
3688 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 6, JUNE 2023

Lossless Data Hiding in Encrypted Images
Compatible With Homomorphic Processing
Hao-Tian Wu , Senior Member, IEEE, Yiu-Ming Cheung , Fellow, IEEE, Zhenwei Zhuang ,

Lingling Xu , and Jiankun Hu , Senior Member, IEEE

Abstract—Reversible data hiding in ciphertext has potential
applications for privacy protection and transmitting extra data
in a cloud environment. For instance, an original plain-text image
can be recovered from the encrypted image generated after data
embedding, while the embedded data can be extracted before or
after decryption. However, homomorphic processing can hardly
be applied to an encrypted image with hidden data to generate
the desired image. This is partly due to that the image content
may be changed by preprocessing or/and data embedding. Even
if the corresponding plain-text pixel values are kept unchanged
by lossless data hiding, the hidden data will be destroyed by outer
processing. To address this issue, a lossless data hiding method
called random element substitution (RES) is proposed for the
Paillier cryptosystem by substituting the to-be-hidden bits for the
random element of a cipher value. Moreover, the RES method
is combined with another preprocessing-free algorithm to gen-
erate two schemes for lossless data hiding in encrypted images.
With either scheme, a processed image will be obtained after
the encrypted image undergoes processing in the homomorphic
encrypted domain. Besides retrieving a part of the hidden data
without image decryption, the data hidden with the RES method
can be extracted after decryption, even after some processing has
been conducted on encrypted images. The experimental results
show the efficacy and superior performance of the proposed
schemes.

Index Terms—Homomorphic processing, image encryption,
lossless data hiding, Paillier cryptosystem, randomness.

Manuscript received 23 May 2021; revised 29 August 2021 and
10 January 2022; accepted 25 March 2022. Date of publication 15 April 2022;
date of current version 17 May 2023. This work was supported in part
by the Natural Science Foundation of Guangdong Province of China under
Grant 2021A1515011798; in part by the National Natural Science Foundation
of China under Grant 61772208 and Grant 61672444; in part by the
NSFC/RGC Joint Research Scheme under Grant N_HKBU214/21; in part by
the RGC General Research Fund under Grant 12201321; in part by the Hong
Kong Baptist University under Grant RC-FNRA-IG/18-19/SCI/03 and Grant
RC-IRCMs/18-19/SCI/01; in part by the Innovation and Technology Fund
of Innovation and Technology Commission of the Hong Kong Government
under Grant ITS/339/18; and in part by Shenzhen Science and Technology
Innovation Commission (SZSTC) under Grant SGDX20190816230207535.
This article was recommended by Associate Editor S. Ozawa. (Corresponding
author: Yiu-Ming Cheung.)

Hao-Tian Wu, Zhenwei Zhuang, and Lingling Xu are with the
School of Computer Science and Engineering, South China University
of Technology, Guangzhou 510006, China (e-mail: wuht@scut.edu.cn;
cszhenwei0512@mail.scut.edu.cn; csllxu@scut.edu.cn).

Yiu-Ming Cheung is with the Department of Computer Science,
Hong Kong Baptist University, Hong Kong, SAR, China (e-mail:
ymc@comp.hkbu.edu.hk).

Jiankun Hu is with the School of Engineering and Information Technology,
The University of New South Wales, Australian Defence Force Academy,
Canberra, ACT 2610, Australia (e-mail: j.hu@adfa.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2022.3163245.

Digital Object Identifier 10.1109/TCYB.2022.3163245

I. INTRODUCTION

REVERSIBLE data hiding (RDH) in cipher media for
privacy protection has recently drawn attentions in the

community (e.g., [1] and [2]). As extra data have been hidden
in a cipher image, an original plain-text image may be obtained
after decrypting the cipher image. Meanwhile, the data hidden
in the cipher image can be extracted before or after decryp-
tion. In the literature, RDH in encrypted images (RDH-EI)
has been proposed to send useful data to the receiver, such
as the schemes in [2]–[29]. For instance, RDH-EI can be per-
formed by exploiting the redundancy in the encrypted domain
for content annotation and authentication (e.g., [2]–[6]).

The RDH-EI methods can be classified regarding whether
data extraction is separable from image decryption. In [3], a
separable scheme is designed to extract the data hidden in an
encrypted image without decrypting it. Moreover, the original
plain-text image can be obtained when image decryption is
allowed. To increase the embedding capacity of the separable
methods, advances have been made by adopting prediction [4],
distributed source coding [10], most significant bits (MSBs)
prediction [11], and so on.

As it is inconvenient to leverage the redundancy in the plain-
text images for RDH in the encrypted domain, a preprocessing
is performed in [7] to vacate space before encryption (VSBE).
Accordingly, the existing methods may be divided into two
classes. The first class of methods spares space in the plain-
text images before encrypting them (e.g., [7]–[9]). The vacated
values have been reversibly hidden in the preprocessed image
(e.g., by using the RDH methods in [30]–[36]), while the
spared space is used to accommodate extra data after image
encryption. The preprocessed image should be kept unchanged
so that the values hidden in it can be extracted to recover
the original image. If the encrypted image has been altered,
the original image may not be correctly recovered. The other
class of methods spare space in the encrypted domain for data
embedding (e.g., [3]). Since no preprocessing is required, it is
feasible to process an encrypted image to generate the desired
one before embedding data into it. As data hiding is directly
performed in an encrypted domain (e.g., by using a stream
cipher), the embedding capacity may be relatively low.

There are mainly two types of cryptosystems adopted
in the existing RDH-EI schemes. The first type is to per-
form encryption with a stream cipher, which is implemented
with low complexity. However, processing in the encrypted
domain is hardly allowed with a cipher stream, such as the

2168-2267 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6462-7193
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0003-1537-8199
https://orcid.org/0000-0002-8054-6059
https://orcid.org/0000-0003-0230-1432

WU et al.: LOSSLESS DATA HIDING IN ENCRYPTED IMAGES 3689

schemes proposed in [2]–[19]. The second kind of encryption
achieves “privacy homomorphism” [37] to enable processing
in the encrypted domain by using the cryptosystems proposed
in [38]–[42]. So a desired plain-text image may be obtained
after decrypting the processed cipher image. The drawbacks
of homomorphic cryptosystems such as Paillier’s [38] include
high complexity and increased data size. Nevertheless, the
RDH-EI schemes proposed in [20]–[29] and the ones proposed
in this article do not increase the file size of an encrypted
image by exploiting redundancy in encrypted images.

As processing in a homomorphic encrypted domain (here-
inafter denoted by homomorphic processing for short) is useful
in some privacy-preserving applications (e.g., [43]–[45]), the
data hidden in encrypted images may be easily altered by
outer processing. In the schemes proposed in [20], [23], [24],
and [27], a preprocessing is conducted so that the original
image is modified before being encrypted. After the encrypted
image undergoes processing in the encrypted domain, a pro-
cessed plain-text image is generated after decryption, which is
not corresponding to the original image but the preprocessed
image. So neither the original nor the exact desired image
can be obtained after some processing has been conducted
on the encrypted image. When no preprocessing is required
(e.g., [26] and [28]), the original plain-text image is altered
by performing data embedding in the encrypted domain. Even
with the lossless data hiding schemes relying on homomorphic
and probabilistic properties (e.g., the lossless scheme in [23]
and the algorithms proposed in [21], [25], and [29]), the orig-
inal image is not changed by data embedding, but processing
on encrypted images will change the hidden data.

As compatibility with processing in the encrypted domain
has not been fully considered in designing the RDH-EI
schemes in [20]–[29], a new preprocessing-free and lossless
data hiding method called random element substitution (RES)
is proposed for the Paillier cryptosystem. In particular, data
embedding is conducted by substituting the to-be-hidden bits
for the random element in a cipher value so that the plain-
text value is preserved. The RES method can be applied in
or after the process of encryption, while the decrypted plain-
text value is needed to extract the hidden data from the cipher
value. To achieve data extraction before decryption as well,
it is combined with the self-blinding (SB) method proposed
in [25] so that two lossless data hiding schemes are generated
for encrypted images. With either scheme, a processed image
can be directly obtained after the encrypted image undergoes
the desired homomorphic processing. In addition, the data hid-
den in the encrypted image can be correctly extracted before
processing in the encrypted domain, before image decryp-
tion, or after decryption. Even after some processing has been
applied in the encrypted domain, the data hidden with the RES
method may still be extracted. The experimental results on
the USC image set [46] have demonstrated efficacy and supe-
rior performance of the proposed schemes. Compared with the
schemes in [23]–[29], the proposed ones are more suitable for
the scenarios where homomorphic processing is required.

The remainder of this article is organized as follows.
Section II introduces the Paillier cryptosystem, the related
work, and our contributions. The RES method is presented
in Section III. Then, two new schemes are generated in

TABLE I
SOME NOTATIONS

Section IV. The experimental results obtained with the two
schemes are given in Section V and the performances are com-
pared with the schemes in [23]–[29]. Finally, a conclusion is
drawn in Section VI, while the proof of data extraction with
the RES method is given in the Appendix.

