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Robust Tensor SVD and Recovery
With Rank Estimation
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Abstract—Tensor singular value decomposition (t-SVD) has
recently become increasingly popular for tensor recovery under
partial and/or corrupted observations. However, the existing
t-SVD-based methods neither make use of a rank prior nor
provide an accurate rank estimation (RE), which would limit
their recovery performance. From the practical perspective, the
tensor RE problem is nontrivial and difficult to solve. In this
article, we, therefore, aim to determine the correct rank of an
intrinsic low-rank tensor from corrupted observations based on t-
SVD and further improve recovery results with the estimated rank.
Specifically, we first induce the equivalence of the tensor nuclear
norm (TNN) of a tensor and its f -diagonal tensor. We then
simultaneously minimize the reconstruction error and TNN of
the f -diagonal tensor, leading to RE. Subsequently, we relax our
model by removing the TNN regularizer to improve the recovery
performance. Furthermore, we consider more general cases in the
presence of missing data and/or gross corruptions by proposing
robust tensor principal component analysis and robust tensor
completion with RE. The robust methods can achieve successful
recovery by refining the models with correct estimated ranks.
Experimental results show that the proposed methods outperform
the state-of-the-art methods with significant improvements.

Index Terms—Rank estimation (RE), robust tensor PCA
(RTPCA), robust tensor recovery, tensor completion (TC), tensor
singular value decomposition (t-SVD).

I. INTRODUCTION

TENSORIAL data, such as color images and videos, are
ubiquitous and have received considerable attention in

many applications [1]. Tensor decomposition is a powerful
computational tool for tensor analysis with missing entries,
Gaussian noise, outliers, gross corruptions (non-Gaussian
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noise), etc. It has been successfully applied to various
fields, such as machine learning, data mining, and computer
vision, for face recognition [2]; image inpainting [3], [4];
video background modeling [5], [6]; and hyperspectral image
restoration [7]. In general, there are two common and funda-
mental decomposition models: 1) CANDECOMP/PARAFAC
(CP) [8], [9] and 2) tucker decomposition [10], which naturally
produces two definitions of the tensor rank, that is: 1) CP-rank
and 2) Tucker-rank, respectively.

In practice, some entries of tensors may often be missing
in the acquisition process, such as costly experiments, etc.
Missing data are common in real-world cases for many rea-
sons. For example, in industrial applications, data, such as
images, can be corrupted with irregular patterns due to the
insufficient resolution of a device or malfunctioning equip-
ment [11], [12]. Tensor completion (TC) techniques extended
from matrix completion cases have been widely used for esti-
mating missing data. Common TC approaches are based on
CP and Tucker models. The CP-based TC methods can obtain
good completion results under typical conditions if given a
correct CP-rank. However, the CP-rank is generally NP-hard
to compute [13], particularly with incomplete information.
Although attempts have been made to determine the CP-
rank using the Bayesian models [6], [14]–[16], these methods
often underestimate or overestimate the truth, resulting in the
deterioration of predictive performance [6]. While the convex
relaxation of the CP rank is intractable, a convex surrogate for
the Tucker rank, that is, a Tucker-based tensor nuclear norm
(TNN) (sum of the nuclear norm of all matrices unfolded along
each mode), has been proposed in [3] and has since appeared
frequently in TC studies and has worked successfully [17]–
[19]. For example, Liu et al. [3] proposed a high accuracy
low-rank TC algorithm (HaLRTC) for estimating missing val-
ues in tensor visual data. However, these Tucker-based TC
methods often require directly unfolding a tensor into matri-
ces, which can destroy the intrinsic multidimensional structure
of tensorial data, leading to vital information loss and degraded
recovery performance [20].

In addition to missing data, outliers or non-Gaussian
noise (e.g., sparse noise) can frequently occur in real-world
data [6]. To address this problem, many robust CP-/Tucker-
based approaches have been developed, such as robust ten-
sor principal component analysis (PCA) methods [21], [22],
which extend robust PCA (RPCA) to recover the low-
rank and sparse components from corrupted observations.
For tensors with both missing entries and gross corrup-
tions, Goldfarb and Qin [23] combined the Tucker-based
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nuclear-norm regularization with an �1-norm loss function
for robust TC. Later on, a Bayesian robust tensor factoriza-
tion (BRTF) [6] employs a fully Bayesian generative model
for recovering missing data and outliers or non-Gaussian
noise with CP-rank estimation. Furthermore, Chen et al. [24]
proposed a generalized weighted low-rank tensor factorization
method (GWLRTF) integrated with noise modeling techniques
for a mixture of Gaussians. However, the performance of these
CP-based and Tucker-based robust tensor methods is also lim-
ited by the above-mentioned drawbacks of the CP and Tucker
models.

A new tensor decomposition model, tensor singular value
decomposition (t-SVD) [25]–[27], has recently become increas-
ingly popular for solving TC problems [5], [28]–[30]. As t-SVD
essentially treats third-order tensors as linear operators over
matrices, the tensor multirank and tubal-rank defined based on
t-SVD can well characterize the intrinsic low-rank structure
of a tensor while avoiding the loss of information inherent
in the unfolding of a tensor [20]. The TNN based on t-SVD
has been proposed as a convex relaxation of tubal-rank [31].
Subsequently, Zhang et al. [28] used the TNN regularizer for
incomplete and noisy videos, and achieved good inpainting and
denoising results, and further theoretically analyzed the con-
ditions for exact completion [29]. A twist TNN (t-TNN) [32]
has also been developed for video completion. However, these
TNN-based methods focus on rank minimization but do not
utilize the low-rank prior, which would limit their recovery
performance. A t-SVD-based factorization method (TCTF) [20]
incorporates low-rank information with the factorization of a
tensor as the product of two smaller-size tensors, which achieves
better recovery results if given the true tubal rank. A heuristic
rank-decreasing scheme is used to determine a rank for TCTF,
but it often underestimates or overestimates the truth, resulting
in degraded recovery accuracy.

