is still a nontrivial task to perform
efficient cross-emotion anomaly detection from a practical
viewpoint.

In this article, we propose an efficient cross-emotion anomaly
detection framework via semantic-inconsistency reasoning and
hybrid contrastive learning (SIR-HCL), which is the first at-
tempt to detect the anomalous emotions across the audio–visual
data. The proposed framework can well reason the semantic-
inconsistency among the high-level audio–visual representa-
tions of all semantically irrelevant emotions, while enhancing
the semantic-consistency between the semantically relevant
ones. The main contributions are summarized as follows.

1) A novel cross-emotion anomaly detection framework is
explicitly designed to identify the abnormal emotions
across audio–visual data. To the best of our knowledge,
this work is the first attempt to detect the anomalous
audio–visual emotions which do not behave consistently
across different modalities.

2) An efficient hybrid contrastive learning method is pre-
sented to simultaneously preserve intra-/cross-modal in-
teractions and hard-sample relationships, which can well
learn the discriminative cross-emotion embeddings by
contrastive learning in a hybrid manner.

3) The bidirectional learning scheme is developed to sig-
nificantly improve the data utilization, while a two-
component Beta Mixture Model is well designed to
reason about semantic-inconsistency and the semantic-
consistency across different emotional modalities.

4) Extensive experiments verify the superiorities of the pro-
posed framework and show its competitive abnormal
emotion detection performances.
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The remainder part of this article is structured as follows:
Section II provides a brief overview of related works. In Sec-
tion III, we elaborate the architecture and implementation de-
tails of the proposed framework, and Section IV presents the
experimental results and extensive comparisons. Finally, we
draw a conclusion in Section V.

II. RELATED WORKS

Cross-emotion anomaly detection across audio–visual data
is a relatively new research topic in cognitive science, and this
section mainly surveys the most relevant abnormal emotion
detection or multimodal anomaly detection works.

A. Abnormal Emotion Detection

Abnormal emotion detection primarily refers to identify the
abnormal sentiments, opinions, or attitudes from numerous
normal patterns. Often, the abnormal emotion may be hidden
in a facial expression, voice conversation, or a paragraph of
text to reflect sudden changes in sentiment. Along this line,
Germine et al. [10] employed the functional magnetic resonance
imaging to investigate abnormal neural activity in emotional
face processing, while Clavel et al. [11] developed a fear-type
emotion recognition system to detect abnormal situations for
surveillance applications. Later, Sun et al. [5] utilized a hybrid
model that combines the convolutional neural network, long
short-term memory network and Markov chain Monte Carlo
(MCMC) methods to identify conversation anomaly.

The detection of abnormal emotions using physiological
signals also brings significant benefits to the field of digital
healthcare and human–computer interaction. Along this way,
Gannouni et al. [12] utilize dthe electrocardiogram signals to
detect abnormal emotions and therefore bring significant ben-
efits to the field of digital healthcare. Later, Zhu et al. [13]
utilized a low-cost wearable sensor to collect electrocardio-
gram signals and present an unsupervised abnormal emotion
detection method. Note that, these methods mainly focus on
detecting the unusual samples from a single emotional data.
With the popularity of different sensors, multimodal emotion
learning has gained increasing attention due to the availability
of diverse information sources [14]. For instance, Alvarez et al.
[15] gathered emotional signals from multiple sources to detect
abnormal behaviors, offering critical insights for early health-
related event prevention. Nevertheless, this approach focuses on
identifying anomalies when emotional signals from one modal-
ity are missing or corrupted, which essentially neglects the
affective relationships between different emotional modalities
and therefore cannot identify the potential semantic inconsis-
tencies across different emotional modalities.

B. Multimodal Anomaly Detection

Multimodal data analysis mainly aggregates both indepen-
dent and complementary information to provide comprehen-
sive representations, and such a technique has drawn much
interest in multimodal emotion analysis [16], [17]. For in-
stance, Chen et al. [17] proposed a hybrid fusion based on

information relevance (HFIR) for multimodal sentiment anal-
ysis, which unifies two separate multimodal networks to mine
the complementary and correlated information among different
modalities. Notably, this approach fuses the features of dif-
ferent emotions to perform sentiment analysis, is incapable of
discovering the inherent anomalous behaviors across different
emotional modalities. Specifically, multimodal abnormal emo-
tion detectors mainly aim to identify the possible anomalies
from completely heterogeneous emotional modalities, such as
visual, audio, and text data. Along this line, Dawel et al. [18]
utilized the meta-analyses to detect the evidence of pervasive
impairments across facial and vocal modalities, with significant
deficits evident for several emotions (i.e., not only fear and
sadness) in both adults and children/adolescents. Note that, this
approach just employs a low-level fusion method to detect the
significant impairments between the facial and vocal expres-
sions, which cannot reveal fine-grained abnormal expressions
in the captured multimodal emotions. In recent years, multi-
modal deep-learning based anomaly detection algorithms have
become increasingly popular, and some works have attempted
to cast the anomaly detection problem as a one-class classifica-
tion problem or as the detection of out-of-distribution samples.
Along this way, Jiang et al. [19] utilize the deep networks to
interact visual and auditory signals, and jointly create a sense of
emotional atmosphere within the scene. Accordingly, they fur-
ther build an audio–visual modality fusion model to recognize
the abnormal emotion. It is noted that such a method mainly
fuses multiple information to capture the abnormal information,
which neglects the semantic relationship and interactions be-
tween different emotional modalities. Therefore, this approach
is explicitly incapable of discovering the abnormal multimodal
emotions that have inconsistent behaviors across different emo-
tional modalities.