II. BACKGROUND AND RELATED WORK

In this section, the Paillier cryptosystem is first introduced,
followed by the additive homomorphism, the SB method
proposed in [25] and the other RDH schemes for homomor-
phic encrypted images. For the convenience of reference, some
notations used in this article are listed in Table I.

A. Paillier Cryptosystem

The Paillier cryptosystem proposed in [38] is a probabilistic
asymmetric algorithm for public-key cryptography with the
decisional composite residuosity assumption. To set up such
a cryptosystem, two large prime numbers p and q are found
so that their product is relatively prime to (p − 1) · (q − 1).
The product of p and q is denoted by N, which is included in
the public key denoted by K. A randomly generated number
g ∈ Z

∗
N2 is also included in K under the condition that N

divides the order of g. A big integer cr is generated after
encrypting a plain-text value m ∈ [0, N − 1] with K by

cr = eK[m] = gm × rN mod N2 (1)

where an integer r is randomly chosen from Z
∗
N but it does

not belong to K. To encrypt a digital image, a string of big
integers are generated after encrypting all pixel values in it in
sequence. To decrypt m from the cipher value cr, the private
key k is required, which consists of λ(N) and μ. λ(N) is
the least common multiple of p − 1 and q − 1, while μ is
the modular multiplicative inverse of L(gλ(N) mod N2), where
L(u) = (u − 1/N). The plain-text m can be decrypted from
cr by

m = dk[cr] = L
[
cr

λ(N) mod N2
]

· μ mod N. (2)

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

3690 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 6, JUNE 2023

Hereinafter, the encryption with K and decryption with k are
denoted by eK[·] and dk[·], respectively. A plain-text image
is obtained after decrypting every cipher value contained in
an encrypted image and no overflows will be caused if all the
decrypted pixel values are in a predefined range (e.g., [0, 255]
for a 8-bit grayscale value).

B. Additive Homomorphism

Given two cipher values eK(m1) and eK(m2), which are
obtained in the same Paillier cryptosystem by encrypting two
plain-text values m1 and m2, another cipher value eK(m′) can
be generated by

eK
(
m′) = [eK(m1) · eK(m2)] mod N2

=
(

gm1 × rN
1 mod N2

)(
gm2 × rN

2 mod N2
)

mod N2

= gm1+m2(r1r2)
N mod N2. (3)

The obtained cipher value can be decrypted with the private
decryption key k to generate a new plain text by

dk
[
eK

(
m′)] = dk

[
gm1+m2 × (r1r2)

N mod N2
]

= (m1 + m2) mod N. (4)

Hence, the addition (modulo N) in the plain-text domain is
conducted in the Paillier cryptosystem by applying (3).

The additive homomorphism has been used to embed extra
data in the encrypted domain, such as in [25] and [26]. As
shown in (1), an integer within [0, N − 1] is encrypted to
produce a cipher value with bit length 2n, where n denotes the
bit length of N. As shown in (3), a pixel value within [0, 255]
can be doubled in the encrypted domain by multiplying the
cipher value with itself. In addition, an extra bit value can
be easily embedded by multiplying the cipher value of 1 to
embed 1 or doing nothing to embed 0. After decrypting the
cipher value with k, the hidden bit can be extracted from the
decrypted value by modulo 2, while the original pixel values
are recovered by dividing the decrypted value by 2.

C. Data Embedding With Self-Blinding Property

In some cases, it is desirable to extract the hidden data in
the encrypted domain. For example, an image sender hides
extra information in an encrypted image, which is sent to the
cloud server. Since the private key k is not known by the cloud
server, the hidden data should be extracted without decrypt-
ing the encrypted image. To extract the hidden data in the
encrypted domain, the SB property has been exploited in [23],
[25], and [29] by modifying a cipher value without changing
its plain-text value.

1) Property of Self-Blinding: As shown in (1), a random
element is used in the encryption of a Paillier cryptosystem so
that different cipher values may be generated from the same
plain-text value. That means multiple cipher values may be
decrypted to the same plain-text value. More precisely, the SB
property indicates that a cipher value can be changed without
affecting its original plain text, that is

dk

[
eK(m)rN

a mod N2
]

= dk

[(
gm rN mod N2

)
rN

a mod N2
]

= dk

[
gm (rra)

N mod N2
]

= m mod N (5)

where ra and r are both random elements in Z
∗
N .

2) Data Hiding Based on the Self-Blinding Property: The
SB property can be exploited to hide extra data in a cipher
value, such as in the SB method proposed in [25]. For example,
a bit value denoted by b can be obtained from a cipher value
eK(i) if

eK(i) mod 2 = b. (6)

If eK(i) mod 2 �= b, eK(i) should be modified to make the con-
dition in (6) hold. Based on the SB property, eK(i) is multiplied
by rN

a , where ra ∈ Z
∗
N generates a new cipher value by

cra(i) = [
eK(i) × rN

a

]
mod N2. (7)

From (5), it can be known that dk[cra(i)] = i mod N. Hence,
(7) can be iteratively performed until cra(i) mod 2 = b. By
finding out an appropriate cipher value that corresponds to the
same plain text, one bit value is embedded in cra(i), which
can be extracted by

b′ = cra(i) mod 2. (8)

Moreover, (7) can be applied to embed more bits into one
cipher value. For instance, a string of s bit values, which is
denoted by b1b2 . . . bs, can be extracted from a cipher value
eK(i) if

eK(i) mod 2s = b1b2 . . . bs. (9)

If the condition in (9) does not hold, another cipher value
cs

r(i) can be generated from eK(i) by applying (7) so that
cs

r(i) mod 2s = b1b2 . . . bs. By iteratively applying (7)
to make (9) hold, s bits are simultaneously embedded. The
complexity of searching for the appropriate cipher value is
exponentially increased with the bit number to be hidden. In a
Paillier cryptosystem with 1024-bit N, up to 14 bits can be hid-
den into one cipher value in our experiments. Given the hiding
rate (i.e., s bits per cipher value) is known, the embedded bits
can be retrieved from cs

r(i) by

b′
1b′

2 . . . b′
s = cs

r(i) mod 2s (10)

where b′
1b′

2 . . . b′
s are the extracted string of bit values.

D. RDH Schemes in Homomorphic Encrypted Domain

Besides the SB method, there are several schemes designed
for RDH in the homomorphic encrypted domain. Except the
schemes based on integer modulo [20], the learning with
errors (LWE)-based public-key cryptography [21] and the
fully homomorphic encryption [22], most of the schemes are
developed for Paillier cryptosystem [23]–[29].

Based on the encryption proposed in [47], an RDH-EI
scheme is proposed in [20] by adding a randomly generated
number to a pixel value and processing the sum with mod-
ulo 256 operation. By encrypting the pixels in the same cross
with the same number, the differences between those pixels
are preserved and used for data embedding. By exploiting
the additive homomorphism, data extraction before and after

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LOSSLESS DATA HIDING IN ENCRYPTED IMAGES 3691

Fig. 1. Flowchart of RDH in a homomorphic encrypted domain after
processing.

decryption are both achieved. However, the encrypted image
can hardly be further processed because of the cross division
adopted in image encryption.

In [23], a combined data hiding scheme is presented for
encrypted images in a Paillier cryptosystem. In particular,
multilayer wet paper coding [48] is adopted to replace the
LSB planes of cipher-text pixels with new values for data
embedding. The hidden data can be extracted in the encrypted
domain without affecting image decryption. In addition, pre-
processing is conducted before image encryption by histogram
shrinkage. With the combined scheme, data extractions in both
the encrypted and plain-text domains are enabled. Moreover,
the original plain-text image can be recovered after decryption
and reversing the histogram shrinkage.

In [24], another scheme based on the Paillier cryptosystem is
proposed, which is called mirroring cipher-text group (MCG).
A reference pixel is chosen to perform data embedding in
an MCG unit, while the same bits can be extracted in the
encrypted domain or after image decryption. A preprocessing
is performed by using the RDH method in [30] to keep the
vacated bits in the preprocessed image. Similar to the schemes
in [23] and [24], an improved scheme is proposed in [27]
by adopting the RDH method in [31] for preprocessing and
using the SB method to embed the data to be extracted in the
encrypted domain. The RDH-EI schemes in [23], [24], and
[27] are not compatible with homomorphic processing due to
the preprocessing before image encryption.

In [25], two preprocessing-free methods are developed for
the Paillier cryptosystem. One is the SB method, which is sim-
ilar to the lossless scheme in [23]. Similarly, another RDH-EI
method based on probabilistic and homomorphic properties
is proposed in [29] by setting up a mapping between the
cipher values and secret bits. These schemes do not mod-
ify the plain-text values to embed the data to be extracted
without image decryption. The other method proposed in [25]
is called value expansion (VE), which embeds bits to be
extracted after decryption by changing plain-text values in the
encrypted domain. In [26], another method is proposed by his-
togram shifting in the encrypted domain to embed bits to be
extracted after decryption. In other words, the VE method and
the method in [26] modify the corresponding plain-text values
in the encrypted domain for data embedding.