TNN minimization has also been used in many meth-
ods for robust low-rank tensor recovery. For example,
Lu et al. [30], [33] studied the tensor RPCA (TRPCA)
problem by solving a convex objective of a weighted combina-
tion of the TNN of a tensor and the �1-norm of the sparse error,
and theoretically provided exact recovery for both the low rank
and the sparse components under certain assumptions. They
further studied the problem of robust low-rank tensor recov-
ery from both partial and corrupted observations [30], [34].
Moreover, Zhou and Feng [35] proposed an outlier-robust ten-
sor PCA (OR-TPCA) by combining the TNN minimization
with the �2,1-norm, which achieves good results in out-
lier detection and unsupervised and semisupervised learning.
However, these TNN-based robust tensor methods have the
same drawbacks as TNN-based TC methods without utilizing
the true tubal-rank information, which can cause performance
degradation.

In this article, we solve the rank estimation (RE) problem
and then make use of the correct estimated tubal-rank to
improve the performance of recovering tensors with missing
entries and/or gross corruptions. We propose a rank estima-
tion method by simultaneously minimizing the reconstruction
error and the TNN of the f -diagonal tensor of an incomplete
tensor based on t-SVD, denoted as RETNN. In the RETNN
model, we first induce the equivalence of TNN of a tensor

and its f -diagonal tensor. We then impose the TNN constraint
on the f -diagonal tensor in the original domain and recast
it as the �1-norm of singular values in the Fourier domain,
while estimating the missing entries. This results in RE with
lower computational complexity than computing the TNN of
the entire tensor. RETNN transforms the discrete RE to be
tuning the continuous value of a regularization parameter,
leading to good rank determination. However, RETNN focuses
on RE only and the TNN regularization restricts RETNN to
directly recover missing entries. To further improve the recov-
ery performance, we propose a relaxing strategy for the RETNN
model by only minimizing the reconstruction error without the
TNN regularizer after RE. Therefore, a new t-SVD-based TC
method is proposed and called tensor completion with RE (TC-
RE). With the true tubal-rank R estimated by RETNN, TC-RE
can achieve the optimal solution under mild conditions using
rank-R t-SVD approximation, according to the multilinear gen-
eralization of the Eckart–Young–Mirsky theorem [25], [29].
To handle tensors with missing entries and/or gross corrup-
tions (e.g., sparse noise), we integrate the proposed RETNN
with �1-norm regularization of the error component (corrup-
tions) and further propose robust t-SVD models with RE, that
is, robust tensor PCA with RE (RTPCA-RE) and robust TC
with RE (RTC-RE) for low-rank tensor recovery under par-
tial and/or grossly corrupted observations. RTPCA-RE and
RTC-RE inherit the ability of RETNN to determine correct
tubal-ranks and further improve their recovery performance via
refinement schemes by explicitly making use of the estimated
ranks to refine the models. Furthermore, we analyze and dis-
cuss the generalization of the proposed methods. We employ
the alternating minimization method and the alternating direc-
tion method of multipliers (ADMM) [36] to solve our models.
We evaluate the proposed methods on synthetic and real-world
tensors with missing entries and/or sparse noise in different
applications, for example, image/video inpainting and denois-
ing, and video background modeling. The experimental results
show our methods can achieve significant improvements over
the state-of-the-art methods in terms of RE, TC, and robust
tensor recovery.

In a nutshell, the main contributions of this article are
four-fold.

1) We propose RETNN to determine the correct tubal rank
of an incomplete tensor, where the RETNN model is for-
mulated in the original domain and solved equivalently
in the Fourier domain efficiently.

2) We propose TC-RE to further improve the recovery
performance by developing a relax strategy. Given
the correct estimated rank and sufficient observed
entries, TC-RE can achieve an optimal completion
solution.

3) We propose RTPCA-RE and RTC-RE to solve the
robust tensor PCA and completion problems, respec-
tively. These methods can not only estimate the correct
tubal rank but also achieve successful recovery in the
presence of missing data and/or gross corruption under
the refinement schemes.

4) We analyze the generalization of the proposed methods
by briefly discussing variants that can solve (robust)
tensor learning problems.
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The remainder of this article is presented as follows. We
review preliminaries and related works in Section II. The
proposed TC and robust tensor recovery with RE methods
are derived in detail in Sections III and VI, respectively. The
time complexity analysis is provided and the generalization of
the proposed methods is discussed in Section V. Experimental
results are reported in Section VI. Section VII concludes this
article.

II. PRELIMINARIES AND RELATED WORKS

A. Notation

The number of dimensions of a tensor is the order and
each dimension is a mode of it. A vector (first-order tensor) is
denoted by a bold lowercase letter x ∈ R

I . A matrix (second-
order tensor) is denoted by a bold capital letter X ∈ R

I1×I2 .
A higher-order (N ≥ 3) tensor is denoted by a calligraphic
letter X ∈ R

I1×···×IN . The ith entry of a vector x ∈ R
I is

denoted by xi, and the (i, j)th entry of a matrix X ∈ R
I1×I2 is

denoted by Xi,j. The (i1, . . . , iN)th entry of an Nth-order ten-
sor X is denoted by Xi1,...,iN . The Frobenius norm of a tensor
X is defined by ‖X‖F = √

< X ,X >, where <X ,X> =∑
i1

∑
i2 · · ·∑iN X (i1, . . . , iN)2 denotes inner product [1].