Recently, Li et al. [20] have innovated the concept of cross-
modal anomaly detection (CMAD), which aims to identify the
inconsistent patterns or behaviors of instances across differ-
ent modalities. Specifically, this approach first trains multi-
modal deep neural networks to extract features from different
modalities, and then utilizes a predefined threshold to detect
the potential cross-modal anomalies. Note that, this method is
tailored to detect multimodal data with substantial semantic in-
consistencies, which is incapable of identifying dynamic cross-
modal anomalies, including inconsistent behaviors across facial
expressions or acoustic patterns. Therefore, there is still a lack
of efficient models to achieve cross-emotion anomaly detection
from a practical viewpoint.

III. METHODOLOGY

Cross-emotion anomaly detection is a relatively new topic in
multimodal emotion analysis field. Without loss of generality,
the proposed framework mainly focuses on abnormal emotion
detection across audio–visual data pairs, and this section first
clarifies the relevant notation and formal definition of cross-
emotion anomaly detection. Then, the proposed network archi-
tecture, hybrid contrastive learning, and semantic-inconsistency
mining scheme are introduced in tandem. Finally, the reasoning
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Fig. 2. Schematic architecture of the proposed cross-emotion anomaly detection framework.

of anomalous emotional data pair and its optimization process
are explicitly provided.

A. Notation and Problem Formulation

Suppose that we have an emotional multimodal dataset that
consists of visual emotional data Xv= {xv

i }
N
i=1 and audio emo-

tional data Xa= {xa
i }

N
i=1, where xv

i ∈ R
l×dv and xa

i ∈ R
l×da ,

N represent the total data number within these two modalities,
l is the emotional sequence length, da and dv are respectively
the raw embedding dimension of visual and audio modalities.
Given an emotional data pair {xv

i ,x
a
i }, the primary task of

cross-emotion anomaly detection is to determine whether the
emotional data pair xv

i and xa
i have inconsistent emotional

behavior or not.
Note that, the training of a single-modal classifier on visual

data or audio data is able to predict the affective labels of indi-
vidual emotion instance, and these predicted affective labels can
be intuitively utilized to evaluate the semantic-inconsistency
between emotional data pairs. It is noteworthy that such a train-
ing approach inherently necessitates the explicit definition and
prior prediction of affective labels for each emotion instance.
However, if the emotional instances are inaccurately classi-
fied into incorrect categories, this baseline model will make
a wrong prediction and fail to detect semantic-inconsistency
across different emotional modalities. To tackle this problem, as
shown in Fig. 2, we present an efficient cross-emotion anomaly
detection framework via semantic-inconsistency reasoning and
hybrid contrastive learning (SIR-HCL). Specifically, we formu-
late the cross-emotion anomaly detection as a binary classifi-
cation problem, and utilize the semantic-consistency labels of
emotional data pairs to measure the detection results, thereby
bypassing the prediction of affective categories for each single

emotion instances. To the best of our knowledge, the proposed
SIR-HCL framework is the first attempt to detect cross-modal
emotional anomalies within heterogeneous emotional expres-
sions.

B. Dual-Branch Network Architecture

The proposed SIR-HCL model aims to identify semantic-
inconsistency among high-level representations of irrelevant
expressions while enhancing semantic-consistency within rele-
vant ones. Recent advances in multimodal deep neural networks
have enabled effective learning of compatible features across
modalities [21]. Specifically, we first utilize a dual-branch net-
work architecture to obtain the deep emotional feature represen-
tations in each modality, and then employ the shared residual
block to derive the semantically compatible features across
heterogeneous emotions.

Feature Encoding Subnetworks: The inputs to the visual
subnetwork and audio subnetwork are respectively the facial
image sequence and acoustic frames in an emotional utterance.
Specifically, the visual subnetworkFv (·) and audio subnetwork
Fa (·) are both implemented using a single-directional long
short-term memory (LSTM), and the end-state hidden repre-
sentations followed by a fully connected layer are selected as
the outputs. To produce an efficient visual emotion embedding
that has the same size as the acoustic emotion embedding,
we set the size of the last network layer to be the same for
each subnetwork. Consequently, the high-level visual emotional
embedding vi and acoustic emotional embedding ai of the ith
data pair can be obtained by

vi = Fv(x
v
i , θ

lstm
v ),ai = Fa(x

a
i , θ

lstm
a ) (1)
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where θlstmv and θlstma respectively represent network parame-
ters of visual subnetwork and audio subnetwork.

Shared Residual Block: The heterogeneous audio and visual
feature representations often exhibit significantly different dy-
namic characteristics, and previous multi-modal emotion anal-
ysis works often learn modality-invariant and modality-specific
features for predicting the affective states. Although audio–
visual emotional embeddings may be semantically relevant at
the utterance level, there still exists a modality gap across
two modalities. To alleviate this concern, we employ a shared
residual block to learn the semantically relevant representation
of heterogeneous embeddings and bridge their semantic gap
between different emotional modalities

vr
i = σ (vi + η · FC(vi)) ,a

r
i = σ (ai + η · FC(ai)) (2)

where σ is the nonlinear activation function such as ReLU, η
represents a learnable scale factor, and FC denotes the fully
connected layer. Consequently, the shared residual block con-
nects the output features in jumps, which can be well utilized
to preserve the original features as well as mitigating the elim-
ination of network gradients. Meanwhile, the shared weight-
ing parameters through fully connected layers are beneficial to
achieve cross-emotion compatible feature learning, and such
a learnable residual block structure can be optimized by the
shared embedding loss Lice

Lshare = Lce(v
r
i , y

v
i ) + Lce(a

r
i , y

a
i ) (3)

where yvi and yai are respectively the ground truth of affective
labels for the ith emotional pair, Lce is the symbolic notation
of standard cross-entropy loss.