As shown in Fig. 1, the two methods proposed in [25] are
further combined in [28] to embed two parts of data after
homomorphic processing. The VE method is first applied to
embed the data to be extracted after image decryption, while

the SB method is applied to hide the data to be extracted with-
out decryption. If homomorphic processing has been applied
before data embedding, the processed image will be gener-
ated after decryption. In [21], a multilevel RDH-EI scheme
is proposed by exploiting the controllable redundancy of
LWE-based public-key cryptography. Moreover, a difference
expansion-based method is proposed in [22] for fully homo-
morphic encryption [41]. Nevertheless, the data hidden with
the aforementioned schemes (e.g., [20]–[29]) will be easily
altered by the processing conducted in the encrypted domain.

E. Our Contribution

As compatibility with processing in an encrypted domain
has not been fully considered in designing the RDH-EI
schemes in [20]–[29], a preprocessing-free and lossless data
hiding method called RES is proposed. Different from the
existing schemes, the to-be-hidden bits are used to form ran-
dom element of a cipher value without changing its plain-text
value. Besides, homomorphic processing can be applied to
an encrypted image with hidden data to generate the desired
image. As the data embedded with the RES method can
be extracted after image decryption, the SB method is also
adopted to embed the data to be extracted without decryp-
tion so that two lossless data hiding schemes are generated
for encrypted images, respectively.

Our contributions in this article are summarized as fol-
lows. First, data extraction after image decryption is achieved
by applying the proposed RES method without changing the
plain-text image. As the RES method can be applied in or
after the process of encryption without any preprocessing, a
mathematical proof of data extraction has been given in the
Appendix. Second, two lossless data hiding schemes compat-
ible with processing in the encrypted domain are developed,
which do not interfere with the usage of an encrypted image.
In other words, a desired image can always be generated after
homomorphic processing is conducted on an encrypted image
with hidden data. Lastly, the hidden data can be correctly
extracted from an encrypted image in multiple scenarios, even
after some processing has been conducted on an encrypted
image with hidden data. Overall, these properties make our
proposed schemes more suitable for RDH in the encrypted
images requiring further processing.

III. RANDOM ELEMENT SUBSTITUTION METHOD

To embed the data to be extracted after decryption, both
the VE method in [25] and the histogram shifting method
in [26] modify a cipher value to change its plain-text value
accordingly. To keep the plain-text value unchanged by data
embedding, a preprocessing-free RDH-EI method called RES
is proposed by using a string of bit values to form the random
element of a cipher value.

A. Random Element Substitution

In the encryption of a plain-text value m with (1), ran-
domness is introduced by employing a random element r in
Z

∗
N . That means various cipher values may be generated by

encrypting m with different random elements from Z
∗
N . For

embedding a string of x bit values {a1a2 . . . ax} into a cipher
Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

3692 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 6, JUNE 2023

value of m, the decimal value of a1a2 . . . ax, which is denoted
by dx, is used to replace r in (1) to generate a cipher value cd

by cd = gmdx
N mod N2. In this way, dx is used to introduce

randomness in encrypting the plain text m. To correctly decrypt
m from cd, dx must be relatively prime to N. To include the
case that {a1a2 . . . ax} are all zeros, an extra bit 1 is appended
so that the decimal of the x + 1 bit values {a1a2 . . . ax 1} is
nonzero. By denoting the decimal value as mx, we have

cm = gmmx
N mod N2. (11)

When mx is relatively prime to N, multiplying gm with mx
N

does not affect the decryption of m.
To ensure the correct decryption, the bit length of mx (i.e.,

x+1) needs to be appropriately chosen. Since N is the product
of two prime numbers p and q, mx must be relatively prime to
N if it is smaller than either of p and q. The values of p and
q are not included in K because they are used to generate the
private decryption key k. Nevertheless, mx < p and mx < q
can be easily satisfied by reducing the value of x. For instance,
x can be chosen below (n/4), where n is the bit length of N
to test if mx is relatively prime to N.

B. Data Extraction After Random Element Substitution

As shown in (2), m can be decrypted from the cipher value
cm with k on the receiver side. With the decrypted m, another
integer mcx can be generated by

mcx = cm · (
gm)−1 mod N = mx

N mod N (12)

where (gm)−1mod N is the modular multiplication inverse of
gm, which is an integer so that gm · (gm)−1 ≡ 1 (mod N).
To remove the exponent N in (12), the modular multiplication
inverse of N denoted as N−1 mod λ(N) should be found so
that N · N−1 ≡ 1 (mod λ(N)), where λ(N) is included in k.
Then, the decimal value mx can be obtained by

mx = mcx
N−1 mod λ(N) mod N. (13)

Hence, the hidden bits can be extracted with (12) and (13),
provided that m has been decrypted from cm with (2). The
detailed proof of (13) will be provided in the Appendix.

Besides mx, another integer r in Z
∗
N can be employed in

encryption. Then, a cipher value crm is generated by

crm = gm(rmx)
N mod N2. (14)

Since both mx and r are relatively prime with N, rmx is also
relatively prime with N. Hence, multiplying gm with (rmx)

N

does not affect the decryption of m. That means m can be
decrypted from crm with k. Similar to extracting mx from cm

as shown in (12) and (13), rmx can be retrieved from crm if
rmx ∈ Z

∗
N . After that, the embedded value mx can be calculated

from rmx by knowing the value of r.

C. Data Embedding in Encrypted Domain

Instead of embedding mx in the encryption of m, mx can
also be embedded in the encrypted domain by multiplying
mN

x mod N2 with the cipher value cr = gmrN mod N2 to
generate crm in (14). As the big integer N is included in the

Fig. 2. Hidden bit values a1a2 . . . ax can be obtained by shifting out the
rightmost 0s and the adjacent bit value 1, where n is the bit length of the big
integer N in a Paillier cryptosystem.

public key K, data embedding can be conducted not only in
encryption but also in the encrypted domain.

In summary, a string of x bit values and an extra bit value
“1,” whose decimal value is denoted by mx, can be used as
random element in encryption of m to generate the encrypted
value cm. Suppose mx is relatively prime with N, it can be
correctly extracted by first decrypting cm. Based on the SB
property, mx can also be embedded in the encrypted domain,
while a random element r in Z

∗
N is employed in encryption to

introduce randomness. As r ·mx is relatively prime with N, rmx

can be obtained from crm if the bit length of rmx is less than
n. In that case, mx can be obtained from rmx by knowing r.

D. Combining the SB Method With the RES Method

As the plain-text value is unchanged by applying either the
RES method or the SB method to embed data in a cipher value,
the two methods are combined to achieve data extraction in
multiple scenarios. The RES method is first applied because
the data embedded with it can be kept unchanged after some
processing is performed in the encrypted domain.

For embedding s bit values {b1b2 . . . bs} into the cipher
value cm = gmmx

N mod N2, cm is iteratively multiplied by
2N without changing the plain-text value (i.e., m). Suppose
that the following equation holds after cm is multiplied with
2N for y times

[
gm(

mx · 2y)N mod N2
]

mod 2s = ms (15)

where ms is the decimal value of b1b2 . . . bs. The s-bit value
embedded with the SB method can be extracted with the
modulo operation, that is

m′
s =

[
gm(

mx · 2y)N mod N2
]

mod 2s (16)

where m′
s is the decimal value of the string of s bit values and

m′
s = ms if (15) holds.
Note that an extra bit value “1” has been appended at the

end of {a1a2 . . . ax} when applying the RES method. Given
that x + 1 + y < n, mx · 2y can be correctly extracted from the
cipher value gm(mx ·2y)N mod N2 by first obtaining the plain-
text value m. As shown in Fig. 2, the bit values {a1a2 . . . ax}
can be obtained by right shifting the binary value of mx · 2y.
Specifically, the rightmost y 0s (which were introduced by
multiplying cm with 2N for y times) are shifted out until
the first bit value 1 is encountered. If mx · 2y ≥ N (i.e.,
x + 1 + y ≥ n), the hidden data mx may be destroyed. As y
is exponentially increased with s, the hiding rate (i.e., s) of
the SB method should be controlled to keep mx intact.

In the case that a random element r in Z
∗
N is employed in

encryption, the cipher value crm = gm(rmx)
N mod N2 is also

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LOSSLESS DATA HIDING IN ENCRYPTED IMAGES 3693

Fig. 3. Framework of RDH in a homomorphic encrypted domain before and after processing, respectively.

iteratively multiplied with 2N to embed a string of s bit values
{b1b2 . . . bs}. Suppose that

[
gm(

rmx · 2z)N mod N2
]

mod 2s = ms (17)

after multiplying crm with 2N for z times. The decimal value
hidden with the SB method can be extracted by

m′
s =

[
gm(

rmx · 2z)N mod N2
]

mod 2s. (18)

Given that rmx · 2z < N, rmx · 2z can be correctly extracted
by first decrypting the plain-text value m as discussed in
Section III-A. By choosing an odd r, rmx is also odd so that
it can be separated from the z 0s introduced by multiplied
crm with 2N . As there are z 0s at the end of the extracted
value rmx ·2z, rmx can be obtained by right shifting rmx ·2z to
remove the rightmost 0s. With the random element r used in
encryption, the decimal value mx can be obtained from rmx.
If z ≥ n − 1 − x − bl(r) where bl(r) represents the bit length
of r, mx cannot be extracted but m can be correctly decrypted.
Similarly, the hiding rate s should be controlled to make the
data embedded with the RES method extractable.