� ∈ R
I1×···×IN is a binary index set: �(i1, . . . , iN) = 1 if

X (i1, . . . , iN) is observed, and �(i1, . . . , iN) = 0 otherwise.
P� is the associated sampling operator that acquires only the
entries indexed by �

(P�(X ))(i1, . . . , iN)

=
{
X (i1, . . . , iN), if (i1, . . . , iN) ∈ �

0, if (i1, . . . , iN) ∈ �c

(1)

where �c is the complement of �. Furthermore, for a third-
order tensor X ∈ R

I1×I2×I3 , its MATLAB notation X (:, :, i) or
X (i) denotes the ith frontal slice of X . Besides, X̂ ∈ C

I1×I2×I3

refers to the Discrete Fourier transform (DFT) of X along the
3-D, that is, X̂ = fft(X , [], 3) in MATLAB, and the inverse
DFT (ifft) is computed via X = ifft(X̂ , [], 3).

B. Definitions Related to T-SVD

There are operations related to t-SVD defined as follows.
Definition 1 (Block-Diagonal Matrix) [25]: Let X̂ denote

the block-diagonal matrix of X̂ in the Fourier domain, that
is, X̂ = blockdiag(X̂ ) = diag(X̂(1), . . . , X̂(I3)) ∈ C

I1I3×I2I3 ,
where diag() is the diagonal operator.

Definition 2 (t-Product) [25]: The t-product Z = X ∗ Y
of X ∈ R

I1×I2×I3 and Y ∈ R
I2×I4×I3 is a tensor of size Z ∈

R
I1×I4×I3 , where the (i, j)th tube denoted by Z(i, j, :) for i =

1, 2, . . . , I1 and j = 1, 2, . . . , I4 of the tensor Z is given by∑I2
k=1 X (i, k, :) ∗ Y(k, j, :). ∗ denotes the t-product symbol.
Definition 3 (Conjugate Transpose) [25]: Let X be a tensor

of size I1 × I2 × I3, then X� is the I2 × I1 × I3 tensor obtained
by transposing each of the frontal slices and then reversing the
order of transposed frontal slices 2 through I3. The symbol �
refers to the conjugate transpose.

Definition 4 (Identity Tensor and Orthogonal Tensor) [25]:
A tensor I ∈ R

I1×I1×I3 is identity if its first frontal slice is

Algorithm 1 t-SVD of a Third-Order Tensor [28]

Input: X ∈ R
I1×I2×I3

X̂ = fft(X , [ ], 3);
for i = 1 to I3 do

[U, S, V] = SVD(X̂ (i)); Û (i) = U; Ŝ(i) = S; V̂(i) = V;
end for
U = ifft(Û , [ ], 3); S = ifft(Ŝ, [ ], 3); V = ifft(V̂, [ ], 3);
Output: U ∈ R

I1×I1×I3 ,S ∈ R
I1×I2×I3 ,V ∈ R

I2×I2×I3 .

the I1 × I1 identity matrix and all other frontal slices are 0. A
tensor Q is orthogonal if Q� ∗ Q = Q ∗ Q� = I.

Definition 5 (f -Diagonal Tensor) [25]: A tensor X is called
f -diagonal if each frontal slice of X is a diagonal matrix.

Definition 6 (Tensor Multirank and Tubal-rank) [20], [25]:
The multirank of X ∈ R

I1×I2×I3 is a vector r ∈ R
I3 ,

whose ith entry is the rank of the ith frontal slice of X̂ , that
is, r = (r1, . . . , rI3) = (rank(X̂(1)), . . . , rank(X̂(I3))), where
rank() denotes the rank of a matrix. The tubal-rank R of X
is the largest rank of all the frontal slices of X̂ in the Fourier
domain, that is, R = max (r1, . . . , rI3).

Definition 7 (t-SVD) [25]: The t-SVD of X ∈ R
I1×I2×I3 is

given by

X = U ∗ S ∗ V� (2)

where U ∈ R
I1×I1×I3 and V ∈ R

I2×I2×I3 are orthogonal
tensors. S ∈ R

I1×I2×I3 is an f -diagonal tensor.
The t-SVD of a tensor is obtained by computing the matrix

SVDs in the Fourier domain (see Algorithm 1). Besides, it
is usually sufficient to compute the truncated t-SVD with a
tubal-rank R. For X ∈ R

I1×I2×I3 with the tubal-rank R (R <

min (I1, I2)), the truncated t-SVD is given by X = U ∗S ∗V�,
where U ∈ R

I1×R×I3 , V ∈ R
I2×R×I3 , and S ∈ R

R×R×I3 . This
truncated version of the t-SVD will be used throughout the
article.

Definition 8 (TNN) [33]: The TNN of a tensor X is
denoted by ||X ||TNN and defined as the average of the nuclear
norm of all the frontal slices of X̂ , that is, ||X ||TNN =
(1/I3)

∑I3
i=1 ‖X̂(i)‖∗.

Theorem 1 [25], [29]: Assume the t-SVD of X ∈ R
I1×I2×I3

is given by X = U ∗ S ∗ V�. For p ≤ R < min (I1, I2), we
define Xp = ∑p

i=1 U(:, i, :) ∗ S(:, i, :) ∗ V(:, i, :)�, then

Xp = arg min
X̃∈X

∥
∥
∥X − X̃

∥
∥
∥

2

F
(3)

where X = {C = A ∗ B|A ∈ R
I1×R×I3,B ∈ R

I2×R×I3}
is the set of tensors with tubal-rank p (p ≤ R). Thus, the
unique optimal solution of low tubal-rank p approximation
of X is given by the truncated rank-p approximation (trun-
cated t-SVD) of X , that is, Xp. This theorem can be viewed
as the multilinear generalization of the Eckart–Young–Mirsky
theorem [37], [38].