C. Hybrid Contrastive Learning Module

Contrastive learning has emerged as a highly effective ap-
proach for representation learning, which allows the model to
contrast the positive samples against a set of negative samples
[22]. For instance, Kim et al. [23] presented a self-supervised
contrastive learning framework to train a robust neural network
without labeled data, while Yang et al. [24] combined the spike-
based self-supervised learning and contrastive learning to train
the spiking neural network. Besides, Wu et al. [25] provided
a comprehensive review of existing self-supervised contrastive
learning techniques for graph data. Notably, these contrastive
learning works are generally designed to enhance representation
learning in single modality. The proposed framework aims to
enlarge the semantic-inconsistency between emotional data pair
with different affective classes, while enhancing the semantic-
consistency between emotional data from the same affective
class. To this end, we present a hybrid contrastive learning
module to minimize modality gap.

Specifically, given the ith visual emotion embedding vr
i and

jth acoustic emotion embedding arj , the popular cosine simi-
larity is utilized to measure their semantic relevance

s
(
vr
i ,a

r
j

)
= exp(cos(vr

i ,a
r
j)). (4)

1) Intramodal Contrastive Learning: It aims to learn the
intramodal relationships between different emotional instances.

That is, a positive pair is defined as the unimodal representa-
tions from different emotional samples of the same affective
class, while a negative pair is defined as the unimodal repre-
sentations from two emotional samples whose affective classes
are different. Given the ith visual emotion embedding vr

i , we
select a group of positive samples Pv

i and negative samples N v
i

according to their affective labels in a mini-batch of size B.
Then, the intramodal contrastive loss of visual modality can be
formulated as

Lintra
v =−

B∑

i=1

log

∑

vr
k∈Pv

i

s (vr
i ,v

r
k)

∑

vr
k∈Pv

i

s (vr
i ,v

r
k)+

∑

vr
j∈Nv

j

s
(
vr
i ,v

r
j

) . (5)

Often, the bidirectional learning scheme is able to improve
the data utilization. Similarly, given the ith audio emotion em-
bedding ai, we also select a group of positive samples Pa

i and
negative samples N a

i according to their affective labels in a
mini-batch of size B. Accordingly, the intramodal contrastive
loss of visual modality can be formulated as

Lintra
a =−

B∑

i=1

log

∑

ar
k∈Pa

i

s (ari ,a
r
k)

∑

ar
k∈Pa

i

s (ari ,a
r
k)+

∑

ar
j∈Nv

j

s
(
ari ,a

r
j

) . (6)

Accordingly, the intramodal contrastive loss of audio–visual
modalities can be expressed as

Lintra
all = Lintra

v + Lintra
a . (7)

2) Cross-Modal Contrastive Learning: It aims to learn the
cross-modal dynamic relationships between different emotional
samples. That is, a positive pair is defined as the grouped mul-
timodal emotional data from different modalities of the same
affective class, while a negative pair is defined as the grouped
multimodal emotional data from two heterogeneous samples
whose affective classes are different. Given the visual emotion
embedding vr

i of an instance i, the positive samples from set
Pa
i and negative samples from set N a

i are selected for cross-
modal contrastive learning. Then, the cross-modal contrastive
loss of visual modality can be formulated as

Lcross
v =−

B∑

i=1

log

∑

ar
k∈Pa

i

s (vr
i ,a

r
k)

∑

ar
k∈Pa

i

s (vr
i ,a

r
k)+

∑

ar
j∈Na

j

s
(
vr
i ,a

r
j

) . (8)

Similarly, given the audio emotion embedding ari of an in-
stance i, the positive samples from set Pv

i and negative samples
from set N v

i are selected. Then, the cross-modal contrastive loss
of audio modality can be formulated as

Lcross
a =−

B∑

i=1

log

∑

vr
k∈Pv

i

s (ari ,v
r
k)

∑

vr
k∈Pv

i

s (ari ,v
r
k)+

∑

vr
j∈Nv

j

s
(
ari ,v

r
j

) . (9)

Accordingly, the cross-modal contrastive loss across audio–
visual modalities can be expressed as

Lcross
all = Lcross

v + Lcross
a . (10)
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3) Hard-Sample Contrastive Learning: The intramodal con-
trastive learning is performed to capture intra-modal instance
relationships, while the cross-modal contrastive learning is de-
signed to explore inter-class relationships. However, as the
number of samples in these contrastive learning tasks increases,
the risk of encountering invalid emotional data pairs also rises.
To address this issue, we further parse a group of hard samples
to guide the training process within the proposed framework,
and thus promote the model to identify the abnormal emotion
pairs more efficiently.