IV. TWO LOSSLESS DATA HIDING SCHEMES

In this section, a new framework for RDH-EI is proposed,
which is different from the flowchart illustrated in Fig. 1. In the
proposed framework, data embedding can be conducted before
or after processing in the homomorphic encrypted domain.
Moreover, two schemes are generated by adopting both of the
RES and SB methods for data embedding in different stages.

A. New Framework for RDH-EI

Since applying the RES method does not change the plain
text of a cipher value, some processing may be conducted in
the encrypted domain to generate the desired image. As shown
in Fig. 3, data embedding is conducted in image encryption
by adopting the RES method. The SB method is adopted in
the encrypted domain to embed the data to be extracted with-
out decryption. The data hidden with the SB method can be
extracted before any processing is conducted on the encrypted
image. After homomorphic processing is performed, both the
RES method and the SB method can be applied to generate the
processed image with the hidden data. As the data embedded

Fig. 4. Schematic of the proposed Scheme I for lossless data hiding in
encrypted images.

with the RES method may be kept unchanged by some pro-
cessing in the encrypted domain, two schemes are proposed
regarding in which stage it is adopted.

B. Scheme I: Applying the RES Method in Image Encryption

In this scheme, the receiver needs to set up a Paillier cryp-
tosystem, send the public key K (i.e., N and g) to the image
sender and cloud server, and keep the private key k for image
decryption and data extraction. A potential application sce-
nario of Scheme I is as follows. In the medical care sector,
medical images in archive must be encrypted by regulation.
After storing the encrypted medical images of a patient, the
medical doctor would like to add additional information, such
as blood test results and diagnosis, which happen at a differ-
ent time. With our proposed scheme, the medical doctor can
embed a piece of new information directly into the encrypted
medical images in archive without going through an extra pro-
cess of decrypting the encrypted medical images in archive,
embedding the hidden data, and encrypting the images with
hidden data. In some cases, the encrypted images with hidden
data need to be sent to the patient via cloud. After process-
ing the encrypted image with hidden data if needed, the cloud
server has the capability to add additional information into
the encrypted image. After receiving the encrypted image, the
patient may extract the message hidden by the cloud server
from the ciphertext, obtain the original or processed medical
image by decrypting the encrypted image with the private key
and extract the message hidden by the hospital by referring to
the decrypted image.

As illustrated in Fig. 4, the RES method is applied in the
encryption by the image sender to transmit a piece of message

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

3694 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 6, JUNE 2023

DA to the receiver. In addition, the image sender may transmit
another piece of message DB1 to the cloud server, while the
cloud server sends a piece of message DB2 to the receiver. The
procedure of this scheme consists of three stages.

1) Encryption Stage: The messages DA and DB1 are
embedded into an encrypted image denoted by eK(I), which
is obtained by encrypting a plain-text image I with the public
key K in a Paillier cryptosystem. The encrypted image e’k(I)
is obtained after embedding DA and DB1 into eK(I) with the
following details.

1) To encrypt a pixel value m in I to generate a cipher value
cm with (11), a decimal value denoted by mx (including x
bit values in DA and an extra bit “1”) is embedded. Each
of the last four pixel values (denoted by i) is encrypted
by employing a random element r in Z

∗
N to generate a

cipher value c = girN mod N2.
2) An s-bit value ms in DB1 is embedded by iteratively

multiplying cm by 2N to make (15) hold, where y is
the time of multiplying cm by 2N . The last four cipher
values are not used to embed DB1 into eK(I).

3) Four bits are used to represent the value of s and then
embedded into the last four cipher values by iteratively
multiplying c by 2N until c · (2N)u mod 2 = k, where
k is one of the bit values representing s while u is the
time of multiplying c by 2N .

2) Homomorphic Processing Stage: The cloud server
extracts the message DB1 from e’k(I) before processing it,
then embeds another message DB2 into the processed image,
which is denoted by eK(Ic). The processed image with the
hidden DA and DB2 is generated and denoted as e∗

K(Ic).
1) Extract the four bits hidden in the last four cipher values

of e’k(I) by c · (2N)u mod 2 to obtain the value of s.
2) The message DB1 is extracted from the other cipher

values by applying (16) and collecting the extracted bits.
3) Apply homomorphic processing on e’k(I) to gen-

erate a new encrypted image eK(Ic). For instance,
gm(mx2y)N mod N2 is modified to gm′

(mx2y)N mod N2,
while gi(r2u)N mod N2 is modified to gi′(r2u)N mod N2.

4) Apply the SB method to embed DB2 into eK(Ic) with-
out using the last four cipher values. For instance,
gm′

(mx2y)N mod N2 is modified to gm′
(mx2y′

)N mod N2.
5) Apply the SB method to embed the value of v (4 bits)

into the last four cipher values in eK(Ic) by iteratively
multiplying gi′(r2u)N mod N2 by 2N until

[
gi′

(
r2u′)N

mod N2
]

mod 2 = k (19)

where k is a bit value to be embedded and u′ − u ≥ 0 is
the time of multiplication with 2N to make (19) hold.

3) Receiver Stage: The receiver extracts DB2 from e∗
K(Ic)

without decrypting it, then extracts DA after e∗
K(Ic) is

decrypted with the private key k. The processed image Id is
obtained after decrypting every cipher value in e∗

K(Ic).
1) Extract the four bits hidden in the last four cipher values

of e∗
K(Ic). For a cipher value c′ = gi′ · (r2u′

)N mod N2,
extract one bit value by c′ mod 2 to form the 4-bit
value v.

Fig. 5. Schematic of the proposed Scheme II for lossless data hiding in
encrypted images.

2) Directly extract DB2 from the rest cipher values in
e∗

K(Ic). With the obtained value of v, a v-bit binary value
mv can be extracted from a cipher value by modulo 2v

operation.
3) With the private key k, the processed image Id can be

obtained after decrypting every cipher value in e∗
K(Ic).

The original image I is obtained if the encrypted image
has not been processed in the encrypted domain.

4) With a decrypted value m′ in Id except the last four
pixels, obtain the modular multiplication inverse of gm′

so that mx2y′
can be obtained as calculating mx in (13).

5) Obtain mx from mx2y′
in the way as shown in Fig. 2 by

locating the bit value 1 adjacent to the rightmost y′ 0s.

C. Scheme II: Applying the RES Method After Encryption

In this scheme, the receiver also needs to set up a Paillier
cryptosystem, send the public key K (i.e., N and g) to the
image sender and cloud server. In addition, the image sender
and receiver share the random elements to be used in encryp-
tion. As illustrated in the diagram in Fig. 5, the RES method
is applied in the encrypted domain by the cloud server to send
the confidential message DA to the receiver. Meanwhile, the
image sender can transmit a piece of message DB1 to the cloud
server, and the cloud server can send another message DB2 to
the receiver. The procedure also includes three stages.

1) Encryption Stage: An encrypted image denoted by
eK(I) is obtained by encrypting a plain-text image I with the
public key K. The encrypted image es

k(I) is obtained after
embedding DB1 into eK(I) with the following details.

1) A cipher value cr is generated by encrypting a pixel
value m in I with (1), where r ∈ Z

∗
N is a random integer.

2) An s-bit value b1b2 . . . bs in DB1 is embedded by iter-
atively multiplying cr with 2N to make (9) hold. For
example, the multiplication is iteratively conducted for z
times. The last four cipher values are not used to embed
DB1 into eK(I).

3) Four bits are used to represent the value of s and then
embedded into the last four cipher values by iteratively
multiplying cr with 2N .

2) Homomorphic Processing Stage: The cloud server
extracts the message DB1 from es

k(I) before processing it,
then embeds DA and DB2 into the processed image, which
is denoted by eK(Ic). The processed image with the hidden
DA and DB2 is generated and denoted as e∗

K(Ic).
1) Extract the four bits hidden in the last four cipher values

of es
k(I) with modulo 2 operation to obtain the value of s.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LOSSLESS DATA HIDING IN ENCRYPTED IMAGES 3695

Fig. 6. Random element in a cipher value after: (a) encryption with r ∈ Z
∗
N

by multiplying with rN , (b) iteratively multiplying with 2N (i.e., applying
the SB method), (c) multiplying with mx

N to apply the RES method, and
(d) iteratively multiplying with 2N .

2) The message DB1 is extracted from the other cipher val-
ues by conducting modulo 2s operation and collecting
the extracted bits.

3) Apply homomorphic processing on es
k(I) to generate a

new encrypted image eK(Ic).
4) Embed DA into eK(Ic) by multiplying a cipher value

with mx
N except the last 4 ones. Note that an extra bit

1 is included in mx following the x bit values.
5) Embed DB2 into the cipher image with the hidden DA

by applying the SB method at a rate of v bits per pixel
(bpp).

6) Apply the SB method to embed the value of v (4 bits)
into the last four cipher values.

3) Receiver Stage: When e∗
K(Ic) is received, the receiver

extracts DB2 without image decryption, then extracts DA after
the processed image is decrypted with the private key k.