C. Related Works

1) T-SVD for Tensor Completion: Based on t-SVD, Zhang
et al. [28] and Zhang and Aeron [29] solved the TC problems
by minimizing the TNN of the incomplete tensor, that is

min
X

‖X‖TNN s.t. P�(X ) = P�(T ) (4)
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where X is the target tensor to be recovered given partially
observed entries from T . Zhang and Aeron further theoret-
ically analyze the conditions for exact completion in [29].
The TNN-based model (4) aims to minimize the tubal-rank
using the TNN relaxation without utilizing the information of
the rank, which probably limits its completion performance.
Most recently, another t-SVD-based TC method (TCTF) [20]
has incorporated the low tubal-rank information with factor-
ization of X (as the product of two tensors Y ∈ R

I1×R×I3 and
Z ∈ R

I2×R×I3 with smaller sizes)

min
X ,Y,Z

‖X − Y ∗ Z‖2
F s.t. P�(X ) = P�(T ) (5)

which can achieve better recovery efficiently without com-
puting the TNN of entire X in (4). TCTF requires a tensor
rank to be determined a priori. To the best of our knowledge,
TCTF is the only existing t-SVD-based method that consid-
ers RE, but its heuristic rank-decreasing scheme often under-
or over-estimates the truth, leading to degraded recovery
performance.

2) T-SVD for Robust Tensor PCA: Zhou and Feng [35]
proposed OR-TPCA by combining TNN minimization with
�2,1 norm regularization

min
X ,E

‖X‖TNN + β‖E‖2,1 s.t. T = X + E (6)

where ‖E‖2,1 is the �2,1 norm to characterize the sparsity of
outliers E . OR-TPCA achieves good results on outlier detec-
tion and unsupervised/semisupervised learning. However, it is
not capable of general tasks in removing non-Gaussian noise
from a single tensor (e.g., an image), based on our preliminary
studies. Furthermore, Lu et al. [30] considered the robust ten-
sor PCA problem by solving a convex TRPCA objective, that
is, a weighted combination of the TNN of a low-rank tensor
and the �1-norm of the error

min
X ,E

‖X‖TNN + β‖E‖1 s.t. T = X + E (7)

where β = 1/
√

(max(I1, I2)I3). TRPCA can achieve exact
recovery for both the low-rank and the sparse components
under suitable assumptions [30].

3) T-SVD for Robust Tensor Completion: Few t-SVD-
based methods are available for recovering tensors with both
missing entries and sparse noise. Based on TNN regular-
ization, Lu et al. [34] solved the noisy low-rank TC by
reformulating the TRPCA model (7) as follows:

min
X ,E

‖X‖TNN + β‖E‖1 s.t. P�(T ) = P�(X + E). (8)

The code of this algorithm (call LRTCR-TNN) has been pub-
lished in the LibADMM Toolbox1 [34]. To the best of our
knowledge, this is the only t-SVD-based robust TC method.

Remark 1: Rank information is very important for
matrix/tensor recovery. Many studies in the literature have
formulated the low-rank matrix/TC task as the problem of esti-
mating the rank of a certain matrix/tensor [3], [17], [19], [28],
[39]–[44]. However, like other similar methods (e.g., TNN,

1LibADMM: https://github.com/canyilu/LibADMM.

TCTF, TRPCA, and OR-TPCA), LRTCR-TNN aims to mini-
mize the rank of observations and does not explicitly make use
of the true rank prior, which would limit their performance. On
the other hand, some factorization methods, such as [45]–[47]
require a large enough initial rank to ensure good recovery
performance, usually leading to much higher computational
cost than ours when dealing with large-scale data. To alle-
viate this situation, we introduce an efficient RE technique,
which equivalently transforms the estimating of discrete rank
to be tuning the wide range of continuous values of a hyper-
parameter. Based on the flexible RE, we further fully utilize the
rank information to further improve the recovery performance
as presented in the following section.

III. PROPOSED METHODS

In this section, we propose two t-SVD-based methods:
1) one aims to solve the RE problem for incomplete tensors
and 2) the other aims to improve TC performance.

A. Rank Estimation via RETNN

To improve the recovery performance by utilizing a rank
prior, we must first correctly determine the rank. The exist-
ing TNN-based methods aim to minimize the rank only and
become very slow for large-scale tensors, due to the heavy
costs of computing TNN of the entire tensor. Motivated by
these, we first induce a lemma.

Lemma 1: Let X ∈ R
I1×I2×I3 with the tubal-rank R, and

S ∈ R
R×R×I3 is the f -diagonal tensor of X with orthogonal

tensor factors U and V , that is, X = U ∗ S ∗ V�, then

‖X‖TNN = ‖S‖TNN (9)

where X‖TNN is the TNN of X .
See the proof of this lemma in Appendix A of the

Supplementary Material.2 With Lemma 1 and based on t-SVD,
we impose the TNN regularizer on the f -diagonal tensor while
minimizing the reconstruction error, to determine the rank of
an incomplete tensor T ∈ R

I1×I2×I3 (with a low tubal rank)

min
X ,U ,S,V

1

2
‖X − U ∗ S ∗ V�‖2

F + λ‖S‖TNN

s.t. P�(X ) = P�(T ),U� ∗ U = I,V� ∗ V = I (10)

where λ is the penalty parameter and S is the f -diagonal tensor
of the target (recovery) tensor X . To solve the model (10)
simply, we further develop the following theorem.