Specifically, we select the top-ranked k negative samples
with the greatest similarity and the top-ranked k positive sam-
ples with the smallest similarity to regularize the learning pro-
cess in a cross-modal learning way. Given a visual emotion
embedding vr

i , we compute and sort the cross-modal similarity
score of each pair in a mini-batch size, and then select k pairs
that have low similarity from acoustic positive set Pa

i to form
the hard positive set P̄a

i

P̄a
i = Rank

1,...,k

{
min

(
s (vr

i ,a
r
w)w∈Pa

i

)}
. (11)

Similarly, we select k pairs that have high similarity from
acoustic negative set N a

i to form the hard negative set N̄ a
i

N̄ a
i = Rank

1,...,k

{
max

(
s (vr

i ,a
r
w)w∈Na

i

)}
. (12)

Since cross-emotion anomaly detection can be well regarded
as a binary classification problem, their semantic-consistency
labels can be generated naturally according to the semantic
correspondence of emotional data pair. That is, if the affective
expressions of audio–visual emotion data pair are matched, the
values of these semantic-consistency labels are equal to 1, and 0
otherwise. Therefore, the hard-sample contrastive loss of visual
modality can be derived as follows:

Lhard
v =−

B∑

i=1

⎛

⎝
∑

s∈P̄a
i

yv−a
i,s · log(s(vr

i ,a
r
s))

+
∑

m∈N̄v
i

yv−a
i,m · log (s(vr

i ,a
r
m))

⎞

⎠ (13)

where yv−a
i,s and yv−a

i,m are respectively the affective-consistent
labels for data pair {vr

i ,a
r
s} and {vr

i ,a
r
m}, with value 1 for the

semantic-consistency and 0 for the semantic-inconsistency.
Similarly, given an audio emotion embedding ari , we com-

pute and sort the cross-modal similarity score of each pair in
mini-batch, and then select k pairs that have low similarity from
visual positive set Pv

i to form the hard positive set P̄v
i

P̄v
i = Rank

1,...,k

{
min

(
s (ari ,v

r
w)w∈Pv

i

)}
. (14)

Similarly, we select k pairs that have high similarity from
visual negative set N v

i to form the hard negative set N̄ v
i

N̄ v
i = Rank

1,...,k

{
max

(
s (ari ,v

r
w)w∈Nv

i

)}
. (15)

Fig. 3. Similarity distributions of semantic-consistency scores and semantic-
inconsistency scores.

Therefore, the hard-sample contrastive loss of audio modality
can be derived as follows:

Lhard
a =−

B∑

i=1

⎛

⎝
∑

s∈P̄v
i

ya−v
i,s · log(s(ari ,vr

s))

+
∑

m∈N̄v
i

ya−v
i,m · log (s(ari ,vr

m))

⎞

⎠ (16)

where ya−v
i,s and ya−v

i,m are respectively the affective consis-
tency label of emotional data pair {ari ,vr

s} and {ari ,vr
m}, with

value 1 for the semantic-consistency and 0 for the semantic-
inconsistency. Accordingly, the total hard-sample contrastive
loss can be obtained by

Lhard
all = Lhard

v + Lhard
a . (17)

The overall hybrid contrastive loss function in a mini-batch
size is a weighted sum of shared embedding loss, intramodal
contrastive loss, cross-modal contrastive loss, and hard-sample
contrastive loss, which can be integrated as

Lall = Lshare + λ1Lintra
all + λ2Lcross

all + λ3Lhard
all (18)

where λ1, λ2, and λ3 are the hyper-parameters to balance the
contributions of the different contrastive losses.

D. Semantic-Inconsistency Reasoning and Optimization

The main objective of SIR-HCL is to reason the semantic-
inconsistency among the semantically irrelevant emotion pairs,
while enhancing the semantic-consistency between semanti-
cally relevant ones. On the one hand, the emotions with
semantic-inconsistency will be pushed away from each other,
resulting in very small/large cross-modal similarity in the trans-
formed feature space. On the other hand, the emotions with
semantic-consistency will be pulled together, leading to very
large cross-modal similarity in the transformed feature space.
To illustrate this, we randomly group 300 normal emotion pairs
and 300 abnormal emotion pairs from the MOSI dataset [26] to
show their similarity differences. After the training process, the
representative similarity distributions of semantic-consistency
scores and semantic-inconsistency scores are shown in Fig. 3. It
can be observed that the similarity scores of different emotional
pairs are in different ranges. Inspired by this finding, we utilize
two-component beta mixture model (BMM) [27] to fit the sim-
ilarity distributions: s (i) = exp(cos(vr

i ,a
r
i )) of each normal
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Fig. 4. Illustration of multimodal emotional data organizations.

and abnormal emotional pair, and thus obtain the probability of
a sample pair being normal or abnormal as follows:

pi =
M∑

m=1

πmBeta (si | αm, βm) (19)

where M is the total mixture number, πm is the mth mixture
coefficient, αm and βm are respectively the probability density
function parameters of Beta function for the mth mixture.

To initialize the model parameters, we fit the components of
the BMM to the similarity scores of positive audio–visual emo-
tion pairs and negative audio–visual emotion pairs during the
training stage. The expectation-maximization (EM) algorithm
is then employed to optimize the model parameters. During
the testing phase, we compute the similarity score between
visual–audio emotion pairs and utilize the derived probability
distribution to determine whether the emotional state across
audio-visual modalities is abnormal or not.

IV. EXPERIMENT

This section conducts a series of quantitative experiments on
public multimodal sentiment datasets, and validates the effec-
tiveness of the proposed SIR-HCL method. The experimental
results, comparative analyses, and quantitative evaluations are
detailed in the following sections.