1) Extract the four bits hidden in the last four cipher values
of e∗

K(Ic) to obtain the value of v.
2) Extract DB2 from the other cipher values in e∗

K(Ic) by
performing modulo 2v operation.

3) Generate a plain-text image Id with the private key k
after decrypting every cipher value in e∗

K(Ic). The orig-
inal image I is obtained if the encrypted image has not
been processed in the encrypted domain.

4) With a decrypted value m′ in Id except the last four
pixels, obtain the modular multiplication inverse of gm′

so that the random element in each cipher value can be
calculated, similar to calculating mx with (12) and (13).

5) Within the obtained base, the 0s introduced by applying
the SB method can be separated by identifying the bit
value 1 appended at the end of mx, as shown in Fig. 6.
So mx can be extracted by knowing the random element
r, which is odd and has been used in the encryption
stage.

Compared with Scheme I which is suitable for the image
sender to transmit confidential information to the receiver,
Scheme II is suitable for the cloud server to send a piece
of a confidential message to the receiver. In both schemes,
the private decryption key is kept by the receiver while the
hidden data can be retrieved in multiple scenarios (i.e., after
image decryption, before decryption, and before homomorphic
processing).

Fig. 7. Gray-level test images with the original size of 512×512. (a) Mandrill.
(b) Boat. (c) Cameraman. (d) Crowd. (e) Sailboat. (f) Lena. (g) Male. (h) Pens.
(i) Peppers. (j) F-16.

V. EXPERIMENTS AND NUMERICAL RESULTS

To evaluate the performances of the proposed method and
schemes, ten grayscale images were downloaded from the
USC website [46] and used in the experiments, as shown in
Fig. 7. A LOGO image called “SCUT” was also employed for
performance testing. All of the test images were converted to
gray-level ones at a resolution of 512 × 512 pixels. The pro-
grams of data encryption and decryption, image homomorphic
processing, data embedding, and extraction were all developed
with Java Eclipse SDK and executed on a 64-bit PC with Intel
Core CPU @4.2 GHz and 16-GB RAM. The Paillier cryp-
tosystem was built by setting the bit length of N (i.e., n) to
1024.

In the following, the performance of Schemes I and II is
first evaluated and compared, including embedding capacity,
applications, and compatibility with homomorphic process-
ing. Then, the security of the RES method and two proposed
schemes is analyzed, respectively. After that, the computa-
tional complexity of the RES method and two schemes is
analyzed and compared with some representative schemes for
RDH in the encrypted domain (e.g., [9], [11], [23], [25], and
[29]). Finally, the RES method and two proposed schemes
are compared with the recent RDH schemes based on Paillier
cryptosystem such as [23]–[29].

A. Performance Evaluation of Schemes I and II

The performance of the two proposed schemes is evaluated
and compared as follows.

1) Data Extraction and Applications: With Scheme I, the
message to be extracted after image decryption is hidden by
the image sender, such as a digital signature or other content-
associated information. With Scheme II, the message to be
extracted after image decryption is embedded by the cloud
server, such as the confidential information related to the pro-
cessing that has been conducted. In both schemes, the private
decryption key is required to extract the data hidden by apply-
ing the RES method. The cryptosystem should be set up by the
receiver, and the public key (i.e., N and g) should be previously
shared with the image sender and cloud server, respectively.
In applying Scheme II, the random elements to be used in
encryption need to be shared between the image sender and
receiver.

When no processing was conducted on the encrypted image
with hidden data, data extraction was correctly performed with

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

3696 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 6, JUNE 2023

TABLE II
EMBEDDING CAPACITY OF THE PROPOSED SCHEMES (n = 1024)

both schemes. By applying the SB method, the image sender
can send a message to the cloud server by hiding it in the
encrypted image, while the cloud server can send another mes-
sage to the receiver by hiding it into the encrypted image.
Data extraction in three scenarios (i.e., after image decryption,
before image decryption, and before homomorphic processing)
was achieved with both schemes, respectively.

2) Embedding Capacity: When Scheme I is applied, a hid-
ing rate around 255 bpp is obtained with the RES method
for n = 1024. As shown in Table II, the hiding rates in the
encrypted domain are affected by the hiding rate of the RES
method and the bit length of the random element adopted in
encryption. In Table II, the random element is denoted by r
and its bit length is denoted as bl(r). In general, the hiding
rates with the SB method are reduced with a larger bl(r). This
is because the times of multiplying a cipher value with 2N

Fig. 8. Average plain-text image can be generated from two input images
encrypted with a Paillier cryptosystem. One of the input images has been
encrypted with the proposed Scheme I to hide extra data, which can be
extracted from the encrypted sum image after decryption. (a) Plain-text input
image Man. (b) Plain-text input image SCUT. (c) Encrypted sum image
obtained by adding two encrypted images (modulo 256 for illustration).
(d) Average image generated by decrypting the sum image and dividing every
pixel value by 2.

are limited to maintain the data hidden by the RES method.
In the experiments, the highest rate of data extraction before
homomorphic processing was 6 bpp when the RES method
was applied in image encryption. When the sum of bl(r) and
the hiding rate with the RES method was close to n, no more
data could be embedded with the SB method to maintain the
data hidden with the RES method.

The hiding rates obtained with Scheme II are also listed in
Table II, which are largely affected by bl(r). Different from
Scheme I, bl(r) must be larger than zero to introduce random-
ness in encryption with Scheme II. For each bl(r) value, six
data hiding rates were obtained by applying the RES method
after homomorphic processing, respectively. For the conve-
nience of comparisons, the same rates were obtained with the
RES method as those obtained with Scheme I. It can be seen
that the three hiding rates affect each other. As the hiding rates
before homomorphic processing can be as high as 14 bpp, the
hiding rates with the RES method are reduced to zeros while
the hiding rates after homomorphic processing are also 14 bpp.
As shown in Fig. 6, the bit length of a random element in a
cipher value should not exceed n to ensure that the base is less
than N. Otherwise, the data embedded with the RES method
cannot be correctly extracted.

3) Compatible With Additive Homomorphic Processing: To
test the compatibility with processing in the encrypted domain,
two test images “Man” and “SCUT” were used to generate
a sum image in the encrypted domain, as shown in Fig. 8.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LOSSLESS DATA HIDING IN ENCRYPTED IMAGES 3697

First, a Paillier cryptosystem was set up by the receiver and
the public key was shared with the image sender. In addition,
a pixel value mj in Man was encrypted with (1) by restrict-
ing the bit length of random element r less than (3n/4). To
embed extra data by applying Scheme I, a pixel value ij in
SCUT was encrypted by using (11), where an (x + 1)-bit
value mx was used in encryption with x < (n/4). For two
pixel values mj and ij, their cipher values gmj rN mod N2 and
gij mx

N mod N2 were multiplied to generate a new cipher value
gmj+ij(rmx)

N mod N2. The image illustrated in Fig. 8(c) was
generated by performing modulo 256 on every cipher value in
the sum image. Since both of r and mx were relatively prime
to N, mj + ij was correctly decrypted. By dividing mj + ij
with 2, the average plain-text image was yielded, which is
shown in Fig. 8(d). With the values of mj + ij and r used
in encrypting mj, the hidden data mx were correctly extracted
from gmj+ij(rmx)

N mod N2. Hence, adding two images in the
encrypted domain was performed with Scheme I, and the bit
values hidden in one encrypted image were correctly retrieved
after decrypting the sum image.

With Scheme II, the encrypted image is processed as nor-
mal and the desired image is always obtained after decrypting
the processed image. In the experiments, two plain-text images
“Lena” and “SCUT” were encrypted by adopting random ele-
ments r1 and r2, respectively. Then, the two encrypted images
were added in the encrypted domain so that a sum of encrypted
image was obtained. Given that bl(r1) + bl(r2) = (3n/8), 255
bits were hidden into each cipher value of the sum image by
applying the RES method. In addition, extra 4 bits were fur-
ther hidden into each cipher value by applying the SB method
to generate the encrypted image with the hidden data, as illus-
trated in Fig. 9. The bits hidden by applying the SB method
were directly retrieved, while the bits embedded with the RES
method were correctly extracted by referring to r1 and r2. After
dividing every decrypted pixel value by 2, an average image
was generated from the encrypted image.

B. Security Analysis

Security is an important aspect of data embedding with
keys [49]–[51]. Within a Paillier cryptosystem, randomness
is introduced by adopting a random element [e.g., r in (1)] in
encryption to generate a cipher value. With the RES method,
a string of bit values a1a2 . . . ax and an extra bit 1, which dec-
imal value is denoted by mx, are substituted for the random
element or appended into the random element. Since the value
of N is known in encryption, the bit length (i.e., x + 1) can
be adaptively chosen to ensure that mx is in Z

∗
N . Note that mx

is relatively prime to N when x + 1 is smaller than the bit
lengths of p and q, respectively. Since the modulo N2 opera-
tion is performed in (1) and (15), multiplying mx

N to embed
mx does not undermine the security of encryption. In addition,
the bit length of mx

N (i.e., (x + 1) · N) is longer than that of
N2 (i.e., 2n) because N >> n. Consequently, randomness is
always introduced in encryption by applying the RES method
for data embedding.