Theorem 2: The objective function (10) is equivalent to

min
X̂(i),Û(i),̂S(i),V̂(i)

1

I3

I3∑

i=1

(
1

2

∥
∥
∥X̂(i) − Û(i)̂S(i)V̂(i)�

∥
∥
∥

2

F

+λ

∥
∥
∥diag

(
Ŝ(i)

)∥
∥
∥

1

)

s.t. P�(X ) = P�(T ), Û(i)�Û(i) = I

V̂(i)�V̂(i) = I, i = 1 · · · I3 (11)

2Available at: https://www.dropbox.com/sh/c8gbzgfvhq10k42/
AADPolrrrKVUInJp8U5ytBSoa?dl=0.
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where diag(̂S(i)) = ŝ(i) = {̂s(i)
r }ri

r=1 are the singular values of
X̂(i) (the ith frontal slice of X̂ ). diag() is the diagonal operator.
{ri}I3

i=1 are the tensor multiranks. I is an identity matrix.
Proof: According to the properties of the t-product [25], we

know that X = U ∗S ∗V� and X̂ = ÛŜV̂� are equivalent and

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
= 1

I3

∥
∥
∥X̂ − ÛŜV̂�

∥
∥
∥

2

F

= 1

I3

I3∑

i=1

∥
∥
∥X̂(i) − Û(i)̂S(i)V̂(i)�

∥
∥
∥

2

F
(12)

in which X̂(i) = Û(i)̂S(i)V̂(i)� = ∑ri
r=1 ŝ(i)

r û(i)
r v̂(i)

r
�

is the
SVD of X̂(i), and {Û(i), Ŝ(i), V̂(i)} are the ith frontal slice
of {Û , Ŝ, V̂}, respectively. As Ŝ is an f -diagonal tensor,
‖̂S(i)‖∗ = ‖̂s(i)‖1, where ŝ(i) = diag (̂S(i)). With the TNN of
S is ‖S‖TNN = (1/I3)

∑I3
i=1 ‖̂S(i)‖∗, we have

‖S‖TNN = 1

I3

I3∑

i=1

∥
∥
∥diag(̂S(i))

∥
∥
∥

1
. (13)

Hence, (10) is equivalent to (11).
With Theorem 2, we recast model (10) in the original space

to the equivalent model (11) in the Fourier space, which is
easier to solve. By reformulating ‖S‖TNN as the �1-norm of
{̂s(i)}I3

i=1 (singular values in the Fourier domain), we reduce
the computational complexity further than model (10), and the
TNN model (4). We name this rank estimation via t-SVD with
TNN regularization, as RETNN.

Remark 2: The �1-norm regularization on diag(̂S(i))
I3
i=1 in

(11) [equivalent to the TNN of f -diagonal tensor S in (10)]
makes the vectors of singular values sparse while the zero
entries of diag(̂S(i))

I3
i=1 are finally removed, leading to low

tensor multirank and tubal-RE. Such a group sparsity tech-
nique [48]–[50] transforms the discrete RE to be tuning the
continuous value of a regularization parameter, leading to good
rank determination. Specifically, the discrete nature of the
rank makes it is difficult to tune, which often leads to sig-
nificant performance degradation even when the rank is just
slightly changed to its neighboring values. Instead, our equiv-
alent form (11) proposes to tune the continuous value of λ,
which gives a good empirical performance with a wide range
of values, as supported by our extensive experimental results.
For example, the results presented in Appendix D of the sup-
plementary material demonstrate that: a wide range of values
of parameter λ and initial rank R̂ lead to good tensor RE and
recovery performance in most cases, excepting for the cases
of too many missing entries. In other words, the RE and com-
pletion performance of proposed methods are stable and not
sensitive to the values of parameters in general.

1) Optimization of RETNN via Alternating Minimization3:
We use a simple alternating minimization method for the
optimization of RETNN. As we need initial values for {ri}I3

i=1
to optimize model (11), we denote R̂ as the initialization
of tubal-rank for each entry of multirank; thus, R̂ = r1 =
· · · = rI3 . We divide the target variables into I3 × 4 groups:

3For simplicity, we omit the iteration variable k in this article.

Algorithm 2 RE via t-SVD With TNN Regularization
(RETNN)

1: Input: P�(T ), �, λ, initial rank R̂, K, and tol.
2: Initialization: Set P�(X ) = P�(T ), P�c(X ) = 0.
3: for k = 1, ..., K do
4: X̂ = fft(X , [ ], 3);
5: for i = 1, · · · , I3 do
6: Update Û(i) and V̂(i) by (16), and Ŝ(i) by (19)
7: Tensor multi-rank estimation: Only keep the ele-

ments in diag(̂S(i)) where diag(̂S(i)) > 0, and
then compute ith entry of multi-rank ri =
length

(
diag(̂S(i))

)
and update R̂ = ri.

8: Update X̂(i) = Û(i)̂S(i)V̂(i)�.
9: end for

10: Update X : X = ifft(X̂ , [ ], 3) and P�(X ) = P�(T ).
11: If ‖X (k+1)−X k‖F

‖X (k+1)‖F
< tol, break; otherwise, continue.

12: end for
13: Tensor tubal-rank estimation: R = max {r1, · · · , rI3}
14: Output: Tensor tubal-rank R, estimated tensor X .

{Û(i), Ŝ(i), V̂(i), X̂(i)}I3
i=1. These groups could be optimized in

parallel.
The objective function (11) with respect to the ith block

{̂S(i), Û(i), V̂(i), X̂(i)} is

min
X̂(i),Û(i),̂S(i),V̂(i)

1

2

∥
∥
∥X̂(i) − Û(i)̂S(i)V̂(i)�

∥
∥
∥

2

F
+ λ

∥
∥
∥diag(̂S(i))

∥
∥
∥

1

s.t. P�(X ) = P�(T ), Û(i)�Û(i) = I

V̂(i)�V̂(i) = I, i = 1 · · · I3. (14)

In this way, we can update each block while fixing other blocks
alternatively.