A. Datasets and Implementations

In the experiments, two popular multimodal sentiment
datasets, CMU-MOSI and CMU-MOSEI, are selected for eval-
uation, and their brief descriptions are clarified as follows.
1) CMU-MOSI: This dataset refers to the multimodal corpus

of sentiment intensity [26], which consists of 2199 opinion
video clips. Each opinion video is annotated with a sentiment
score ranging from –3 to 3, which respectively corresponds to
highly negative (–3), negative (–2), weakly negative (–1), neu-
tral (0), weakly positive (+1), positive (+2), and highly positive
(+3) to the sentiment intensity. The dataset is rigorously anno-
tated with labels for subjectivity, sentiment intensity, per-frame
and per-opinion annotated visual features, and per-millisecond
audio features.
2) CMU-MOSEI: It is a large multimodal sentiment anal-

ysis and gender-balanced emotional dataset [28], consisting
of 22 856 videos derived from 5000 videos and 1000 distinct
speakers [28]. Each video inherently contains three modalities:

TABLE I
ANNOTATIONS AND DESCRIPTIONS OF DATASETS

Datasets Original Redefine Labels c-Labels

[−3,−2) −3 Strong negative
NegativeMOSI [−2,−1) −2 Negative

[−1,0) −1 Weak negative
0 0 Neutral Neutral

MOSEI (0,1] 1 Weak positive
Positive(1,2] 2 Positive

(2,3] 3 Strong positive

visual, audio and text, and the visual and audio modalities
are particularly employed in our experiments. Similarly, each
sample is annotated by human annotators with a continuous
sentiment score ranging from –3 to 3. In our work, we utilize
16 285 utterances for training, and 4643 utterances for testing.

These two datasets include diverse speakers with approxi-
mately equal gender distribution. The training, validation, and
test sets are divided into a 3:1:1 ratio, where the emotional
segments are randomly selected from the same video. Similar
to work [29], we extract 35-dimensional visual features, pri-
marily comprising basic and advanced facial action units, from
video frames using FACET [30]. Additionally, 74-dimensional
audio features, including 12 Mel-frequency cepstral coefficients
(MFCCs) and other low-level acoustic features, are extracted
from acoustic signals using COVAREP [31]. As shown in Fig. 4,
the paired emotional instances derived from the same video
clips share the same affective label. Since no abnormal mul-
timodal emotional instances exist in the datasets, we randomly
shuffle 50% of the audio–visual emotional data pairs from
the same speaker to generate abnormal emotional pairs that
are affectively mismatched. Following the intuitive sentiment
categorization [26], as shown in Table I, the affective labels of
the two datasets are ultimately processed into three categories:
positive, neutral, and negative.

For these multimodal emotional datasets, the visual subnet-
work and audio subnetwork are employed to extract visual
emotion embeddings and acoustic emotion embeddings, re-
spectively, each with a dimensionality of 256. Within these
networks, the number of hidden neurons in each cell is set to
128, the dropout rate is fixed at 0.5, and the batch size is set
to 16 for MOSI and 32 for MOSEI. The number k of hard
samples is set to 6, and the parameters {λ1, λ2, λ3} are set to
{1, 1, 0.5}. The proposed model is optimized using Stochastic
gradient descent (SGD) with a learning rate of 0.0001. For the
two-component beta mixture model estimation, the probability
threshold is fixed at 0.5 to reason about abnormal emotions
across different modalities. In all experiments, the learning
rate is decayed by 0.1 after 10 epochs. The entire network is
trained in an end-to-end manner, and the network parameters
are updated through backpropagation.

B. Evaluation Metrics and Baseline Methods

The goal of cross-emotion anomaly detection is to
identify abnormal multimodal emotion pair whose semantic
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patterns are inconsistent across different modalities. This
task can be formulated as a typical binary identification
problem. Therefore, the popular true positive rate (TPR)
and false positive rate (FPR) are selected for quantitative
analysis: TPR= (TP/TP + FN) , FPR= (FP/TN + FP),
where TP, FN, TN, and FP, respectively, represent the
number of true positives, false negatives, true negatives,
and false positives. For the performance evaluation, the
larger TPR values often reveal the better identification
performance, while the smaller FPR values indicate
the better detection results [32]. Additionally, accuracy
Accuracy= (TP + TN/TP + TN + FP + FN) and
AUC values are also selected to validate the detection
performances.

The proposed framework is the first attempt to detect anoma-
lous emotion pairs across audio-visual emotional data, and there
are no relevant works to tackle this problem. For meaning-
ful comparisons, we extend a few relevant methods to per-
form cross-emotion anomaly detection tasks. MISA [29] learns
modality-invariant and specific representations for multi-modal
sentiment analysis. CMAD [20] exploits a deep structured
framework to characterize the feature representations between
heterogeneous data samples, and utilizes a threshold to de-
tect the abnormal examples across different modalities. NCR
[33] employs triplet loss and Gaussian mixture distributions
to distinguish different kinds of data pairs. CMPC [7] utilizes
cross-modal prototype contrastive learning to perform voice-
face matching in a cross-modal way. HFIR [17] employs infor-
mation relevance as the matching degree between cross-modal
features at the emotional semantic level, and utilizes hybrid
fusion based on information relevance (HFIR) for multimodal
sentiment analysis. Since CMPC and MISA do not directly
detect anomalous pairs, we also utilize a two-component Beta
Mixture Model as stated within the proposed framework to
distinguish possible anomalous emotion samples. For the other
baselines, we utilize the same similarity threshold value to de-
tect the possible abnormal emotions across different modalities.