With Scheme I, the data embedded with the RES method
can be protected by employing a random element r in

Fig. 9. Average image can be generated after adding two encrypted images in
a Paillier cryptosystem, embedding two pieces of messages into the resultant
sum image, decrypting the sum image with the hidden data, and dividing
every decrypted pixel value by 2. The hidden messages can be extracted
before and after image decryption, respectively. (a) Plain-text input image
Lena. (b) Plain-text input image SCUT. (c) Encrypted sum image with the
hidden data (modulo 256 for illustration). (d) Average image generated from
the encrypted sum image by dividing every decrypted pixel value by 2.

encryption, which should be shared by the image sender and
receiver. For security enhancement, the data hidden by the SB
method can be previously encrypted so that the extracted data
need to be decrypted with the correct key. With Scheme II,
the encryption is conducted by choosing an odd random ele-
ment r. Since rN is multiplied in encryption such as in (1),
its bit length (i.e., bl(r)N) is much longer than the bit length
of N2 (i.e., 2n). So the security level of the encryption is not
degraded by choosing a relatively smaller r.

C. Computational Complexity Analysis

To embed data into a grayscale image consisting of Y pix-
els, the computational complexity of applying the RES method
is O(Y) because X bit values can be simultaneously embed-
ded into one cipher pixel value. The computational complexity
of applying the VE method in [25] to embed X bit values
into one cipher value is O(XY) because each bit value needs
to be embedded at each time. When the SB method in [25]
is adopted, the computational complexity is O(2XY) because
one out of 2X possible cipher values needs to be found out to
embed X bit values into one cipher pixel value. The computa-
tional complexity of data embedding with the scheme in [29]
is also O(2XY) because the modified cipher value should fall
into one of 2X subintervals to embed X bit values into one
cipher value. In Schemes I and II, the RES method is combined

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

3698 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 6, JUNE 2023

TABLE III
COMPUTATIONAL COMPLEXITY OF APPLYING THE PROPOSED SCHEMES AND THOSE IN [9], [11], [23], [25],

AND [29] TO EMBED X BPP VALUE IN AN IMAGE WITH Y PIXELS

TABLE IV
PERFORMANCE COMPARISONS BETWEEN THE PROPOSED SCHEMES AND THOSE IN [23]–[29]

with the SB method to embed three parts of data, respec-
tively. Given that the same amount of data is hidden at each
stage, the computational complexity for a total hiding rate of
X bpp is O((2(X/3) + 2(X/3) + 1)Y), which can be simplified
to O(2(X/3)+1Y). In addition, the computational complexity of
the schemes in [9], [11], and [23] has been analyzed in the lit-
erature (e.g., [9] and [29]), which is summarized in Table III.
Note that in the computational complexity of the scheme in [9],
K is the number of atoms in the dictionary, and L is the number
of nonzero elements in each coefficient vector.

The computational complexity of extracting the hidden data
is O(Y) for the schemes in [23] and [29], the SB method, and
the RES method, which is lower than the complexity of data
embedding. The reason is that X bit values can be simultane-
ously and directly extracted from one cipher value with these
schemes, respectively. The computational complexity of data
extraction with Schemes I and II is also O(y) because only the
RES method and the SB method are adopted. With the scheme
in [9], data extraction is also computationally easier because
smooth areas have been marked in data embedding and there
is no more need to sort them for data extraction. Specifically,
the complexity of data extraction is O(KLY) by removing the
second part O(Ylog

√
Y). As for the scheme in [11] and the

VE method, the computational complexity of data extraction
is the same as that of data embedding because one-bit value is
extracted at each time. From Table III, it can be seen that the
proposed RES method has lower computational complexity

than the schemes based on the Paillier cryptosystem. Since
there are usually thousands of pixels in an image, Schemes I
and II have lower computational complexity than the scheme
in [23] for X ≤ 3. Meanwhile, Schemes I and II have lower
computational complexity than the scheme in [29] and the SB
method for X > (3/2). Despite that the Paillier cryptosystem
has much higher computational complexity than encryption
with a cipher stream, the RES method has close or even lower
computational complexity than the RDH schemes in [9] and
[11] for data embedding.

D. Comparisons With Schemes Based on Paillier
Cryptosystem

In Table IV, the properties of the proposed schemes are
compared with those of the schemes in [23]–[29]. The schemes
in [20]–[22] were not included in the comparisons because
they are not for the Paillier cryptosystem. In Table IV, the max-
imum data extraction rate in the encrypted domain represents
the amount of data that can be extracted without decryp-
tion, while the one after decryption is the amount of bits that
can be retrieved after a plain-text image is obtained from the
encrypted one.

The combined scheme proposed in [23], the MCG scheme
proposed in [24], and the scheme proposed in [27] are
similar because a preprocessing is required in applying
them. As data extraction can be separated from image

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LOSSLESS DATA HIDING IN ENCRYPTED IMAGES 3699

decryption, they are not compatible with homomorphic
processing.

No preprocessing is needed with the method in [26], the VE
method, the SB method, or the method proposed in [29]. With
the SB method and the method in [29], data embedding and
extraction are both performed in the encrypted domain, which
can be separated from image decryption. With the VE and the
histogram shifting method in [26], the embedded data can only
be extracted in the plain-text domain so that data extraction
cannot be separated from decryption. Moreover, the original
image was changed after applying the two methods for data
embedding in the encrypted domain. Although homomorphic
processing may be performed before applying the methods
in [25], [26], and [29] and the scheme proposed in [28], the
embedded data will be altered by the subsequent processing
made to the encrypted image with the hidden data.

With the RES method, no preprocessing is needed and the
plain-text image is preserved after data embedding. The hidden
data can only be extracted after image decryption, and the
encrypted image may be used as normal after data embedding
in encryption or in the encrypted domain. For n=1024, the
maximum data extraction rate after decryption was 1022 bpp.

With the proposed Scheme I, data extraction before and
after image decryption is enabled in multiple scenarios (i.e.,
before homomorphic processing, before image decryption, and
after decryption). For n = 1024, the maximum data extraction
rate after decryption may be set to 255 bpp. In that case, the
maximum rates for data extraction before being processed and
before being decrypted are both 6 bpp.

In Scheme II, an odd random element should be employed
in image encryption, which serves as a secret key to extract
the data hidden by the RES method. Similar to Scheme I, the
embedding capacity of Scheme II consists of three parts, and
the maximum hiding rate with the RES method may be set
to 255 bpp for n = 1024. When the bit length of the random
element is no more than (n/4), the maximum rate before being
processed and that before being decrypted are both 5 bpp.

The performance comparisons show that the proposed RES
method, Schemes I and II are compatible with some processing
in the encrypted domain. The desired plain-text image can be
obtained by applying homomorphic processing on encrypted
images with hidden data. Besides, comparable data hiding
rates are obtained with the proposed schemes in different
scenarios, respectively.

VI. CONCLUSION

We have proposed a new preprocessing-free and lossless
data hiding method for the Paillier cryptosystem with low com-
putational complexity, namely, RES. A string of bit values can
be simultaneously hidden into a cipher value without chang-
ing its plain-text value, while data extraction after decryption
has been achieved and mathematically proved. It has been
analyzed that randomness introduced in encryption can be
exploited to carry extra data without degrading the secu-
rity level. Besides preserving the file size of an encrypted
image, the hidden data may be correctly retrieved after some
processing has been conducted in the encrypted domain.

To extract the hidden data in multiple scenarios, two
schemes have been proposed by adopting the RES and
SB method, respectively. Compared with the state-of-the-
art schemes, one advantage of the proposed schemes is
that data embedding does not interfere with the usage of
encrypted images. Subsequently, an encrypted image with hid-
den data can be processed as normal, and the desired image
can be directly obtained after homomorphic processing is
applied. Hence, the proposed lossless data hiding schemes
are more suitable for the encrypted images to be processed
before decryption. One direction of our future work is to
study lossless data hiding schemes for other homomorphic
cryptosystems such as those in [39]–[42].

APPENDIX

The following theorems and definitions in number theory
(e.g., [52]) are used to prove (13) in Section III-A.

Euler’s Theorem: If a is a positive integer and N is an integer
relatively prime to a, then

aφ(N) ≡ 1 (mod N)

where φ(N) is the number of positive integers between 1 and
N that are relatively prime to N.

Corollary 1: If a and N are two relatively prime positive
integers (i.e., their greatest common divisor equals to 1, gcd
(a, N) = 1), there exists a positive integer d satisfying

a × d ≡ 1 (mod N).

Then, d is called the modular multiplication inverse of a,
denoted by a−1 mod N. For instance, aφ(N)−1 is an inverse
of a modulo N because a × aφ(N)−1 = aφ(N) ≡ 1 (mod N).

Theorem 1: Let N = pe1
1 pe2

2 · · · pek
k be the prime-power

factorization of the positive integer N. Then

φ(N) = N

(
1 − 1

p1

)
· · ·

(
1 − 1

pk

)
.