Update Û(i) and V̂(i): Equation (14) with respect to Û(i) and
V̂(i) is equivalent to

min
Û(i),V̂(i)

1

2

∥
∥
∥X̂(i) − Û(i)̂S(i)V̂(i)�

∥
∥
∥

2

F

s.t. Û(i)�Û(i) = I, V̂(i)�V̂(i) = I, i = 1 · · · I3 (15)

where Û(i) = [̂u(1)
r , û(2)

r , . . . , û(̂R)
r ], Ŝ(i) =

[̂s(1)
r , ŝ(2)

r , . . . , ŝ(̂R)
r ], and V̂(i) = [̂v(1)

r , v̂(2)
r , . . . , v̂(̂R)

r ].
According to the Eckart–Young–Mirsky theorem, we have
the closed-form solutions for Û(i) and V̂(i) simultaneously
using rank-̂R truncated SVD, that is

[
Û(i)0

, Ŝ(i)0
, V̂(i)0

]
= SVD

(
X̂(i)

)
⇒

Û(i) = Û(i)
ri

= Û(i)0(
:, 1 : R̂

)

V̂(i) = V̂(i)
ri

= V̂(i)0(
:, 1 : R̂

)
(16)

where ri = R̂ is the initial multirank of the ith front slice of
X̂ (i.e., X̂(i)). In this way, we obtain the solutions for Û(i) and
V̂(i) simultaneously in one iteration.4

4We also provide another alternative way to solve {̂u(i)
r }R̂

i=1 and {̂v(i)
r }R̂

i=1.
See Appendix B of the Supplementary Material.
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Algorithm 3 TC With RE

1: Input: P�(T ), �, λ, R̂, K, and tol.
2: Obtain the estimated X and tubal-rank R by Algorithm 2.
3: for k = 1, ..., K do
4: X̂ = fft(X , [ ], 3)

5: for i = 1 to I3 do
6: [Û, Ŝ, V̂] = SVD(X̂ (i))

7: X̂ (i)
R = Û(:, 1 : R)̂S(1 : R, 1 : R)V̂T(:, 1 : R)

8: end for
9: XR = ifft(X̂R, [ ], 3)

10: P�(XR) = P�(T )

11: If
‖X (k+1)

R −X k
R‖F

‖X (k+1)
R ‖F

< tol, break; otherwise, continue.

12: end for
13: Output: Recovered tensor XR, tensor tubal-rank R.

Update Ŝ(i): The function (14) with respect to Ŝ(i) is

LŜ(i) = 1

2

∥
∥
∥X̂(i) − Û(i)

ri
Ŝ(i)V̂(i)

ri

�∥
∥
∥

2

F
+ λ

∥
∥
∥diag(̂S(i))

∥
∥
∥

1
. (17)

Since {Û(i)
ri , V̂(i)

ri } are orthogonal, (17) is equivalent to

LŜ(i) = 1

2

∥
∥
∥̂S(i) − Û(i)

ri

�
X̂(i)V̂(i)

ri

∥
∥
∥

2

F
+ λ

∥
∥
∥diag(̂S(i))

∥
∥
∥

1
. (18)

We here denote t = diag(Û(i)
ri

�
X̂(i)V̂(i)

ri ), which is essentially

equivalent to diag(̂S(i)
ri ) = diag(̂S(i)0

(:, 1 : R̂)). Based on the
soft-thresholding algorithm [51] for �1-norm regularization,
Ŝ(i) is updated by

diag(̂S(i)) = proxλ(t) =
⎧
⎨

⎩

t − λ, (t > λ)

0, (|t| ≤ λ)

t + λ, (t < −λ)

(19)

where Ŝ(i) is diagonal and prox is the soft-thresholding
operator [51].

Tensor Multirank Estimation: After updating Ŝ(i), we check
its values and only keep those nonzero ones. Thus, the number
of the remaining singular values in diag(̂S(i)) is the ith entry of
tensor multirank ri, that is, multirank ri = length(diag(̂S(i))).
Meanwhile, we update the initial rank R̂ = ri for the update
of the (i + 1)th front slice.

Update X̂(i): Equation (14) with respect to X̂(i) is

min
X̂(i)

1

2

∥
∥
∥X̂(i) − Û(i)̂S(i)V̂(i)�

∥
∥
∥

2

F
. (20)

By deriving the Karush–Kuhn–Tucker (KKT) conditions
for (20), each X̂(i) = Û(i)̂S(i)V̂(i)�. After updating all the
frontal slices of X̂ , we can compute X by: X = ifft(X̂ , [], 3)

and P�(X ) = P�(T ).
Tensor Tubal-Rank Estimation: With updating all of the

above variables for each X̂(i), we have estimated all {ri}I3
i=1

for all frontal slices and obtain the multirank and, finally,
determine the tubal-rank R = max {r1, . . . , rI3}.

Finally, we summarize RETNN in Algorithm 2.

B. Tensor Completion via TC-RE

RETNN can accurately determine the rank and simulta-
neously estimate the missing entries. However, the TNN

regularization of model (10) restricts RETNN from directly
minimizing the reconstruction error, leading to limited recov-
ery results. To further improve recovery performance, we
propose a relaxing strategy: we relax RETNN model (10) by
only minimizing the reconstruction error without the TNN
regularization after obtaining the tubal-rank information. In
other words, we first estimate the tubal-rank R by RETNN and
then we relax the model by removing the TNN regularizer
and further improve the recovery accuracy. Thus, after RE by
Algorithm 2, (10) is relaxed as

min
X ,U ,S,V

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
,

s.t. P�(X ) = P�(T ),U� ∗ U = I,V� ∗ V = I.