C. Performance Comparison and Analysis

1) Results of Detection Performance: The cross-emotion
anomaly detection results obtained by different methods and
tested on different datasets are shown in Tables II and III,
respectively. It can be seen that the proposed method has de-
livered very competitive cross-emotion anomaly detection per-
formances, and outperforms most of the baselines in different
datasets. For the smaller CMU-MOSI dataset, the abnormal
emotion detection results obtained by the proposed SIR-HCL
approach do not differ significantly from the baseline methods.
The main reason lies that the CMU-MOSI dataset has fewer
examples, and the emotional complexity is not very compet-
itive. Accordingly, the detection results obtained by different
methods do not differ very much. Note that, the proposed SIR-
HCL method has delivered better AUC, FPR, and TPR scores.
For instance, the TPR value obtained by the proposed approach
reached up to 0.9563. This indicates that the proposed SIR-HCL

TABLE II
AUC, FPR, TPR, AND ACCURACY RESULTS EVALUATED

ON MOSI DATASET

Method AUC FPR TPR Accuracy

CMAD [20] 0.8437 0.2230 0.9193 0.8437
CMPC [7] 0.8627 0.2471 0.7954 0.7621
NCR [33] 0.8342 0.2189 0.8370 0.8219
MISA [29] 0.8549 0.1653 0.8739 0.8739
HFIR [17] 0.9079 0.1823 0.8635 0.8817
SIR-HCL 0.9143 0.1531 0.9468 0.8876

Note: The best results are highlighted in bold.

TABLE III
AUC, FPR, TPR, AND ACCURACY RESULTS EVALUATED

ON MOSEI DATASET

Method AUC FPR TPR Accuracy

CMAD [20] 0.8734 0.1781 0.8507 0.8767
CMPC [7] 0.8865 0.1939 0.9312 0.8419
NCR [33] 0.8627 0.1782 0.9234 0.8291
MISA [29] 0.8754 0.1887 0.9155 0.8471
HFIR [17] 0.8971 0.2135 0.9228 0.8651
SIR-HCL 0.9137 0.1723 0.9563 0.8895

Note: The best results are highlighted in bold.

approach holds a strong ability to detect the abnormal emotions
across different modalities.

For the large CMU-MOSI dataset, it can be found that the
competing baselines have delivered relatively lower AUC, TPR,
and accuracy values, while generating larger FPR values. For
instance, the AUC score and accuracy values obtained by the
MISA method are respectively equal to 0.8754 and 0.8471,
while the AUC score and accuracy value obtained by the HFIR
method are respectively equal to 0.8971 and 0.8651. Notably,
these two methods utilize the fusion model to bridge the se-
mantic gap between heterogeneous emotion features, which
can detect some obvious abnormal emotion pairs. However,
these methods often fail to detect inconsistent emotional be-
haviors when the abnormal emotions exhibit minor differences.
Specifically, NCR [33] just considers one positive sample and
one negative sample of the specified instance, which therefore
cannot learn the discriminative latent embeddings and there-
fore result in a lower performance. CMPC [7] employs the
unsupervised clustering to construct the positive embedding and
negative embedding between voice-face representations, and
the accuracy score obtained by this approach is 0.8419. Note
that, this approach ignores the intra-modal negative samples to
explore the fine-grained representations in each modality, and
its performance is uncompetitive when processing the large-
scale emotional dataset. CMAD [20] first utilizes a deep struc-
tured framework to learn the feature representations between
heterogeneous modalities, and then applies a simple anomaly
threshold to identify the anomalies whose patterns are signifi-
cantly disparate across different modalities. Remarkably, this
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TABLE IV
CROSS-EMOTION ANOMALY DETECTION RESULTS OBTAINED BY DIFFERENT APPROACHES AND TESTED ON DIFFERENT DATASETS

Datasets Method
Undevided Positive-Negative Positive-Neutral Neutral-Negative

Acc AUC Acc AUC Acc AUC Acc AUC

CMU-MOSI

CMAD [20] 0.8437 0.8859 0.8679 0.854 0.8211 0.8251 0.8367 0.825
CMPC [7] 0.7621 0.8627 0.8123 0.850 0.8216 0.8438 0.8246 0.8317
NCR [33] 0.8219 0.8342 0.8874 0.8421 0.8168 0.8514 0.8722 0.8861
MISA [29] 0.8739 0.8546 0.8464 0.8320 0.8129 0.8764 0.8905 0.8910
HFIR [17] 0.8817 0.9079 0.8852 0.8751 0.8974 0.9094 0.9076 0.8861
SIR-HCL 0.8876 0.9143 0.8982 0.9135 0.8937 0.9178 0.9107 0.9165

CMU-MOSEI

CMAD [20] 0.8767 0.8734 0.8511 0.8692 0.8397 0.8463 0.8712 0.8609
CMPC [7] 0.8419 0.8865 0.8733 0.8512 0.8250 0.8137 0.7882 0.8215
NCR [33] 0.8291 0.8627 0.8456 0.8419 0.8845 0.8512 0.8142 0.8736
MISA [29] 0.8471 0.8754 0.8367 0.8329 0.8190 0.8268 0.8506 0.8578
HFIR [17] 0.8651 0.8971 0.8978 0.8879 0.8651 0.8539 0.8613 0.8426
SIR-HCL 0.8895 0.9137 0.9106 0.8958 0.8976 0.8902 0.8913 0.8998

Note: The best results are highlighted in bold.