Definition 1: The universal exponent of a positive integer N
is a positive integer U so that

aU ≡ 1 (mod N)

holds for every integer a relatively prime to N. By Euler’s
theorem, we know that φ(N) is a universal exponent of N.

Definition 2: The least universal exponent of a positive
integer N is denoted as λ(N).

Theorem 2: Suppose that N is a positive integer with
prime-power factorization, that is, N = pe1

1 pe2
2 · · · pek

k , where
e1, e2, . . . , ek > 0 are positive integers. Then, the minimal
universal exponent of N is given by

λ(N) =

⎧⎪⎨
⎪⎩

φ(N), for N = pe, with p = 2 and e ≤ 2, or p ≥ 3
φ(N)

2 , for N = 2e and e ≥ 3
lcm

(
λ
(
pe1

1

)
, λ

(
pe2

2

)
, . . . , λ(pek

k)
)
, otherwise.

Now, we prove that the value mx embedded into a cipher
value cm in (11) can be extracted with (13), that is

mx = mcx
N−1 mod λ(N) mod N

where mcx is calculated by using (12).

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

3700 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 6, JUNE 2023

Proof: In a Paillier cryptosystem, N is set at the product of
two large prime numbers p and q. In Euler’s theorem, φ(N)

is defined, which can be calculated according to Theorem 1
by φ(N) = (p − 1)(q − 1).

When using the RES method, it is required that mx ∈ Z
∗
N

so that the greatest common divisor gcd (mx, N) = 1. By
Definitions 1 and 2, we know

mx
λ(N) mod N = 1 (20)

where λ(N) is the least universal exponent of N. Furthermore,
λ(N) can be calculated according to Theorem 2.

Since N = pq where p and q are two large prime numbers,
we know that λ(N) is the least common multiple of λ(p) and
λ(q). According to Theorem 1, we know that λ(p) = p − 1
and λ(q) = q − 1 so that λ(N) = lcm (p − 1, q − 1), where
lcm(· · ·) represents the least common multiple of a set of
positive integers. Hence, φ(N) is a multiple of λ(N). Since
gcd (φ(N), N) = 1 holds for any Paillier cryptosystem, we
know that gcd (λ(N), N) = 1.

According to Corollary 1, there exists a positive integer u
satisfying N×u ≡ 1 (mod λ(N)), namely, N×u = λ(N)×v+1,
where v = (N × u − 1/λ(N)) is a positive integer. So u is an
inverse of N modulo λ(N), denoted by u = N−1 mod λ(N).

According to (12), i.e., mcx = mN
x mod N, we have

mu
cx ≡ (

mN
x

)u
mod N ≡ mNu

x mod N.

∵ Nu = λ(N)v + 1, we have:

mu
cx ≡ mλ(N)v+1

x mod N ≡
(

mλ(N)
x

)v × mx mod N.

∵ mx
λ(N) mod N = 1, i.e., (20), we obtain

mu
cx ≡ mx mod N.

∵ mx ∈ Z
∗
N , we have

mx = mN−1 mod λ(N)
cx mod N.

REFERENCES

[1] Y. Q. Shi, X. Li, X. Zhang, H.-T. Wu, and B. Ma, “Reversible data
hiding: Advances in the past two decades,” IEEE Access., vol. 4,
pp. 3210–3237, 2016.

[2] X. Zhang, “Reversible data hiding in encrypted images,” IEEE Signal
Process. Lett., vol. 18, no. 4, pp. 255–258, Apr. 2011.

[3] X. Zhang, “Separable reversible data hiding in encrypted image,” IEEE
Trans. Inf. Forensics Security, vol. 16, pp. 826–832, 2012.

[4] X. Wu and W. Sun, “High-capacity reversible data hiding in encrypted
images by prediction error,” Signal Process., vol. 104, pp. 387–400,
Nov. 2014.

[5] D. Xu, R. Wang, and Y. Q. Shi, “Data hiding in encrypted H.264/AVC
video streams by codeword substitution,” IEEE Trans. Inf. Forensics
Security, vol. 9, pp. 596–606, 2014.

[6] F. Huang, J. Huang, and Y.-Q. Shi, “New framework for reversible
data hiding in encrypted domain,” IEEE Trans. Inf. Forensics Security,
vol. 11, pp. 2777–2789, 2016.

[7] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, “Reversible data hiding
in encrypted images by reserving room before encryption,” IEEE Trans.
Inf. Forensics Security, vol. 8, pp. 553–562, 2013.

[8] J. Zhou, W. Sun, L. Dong, X. Liu, O. C. Au, and Y. Y. Tang, “Secure
reversible image data hiding over encrypted domain via key modulation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 3, pp. 441–452,
Mar. 2016.

[9] X. Cao, L. Du, X. Wei, X. Guoand, and D. Meng, “High capac-
ity reversible data hiding in encrypted images by patch-level sparse
representation,” IEEE Trans. Cybern., vol. 46, no. 5, pp. 1132–1143,
May 2016.

[10] Z. Qian and X. Zhang, “Reversible data hiding in encrypted image with
distributed source encoding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 4, pp. 636–646, Apr. 2016.

[11] P. Puteaux and W. Puech, “An efficient MSB prediction-based method
for high-capacity reversible data hiding in encrypted images,” IEEE
Trans. Inf. Forensics Security, vol. 13, pp. 1670–1681, 2018.

[12] Z. Qian, H. Zhou, X. Zhang, and W. Zhang, “Separable reversible data
hiding in encrypted JPEG bitstreams,” IEEE Trans. Dependable Secure
Comput., vol. 15, no. 6, pp. 1055–1067, Nov./Dec. 2018.

[13] J. He, J. Chen, W. Luo, S. Tang, and J. Huang, “A novel high-capacity
reversible data hiding scheme for encrypted JPEG bitstreams,” IEEE
Trans. Circuits Syst. Video Technol., vol. 29, no. 12, pp. 3501–3515,
Dec. 2019.

[14] D. Xiao, F. Li, M. Wang, and H. Zheng, “A novel high-capacity
data hiding in encrypted images based on compressive sensing progres-
sive recovery,” IEEE Signal Process. Lett., vol. 27, no. 2, pp. 296–300,
Feb. 2020.

[15] F. Peng, W. Jiang, Y. Qi, Z.-X. Lin, and M. Long, “Separable robust
reversible watermarking in encrypted 2D vector graphics,” IEEE Trans.
Circuits Syst. Video Technol, vol. 30, no. 8, pp. 2391–2405, Aug. 2020.

[16] F. Chen, Y. Yuan, H. He, M. Tian, and H.-M. Tai, “Multi-MSB com-
pression based reversible data hiding scheme in encrypted images,”
IEEE Trans. Circuits Syst. Video Technol, vol. 31, no. 3, pp. 905–916,
Mar. 2021.

[17] B. Chen, W. Lu, J. Huang, J. Wen, and Y. Zhou, “Secret sharing based
reversible data hiding in encrypted images with multiple data-hiders,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 2, pp. 978–991,
Mar./Apr. 2022.

[18] Y. Du, Z. Yin, and X. Zhang, “High capacity lossless data hiding in JPEG
bitstream based on general VLC mapping,” IEEE Trans. Dependable
Secure Comput., vol. 19, no. 2, pp. 1420–1433, Mar./Apr. 2022.

[19] Z. Hua, Y. Wang, S. Yi, Y. Zhou, and X. Jia, “Reversible data hid-
ing scheme in encrypted images using cipher-feedback secret sharing,”
IEEE Trans. Circuits Syst. Video Technol., early access, Jan. 6, 2022,
doi: 10.1109/TCSVT.2022.3140974.

[20] M. Li, D. Xiao, Y. Zhang, and H. Nan, “Reversible data hiding in
encrypted images using cross division and additive homomorphism,”
Signal Process. Image Commun., vol. 39, pp. 234–248, Nov. 2015.

[21] Y. Ke, M. Zhang, J. Liu, T. Su, and X. Yang, “A multilevel reversible data
hiding scheme in encrypted domain based on LWE,” J. Vis. Commun.
Image Represent., vol. 54, pp. 133–144, Jul. 2018.

[22] Y. Ke, M.-Q. Zhang, J. Liu, T.-T. Su, and X.-Y. Yang, “Fully homomor-
phic encryption encapsulated difference expansion for reversible data
hiding in encrypted domain,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 30, no. 8, pp. 2353–2365, Aug. 2020.

[23] X. Zhang, J. Long, Z. Wang, and H. Cheng, “Lossless and reversible data
hiding in encrypted images with public key cryptography,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 9, pp. 1622–1631, Sep. 2016.

[24] S. Xiang and X. Luo, “Reversible data hiding in homomorphic encrypted
domain by mirroring ciphertext group,” IEEE Trans. Circuits Syst. Video
Technol., vol. 28, no. 11, pp. 3099–3110, Nov. 2018.

[25] H.-T. Wu, Y.-M. Cheung, and J. Huang, “Reversible data hiding in
paillier cryptosystem,” J. Vis. Commun. Image Represent., vol. 40,
pp. 765–771, Oct. 2016.

[26] M. Li and Y. Li, “Histogram shifting in encrypted images with public
key cryptosystem for reversible data hiding,” Signal Process., vol. 130,
pp. 190–196, Jan. 2017.