(21)

This relaxed model (21) can be solved iteratively in closed-
form for each frontal slice of X using the rank-R truncated
t-SVD approximation.5 We name this new t-SVD-based TC
method TC-RE and summarize it in Algorithm 3.

Remark 3: If T (with the tubal-rank R) obeys the ten-
sor incoherence conditions and observes enough randomly
sampled entries, T can be exactly recovered with theoretical
guarantees [29]. Thus, for an incomplete tensor with enough
observed entries, the missing entries can be exactly predicted
under appropriate conditions. In the TC-RE model (21), with
the true rank R estimated by RETNN, the missing entries are
updated iteratively by computing the rank-R approximation of
X using the truncated t-SVD of X given the observed entries
from T (P�(X ) = P�(T )), and finally can be recovered
exactly under the appropriate conditions. On the other hand,
the unique optimal rank-R approximation of X is given by
the truncated t-SVD of X according to the multilinear gen-
eralization of the Eckart–Young–Mirsky theorem [25], [29].
Hence, making use of the information of true rank R and with
the relaxing strategy, TC-RE can achieve the optimal com-
pletion solution for low-rank datasets under the appropriate
conditions.

IV. PROPOSED ROBUST TENSOR RECOVERY WIT

RANK ESTIMATION

Considering tensors can also be corrupted by noise in addi-
tion to missing values in practice, we further propose two
robust t-SVD methods to address the robust tensor PCA
and robust TC problems, which can recover low-rank ten-
sor based on incomplete and/or grossly corrupted observations
and, meanwhile, provide RE.

A. Robust Tensor PCA With RE

In practice, real-world data are commonly corrupted by
non-Gaussian noise (gross corruptions) due to sensor failures,
malicious tampering, or other system errors [6]. To solve this
problem, we further propose the RTPCA-RE. RTPCA-RE aims
to recover a low-rank tensor X ∈ R

I1×I2×I3 from corrupted
observations T = X + E , where E ∈ R

I1×I2×I3 represents

5The rank-R truncated t-SVD algorithm refers to Algorithm 1 in
Appendix C of the Supplementary Material.
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Algorithm 4 Robust Tensor PCA With RE (RTPCA-RE)

1: Input: P�(T ), �, λ, initial rank R̂, K, and tol.
2: Initialization: Set P�(X ) = P�(T ), P�c(X ) = 0;

Set β = 1/
√

max(I1, I2)I3 and γ = 1/λ; Initialize

{{̂u(i)
r , v̂(i)

r , s(i)r }R̂
r=1}I3

i=1 of X̂ randomly.
3: Step 1 – Rank Estimation (RE):
4: for k = 1, ..., K do
5: X̂ = fft(X , [ ], 3);
6: for i = 1, · · · , I3 do
7: Update Û(i) and V̂(i) by (16), and Ŝ(i) by (19)
8: Tensor multi-rank estimation: Only keep the elements in

diag(̂S(i)) where diag(̂S(i)) > 0, and then compute ith entry
of multi-rank ri = length

(
diag(̂S(i))

)
and update R̂ = ri.

9: Update X̂(i) = Û(i)Ŝ(i)V̂(i)�.
10: end for
11: Update E,Z,X by (26), (28) and (30), respectively.
12: Update Y1 = Y1 + γ (X − Z),Y2 = Y2 + γ (E − T + Z).

13: If ‖X (k+1)−X k‖F
‖X (k+1)‖F

< tol, break; otherwise, continue.
14: end for
15: Tensor tubal-rank estimation: R = max {r1, · · · , rI3 }
16: Step 2–Refinement Scheme: Repeat the Line 4-7,9-15 using the

estimated tubal-rank R (without rank estimation step in Line 8)
to further refine the model.

17: Output: Tensor tubal-rank R, estimated tensor X .

errors with arbitrary magnitude and distribution. Considering
E has a sparsity property [30], [52], [53], we reformulate the
RETNN model (10) as

min
X ,U ,S,V,E

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
+ λ‖S‖TNN + β‖E‖1

s.t. T = X + E, U� ∗ U = I, V� ∗ V = I
(22)

where λ and β are the penalty parameters. To solve model (22)
via ADMM, we introduce an auxiliary variable Z for X to
obtain

min
X ,U ,S,V,E,Z

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
+ λ‖S‖TNN + β‖E‖1

s.t. T = Z + E,X = Z, U� ∗ U = I
V� ∗ V = I. (23)

Then, the Lagrange function of (23) is

L =
∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
+ λ‖S‖TNN + β‖E‖1

+ γ

2
‖X − Z + Y1/γ ‖2

F + γ

2
‖(Z + E − T + Y2/γ )‖2

F

s.t. U� ∗ U = I,V� ∗ V = I (24)

where γ is the penalty multiplier and Y1 and Y2 are the
Lagrange dual variables. In the ADMM optimization for (24),
{U ,S,V} are updated by fixing X and E . Thus, U ,V, and S
essentially can be solved by (16) and (19), respectively. We
then derive the solutions for E , Z , and X .