Fig. 5. Detection performance obtained by different approaches on different datasets. The abbreviation and corresponding full form of each label are as
follows: pos, positive; neu, neutral; neg, negative.

method just utilizes the triple loss to penalize the instances
with inconsistent pairs, failing to leverage the negative sam-
ples that are crucial for identifying abnormal emotions. As a
result, its detection performance needs further improvement.
Comparatively speaking, the proposed SIR-HCL approach can
well measure the semantic-consistency among normal emotion
pairs, while accurately identifying semantic-inconsistency in
abnormal emotion pairs. Consequently, SIR-HCL consistently
achieves higher cross-emotion anomaly detection accuracy than
the competing baselines.

Further, we detail the cross-emotion anomaly detection tasks
into three subtasks: positive–negative anomaly, positive–neutral
anomaly, and negative–neutral anomaly. As shown in Table IV,
it can be observed that the proposed SIR-HCL approach con-
sistently achieves better detection performance under different
abnormal conditions. For the more challenging negative–neutral
task, the detection performance obtained by the baselines meth-
ods often yields relatively lower scores. For the CMU-MOSEI
dataset, the proposed SIR-HCL method yields about 2.01% im-
provement on recognizing “neutral–negative” abnormal emo-
tion pairs compared with CMAD method [20]. Fig. 5 shows
the comparison curves obtained by different approaches. It
can be found that the accuracy values evaluated on “positive–
negative” abnormal emotion pairs and obtained by competing
baselines were relatively unstable when tested on MOSI dataset,
In contrast to this, our proposed SIR-HCL method demonstrates
very stable performance on both datasets, and the corresponding

accuracy values are always higher than the results obtained
by all the competing baselines. That is, the proposed SIR-
HCL approach not only effectively handles various abnormal
emotion detection tasks across different modalities, but also
delivers relatively stable detection performance under different
abnormal conditions.

Besides, we evaluate the proposed methods on fine-grained
cross-emotion anomaly detection tasks, where the affective la-
bels are defined in a more granular manner, i.e., strong negative
(s-neg), negative, weak negative (w-neg), neutral, weak positive
(w-pos), positive and strong positive (s-pos). Accordingly, five
abnormal cross-emotion cases are designed for enhanced fine-
grained detection tasks, i.e., negative–positive, negative–neural,
positive–neural, weak-positive to weak-negative and strong-
positive to strong-negative. As shown in Table V, it can be
observed that CMAD and NCR methods achieve relatively
lower ACC and AUC scores, while CMPC, MISA, and HFIR
approaches also exhibit degraded performance across weak-
positive and weak-negative data collections. By contrast, as
shown in Fig. 6, our proposed SIR-HCL method demonstrates
very competitive detection performances and significantly out-
performs these baseline methods. This indicates that the pro-
posed framework is capable of detecting abnormal emotional
pairs even when the affective differences are subtle and the
cross-emotion scenarios are highly complex.

2) Ablation Study: Within the proposed framework, the de-
signed hybrid contrastive loss plays a critical role in learning
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TABLE V
ENHANCED FINE-GRAINED CROSS-EMOTION ANOMALY DETECTION PERFORMANCE ON CMU-MOSEI DATASET

Methods
Pos-Neg Pos-Neu Neu-Neg Neg(w)-Pos(w) Neg(s)-Pos(s)

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

CMAD [20] 0.7951 0.7178 0.7820 0.7865 0.8448 0.8589 0.7111 0.7112 0.7069 0.7077
CMPC [7] 0.8352 0.8380 0.8465 0.8513 0.8396 0.850 0.7922 0.7801 0.8426 0.8397
NCR [33] 0.7065 0.7246 0.7114 0.7295 0.8569 0.8347 0.7514 0.7517 0.8269 0.8310
MISA [29] 0.8093 0.8119 0.8307 0.8482 0.8298 0.8313 0.7815 0.7780 0.8223 0.8377
HFIR [17] 0.8436 0.8529 0.8627 0.8775 0.8392 0.8491 0.8507 0.8374 0.8782 0.8834
SIR-HCL 0.8471 0.8981 0.8753 0.8907 0.8816 0.8891 0.8652 0.8317 0.8857 0.8891

Note: The best results are highlighted in bold.

Fig. 6. Enhanced fine-grained detection performance obtained by different
approaches on CMU-MOSEI dataset.

the discriminative cross-emotion embeddings. As illustrated in
Table VI, we conduct an ablation study to evaluate the con-
tribution of each loss component by sequentially removing it
from the model, in which w/o-Lshare, w/o-Lintra, w/o-Lcross, and
w/o-Lhard, respectively, denote the removal of shared embed-
ding loss, intra-modal contrastive loss, cross-modal contrastive
loss and hard-sample contrastive loss. It can be found that the
removal of shared embedding loss results in a slight perfor-
mance degradation, which indicates that the shared residual
block can well bridge the modality gap between heterogeneous
emotions. Meanwhile, the learning of cross-emotion relation-
ships is a fundamental component that leads to the high ab-
normal emotion detection performance, while the intra-modal
contrastive loss and hard-sample contrastive loss also contribute
to boosting the detection performance. This demonstrates that
the proposed model effectively enhances the discriminative
power of audio–visual embeddings, achieving significantly bet-
ter results when the intra-modal, cross-modal, and hard-sample
contrastive losses are jointly incorporated. Overall, the inte-
gration of shared embedding loss, intramodal contrastive loss,
cross-modal contrastive loss, and hard-sample contrastive loss
enables the learning of more discriminative cross-emotion

TABLE VI
ABLATION STUDIES ON THE CMU-MOSEI DATASET

Method
MOSE MOSEI

AUC Accuracy AUC Accuracy

w/o-Lshare 0.8573 0.8669 0.8792 0.8753
w/o-Lintra 0.8705 0.8613 0.8727 0.8681
w/o-Lcross 0.8692 0.8718 0.8691 0.8781
w/o-Lhard 0.8737 0.8715 0.8893 0.8703

Lall 0.9143 0.8876 0.9137 0.8875

Note: The best results are highlighted in bold.

embeddings, thereby significantly improving cross-emotion
anomaly detection performance.