[27] H. T. Wu, Y. M. Cheung, Z. Yang, and S. Tang, “A high-capacity
reversible data hiding method for homomorphic encrypted images,” J.
Vis. Commun. Image Represent., vol. 62, pp. 87–96, Jul. 2019.

[28] H. T. Wu, Y. M. Cheung, Z. Zhuang, and S. Tang, “Reversible data hid-
ing in homomorphic encrypted images without preprocessing,” in Proc.
20th World Conf. Inf. Security Appl., vol. 11897, 2019, pp. 141–154.

[29] S. Zheng, Y. Wang, and D. Hu, “Lossless data hiding based on homomor-
phic cryptosystem,” IEEE Trans. Dependable Secure Comput., vol. 18,
no. 2, pp. 692–705, Mar./Apr. 2021.

[30] L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, ‘Reversible image
watermarking using interpolation technique,” IEEE Trans. Inf. Forensics
Security, vol. 5, pp. 187–193, 2010.

[31] H. T. Wu, and J. Huang, “Reversible image watermarking on prediction
error by efficient histogram modification,” Signal Process., vol. 92,
no. 12, pp. 3000–3009, Dec. 2012.

[32] X. Li, W. Zhang, X. Gui, and B. Yang, “Efficient reversible data hiding
based on multiple histograms modification,” IEEE Trans. Inf. Forensics
Security, vol. 10, pp. 2016–2027, 2015.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCSVT.2022.3140974

WU et al.: LOSSLESS DATA HIDING IN ENCRYPTED IMAGES 3701

[33] B. Ou and Y. Zhao, “High capacity reversible data hiding based on
multiple histogram modification,” IEEE Trans. Circuits Syst. Video
Technol., vol. 30, no. 8, pp. 2329–2342, Aug. 2020.

[34] I. C. Dragoi and D. Coltuc, “Adaptive pairing reversible watermarking,”
IEEE Trans. Image Process., vol. 25, pp. 2420–2422, 2016.

[35] J. Wang, J. Ni, X. Zhang, and Y.-Q. Shi, “Rate and distortion
optimization for reversible data hiding using multiple histogram shift-
ing,” IEEE Trans. Cybern., vol. 47, no. 2, pp. 315–326, Feb. 2017.

[36] F. Peng, Z. Lin, X. Zhang, and M. Long, “Reversible data hiding in
encrypted 2D vector graphics based on reversible mapping model for real
numbers,” IEEE Trans. Inf. Forensics Security, vol. 14, pp. 2400–2411,
2019.

[37] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” in Foundations of Secure Computation. New
York, NY, USA: Academia, 1978, pp. 169–179.

[38] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology (EUROCRYPT) (Lecture
Notes in Computer Science 1592). Heidelberg, Germany: Springer, 1999,
pp. 223–238.

[39] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st ACM Symp. Theory Comput., 2009, pp. 169–178.

[40] Z. Brakershi and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” SIAM J. Comput., vol. 43, no. 2,
pp. 831–871, 2014.

[41] Z. Brakershi, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” ACM Trans. Comput.
Theory, vol. 6, no. 3, pp. 1–36, 2014.

[42] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based pub-
lick key cryptosystem,” in Proc. 3rd Int. Symp. Algorithmic Number
Theory, 1998, pp. 267–288.

[43] M. Barni, T. Kalker, and S. Katzenbeisser, “Inspiring new research in
the field of signal processing in the encrypted domain,” IEEE Signal
Process. Mag., vol. 30, no. 2, p. 16, Mar. 2013.

[44] T. Bianchi, A. Piva, and M. Barni, “Composite signal representation for
fast and storage-efficient processing of encrypted signals,” IEEE Trans.
Inf. Forensics Security, vol. 5, pp. 180–187, 2010.

[45] C.-Y. Hsu, C.-S. Lu, and S.-C. Pei, “Image feature extraction in
encrypted domain with privacy-preserving SIFT,” IEEE Trans. Image
Process., vol. 21, no. 11, pp. 4593–4607, Nov. 2012.

[46] “USC-SIPI Image Database.” [Online]. Available:
http://sipi.usc.edu/database/ (Accessed: Apr. 3, 2022).

[47] A. V. Subramanyam, S. Emmanuel, and M. S. Kankanhalli, “Robust
watermarking of compressed and encrypted JPEG2000 images,” IEEE
Trans. Multimedia, vol. 14, no. 3, pp. 703–716, Jun. 2012.

[48] J. Fridrich, M. Goljan, P. Lisonek, and D. Soukal, “Writing on wet
paper,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3923–3935,
Oct. 2005.

[49] Y.-G. Wang, G. Zhu, S. Kwong, and Y.-Q. Shi, “A study on the security
levels of spread-spectrum embedding schemes in the WOA framework,”
IEEE Trans. Cybern., vol. 48, no. 8, pp. 2307–2320, Aug. 2018.

[50] W. Lu, J. Chen, J. Zhang, J. Huang, J. Weng, and Y. Zhou,
“Secure halftone image steganography based on feature space and
layer embedding,” IEEE Trans. Cybern., early access, Oct. 23, 2020,
doi: 10.1109/TCYB.2020.3026047.

[51] S. Liu, C. Li, and Q. Hu, “Cryptanalyzing two image encryp-
tion algorithms based on a first-order time-delay system,”
IEEE Trans. Multimedia, early access, Sep. 22, 2021,
doi: 10.1109/MMUL.2021.3114589.

[52] J. H. Silverman, A Friendly Introduction to Number Theory, 4th ed.
Upper Saddle River, NJ, USA: Pearson Educ., 2013.

Hao-Tian Wu (Senior Member, IEEE) received
the B.E. and M.E. degrees from the Harbin
Institute of Technology, Harbin, China, in 2002
and 2004, respectively, and the Ph.D. degree from
the Department of Computer Science, Hong Kong
Baptist University, Hong Kong, in 2007.

He is currently an Associate Professor with the
School of Computer Science and Engineering, South
China University of Technology, Guangzhou, China.
His research interests include reversible data hiding,
privacy preservation, homomorphic encryption, and
blockchain.

Dr. Wu serves as an Associate Editor for the EURASIP Journal on Image
and Video Processing and an Invited Reviewer for a number of international
journals and conferences, such as IEEE ICME.

Yiu-Ming Cheung (Fellow, IEEE) received the
Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, in 2000.

He is currently a Full Professor with the
Department of Computer Science, Hong Kong
Baptist University, Hong Kong. His current research
interests include machine learning, pattern recogni-
tion, visual computing, and optimization.

Prof. Cheung serves as an Associate Editor for the
IEEE TRANSACTIONS ON NEURAL NETWORKS

AND LEARNING SYSTEMS, IEEE TRANSACTIONS ON CYBERNETICS,
Pattern Recognition, and Neurocomputing. He is a Fellow of AAAS, IET,
and BCS.

Zhenwei Zhuang received the bachelor’s degree
from the Guangdong University of Foreign Studies,
Guangzhou, China, in 2018, and the Master of
Engineering degree from the South China University
of Technology, Guangzhou, in 2021.

He is currently with ByteDance Technology
Company Ltd., Beijing, China, as an Engineer of
Research and Development. His research interests
include reversible data hiding in encrypted domain
and information hiding in 3-D mesh models.

Lingling Xu received the B.Sc. and M.Sc. degrees
in mathematics from Shandong University, Jinan,
China, in 2005 and 2008, respectively, and the Ph.D.
degree in communication and information system
from Sun Yat-sen University, Guangzhou, China, in
2011.

She is currently an Associate Professor with the
School of Computer Science and Engineering, South
China University of Technology, Guangzhou. Her
research interests include cryptography, data secu-
rity, and privacy preserving in cloud computing and
big data.

Jiankun Hu (Senior Member, IEEE) received the
B.E. degree from Hunan University, Changsha,
China, in 1983, the Ph.D. degree in control engineer-
ing from the Harbin Institute of Technology, Harbin,
China, in 1993, and the master’s by research degree
in computer science and software engineering from
Monash University, Melbourne, VIC, Australia, in
2000.

He is a Full Professor with the School of
Engineering and Information Technology, University
of New South Wales, Canberra, ACT, Australia. He

has worked with Ruhr University, Bochum, Germany, on the prestigious
German Alexander von Humboldt Fellowship from 1995 to 1996, and a
Research Fellow with Melbourne University, Melbourne, from 1998 to 1999.
His main research interest is in the field of cyber security, including image pro-
cessing, forensics, and machine learning, where he has published many papers
in high-quality conferences and journals, including IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE.
Prof. Hu has served on the editorial board of up to seven international

journals, including the top venue IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY as a Senior Area Editor and served as the
Security Symposium Chair of IEEE flagship conferences of IEEE ICC and
IEEE Globecom. He has obtained ten Australian Research Council (ARC)
grants and has served at the prestigious Panel of Mathematics, Information and
Computing Sciences, ARC ERA (The Excellence in Research for Australia)
Evaluation Committee.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on May 18,2023 at 08:15:10 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCYB.2020.3026047
http://dx.doi.org/10.1109/MMUL.2021.3114589

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