3) Visualization and Analysis: To visually verify the superi-
ority of the proposed SIR-HCL model, Fig. 7 shows several rep-
resentative cross-emotion anomaly detection examples, demon-
strating the effectiveness of the proposed SIR-HCL framework.
To be specific, the detection results marked in green indicate
that the facial expression and voice clip share the same affective
class, and the detection results are recognized as the normal pair.
In contrast to this, the detection results marked in red indicate
that the facial expression and voice clip do not belong to the
same affective class, and the detection results are recognized as
the abnormal pair. It can be observed that the derived similarity
scores provide an intuitive measure of the correlation degree
between heterogeneous emotional modalities. That is, if the
facial expression and voice clip share the same affective class,
the proposed model is able to recognize their strong relevance.
Conversely, if the facial expression and voice clip are mistak-
enly grouped together, the proposed SIR-HCL framework is
capable of identifying such irrelevance and its corresponding
similarity score is very small. This indicates that the proposed
model exhibits high discriminability to reason the affective re-
lationship between heterogeneous emotional samples, making
it highly effective in detecting abnormal emotions practically.

Further, we utilize the t-SNE algorithm to visualize the
derived multimodal emotional embedding vectors. As shown
in Fig. 8, it can be found that the initial embeddings of
audio–visual emotions belonging to the same affective class
are separated into two distinct clusters due to modality gap.
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Fig. 7. Visualization of representative cross-emotion anomaly detection examples. For each audio-visual emotion pair, a facial expression frame and an
audio clip respectively represent a kind of affective class. The detection results marked in red (abnormal pair) indicate that the facial expression and voice
clip do not behave consistently with each other, while the detection results marked in green (normal pair) indicate that the facial expression and voice clip
behave consistently with each other.

(a) (b) (c) (d)

Fig. 8. t-SNE visualization of the cross-modal embeddings in the case without or with training. The green color represents visual modality, while the blue
and pink colors respectively represent audio modality with the same or different affective classes. (a) Positive pairs before training. (b) Negative pairs before
training. (c) Positive pairs after training. (d) Negative pairs after training.

Moreover, the emotional distributions from the different affec-
tive classes are always overlapping. Under such circumstances,
it is very difficult to reason the anomalous emotion pairs with
semantic-inconsistency. After training, the audio–visual emo-
tions belonging to the same affective class are clustered closely
together, while those from different affective classes are clearly
separated. The main reason lies that the proposed SIR-HCL
model is able to aggregate the cross-emotion data pairs of
the same affective class close together, while pulling those of
different affective classes away. As a result, the derived cross-
emotion embeddings are semantically meaningful, to enhance
abnormal emotion detection performances.

Besides, we investigate the similarity distributions of abnor-
mal and normal emotional data pairs predicted by the proposed
SIR-HCL model at different learning stages. Fig. 9 shows the
similarity distributions of 600 abnormal and 600 normal emo-
tion pairs derived from the MOSEI dataset. On the one hand,
it can be observed that the overlapping regions of similarity
distributions before training are significantly larger than those
after training. On the other hand, the similarity distributions of

abnormal emotion pairs exhibit a wide range before training,
with some peaks of their distribution waves often falling within
similar intervals. Under such circumstances, it is very difficult
to identify the anomalous emotional data pairs across audio-
visual emotion data. After training, it can be seen that most
similarity scores for normal emotional pairs are significantly
higher than those for abnormal pairs, and the main peaks of their
distribution waves are clearly separated into distinct intervals.
This clear distinction between the similarity distributions can
be effectively utilized to differentiate abnormal emotional data
pairs. This demonstrates that the proposed model provides valu-
able cross-modal information to reason about semantic incon-
sistency, thereby enabling the detection of anomalous emotional
samples across audio-visual data.

V. CONCLUSION

Cross-emotion anomaly detection across heterogeneous
modalities is a relatively emerging topic in the field of
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Fig. 9. Similarity distributions of abnormal and normal emotional data pairs
derived before and after training processes.

multimodal sentiment analysis. This work presents an effi-
cient cross-emotion anomaly detection approach via semantic-
inconsistency reasoning and hybrid contrastive learning, which
effectively identifies anomalous emotion pairs across audio–
visual data. Within the proposed framework, an innovative hy-
brid contrastive learning approach is designed to enlarge the
semantic inconsistency between abnormal emotional data pairs
from different affective classes, while strengthening the se-
mantic correspondence and feature correlation between normal
emotional data pairs from the same affective class. Additionally,
a bidirectional learning scheme is employed to enhance data
utilization, and a two-component BMM is utilized to reason
about anomalous emotion pairs with semantic inconsistency
in a more interpretable manner. Extensive experiments have
shown its competitive performance over the state of the arts.
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