Update E: The Lagrange function (24) with respect E is

LE = γ

2
‖(E − (T − Z − Y2/γ ))‖2

F + β‖E‖1. (25)

Equation (25) is the proximal mapping with respect to
the �1-norm, which can be obtained by the soft-thresholding

Algorithm 5 Robust Tensor Completion With RE (RTC-RE)

1: Input: P�(T ), �, λ, initial rank R̂, K, and tol.
2: Initialization: Set P�(X ) = P�(T ), P�c(X ) = 0;

Set β = 1/
√

max(I1, I2)I3 and γ = 1/λ; Initialize

{{̂u(i)
r , v̂(i)

r , s(i)r }R̂
r=1}I3

i=1 of X̂ randomly.
3: Step 1–Rank Estimation (RE):
4: for k = 1, ..., K do
5: X̂ = fft(X , [ ], 3);
6: for i = 1, · · · , I3 do
7: Update Û(i) and V̂(i) by (16), and Ŝ(i) by (19)
8: Tensor multi-rank estimation: Only keep the elements in

diag(̂S(i)) where diag(̂S(i)) > 0, and then compute ith entry
of multi-rank ri = length

(
diag(̂S(i))

)
and update R̂ = ri.

9: Update X̂(i) = Û(i)Ŝ(i)V̂(i)�.
10: end for
11: Update E,Z,X by (35), (37) and (30), respectively.
12: Update Y1 = Y1 + γ (X −Z),Y2 = Y2 + γ (E� −T� +Z�).

13: If ‖X (k+1)−X k‖F
‖X (k+1)‖F

< tol, break; otherwise, continue.
14: end for
15: Tensor tubal-rank estimation: R = max {r1, · · · , rI3 }.
16: Step 2–Refinement Scheme: Repeat the Line 4-7,9-15 using the

estimated tubal-rank R (without rank estimation step in Line 8)
to further refine the model.

17: Output: Tensor tubal-rank R, estimated tensor X .

operation [51], that is

E = proxβ/γ (T − Y1 − Z). (26)

Update Z: The Lagrange function (24) with respect to Z
is

LZ = γ

2
‖X − Z + Y1/γ ‖2

F + γ

2
‖(Z + E − T + Y2/γ )‖2

F.

(27)

Setting the partial derivation of (36) with respect to Z to 0,
we can update Z by

Z = 1

2
(T − E + X − (Y2 − Y1)/γ ). (28)

Update X : The Lagrange function (24) with respect X is

LX = 1

2

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
+ γ

2
‖X − Z + Y1/γ ‖2

F.

(29)

Setting the partial derivation of (29) with respect to X to
0, we can obtain the solution for X

X =
(
U ∗ S ∗ V� + γZ − Y1

)
/(1 + γ ). (30)

Finally, we summarize the new robust tensor PCA method,
RTPCA-RE, in Algorithm 4.

B. Robust Tensor Completion With Rank Estimation

We further consider a more general and challenging
problem: recovering tensors corrupted by simultaneous miss-
ing values and sparse noise, that is, robust tensor completion
(RTC, also called robust tensor PCA plus tensor completion)
problem. Based on the proposed RETNN model (10), we further
propose robust TC with RE

min
X ,U ,S,V,E

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
+ λ‖S‖TNN + β‖E‖1
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s.t. P�(T ) = P�(X + E),U� ∗ U
= I,V� ∗ V = I (31)

where λ and β are the penalty parameters. Similarly, we solve
the model (31) using ADMM by introducing an auxiliary
variable Z for X and, thus, have

min
X ,U ,S,V,E,Z

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
+ λ‖S‖TNN + β‖E‖1

s.t. P�(T ) = P�(Z + E),X = Z
U� ∗ U = I,V� ∗ V = I. (32)

Then, the Lagrange function of (32) is

L =
∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
+ λ‖S‖TNN + β‖E‖1

+ γ

2
‖X − Z + Y1/γ ‖2

F + γ

2
× ‖P�(Z + E − T + Y2/γ )‖2

F

s.t. U� ∗ U = I,V� ∗ V = I (33)

where γ is the Lagrange multiplier and Y1 and Y2 are
the Lagrange dual variables. Similar to the RTPCA-RE
optimization, U ,V, and S of model (33) essentially can be
solved by (16) and (19), respectively. In the following, we
derive the solutions for E , Z , and X .

Update E: The Lagrange function (33) with respect to E is

LE = γ

2
‖P�(E − (T − Z − Y2/γ ))‖2

F + β‖E‖1. (34)

With the soft-thresholding technique [51], the solution
of E is

{
E�C = 0
E� = proxβ/γ (T� − Y1� − Z�).

(35)

Update Z: The Lagrange function (33) with respect to Z is

LZ = γ

2
‖X − Z + Y1/γ ‖2

F

+ γ

2
‖P�(Z + E − T + Y2/γ )‖2

F. (36)

Setting the partial derivation of (36) with respect to Z to 0,
we can obtain the solution for Z

{
Z�C = X�C + Y1�C/γ

Z� = 1
2 (T� − E� + X� − (Y2� − Y1�)/γ ).

(37)

Update X : We can obtain the solution of X using (30).
Finally, we summarize this new robust tensor completion

with rank estimation RTC-RE in Algorithm 5.
Refinement Scheme: After the RE steps, both RTPCA-RE

and RTC-RE refine their own models by explicitly utilizing
the estimated rank to further optimize the variables.

Remark 4: RTPCA-RE is a special case of RTC-RE to
handle data corrupted by sparse noise only without miss-
ing values. The two robust tensor methods RTPCA-RE and
RTC-RE inherit the ability of RETNN and can accurately esti-
mate the tensor rank in the presence of missing data and/or
gross corruptions under mild conditions (e.g., enough observed
entries or a small proportion of sparse noise). By explic-
itly making use of the correctly estimated rank under the
refinement schemes, these two methods can achieve successful
robust tensor recovery (Refer to Section VI about experimental
evaluation).

V. ALGORITHM ANALYSIS AND GENERALIZATION

A. Computational Complexity Analysis

1) For RETNN (Algorithm 2), at each iteration, the compu-
tational complexity includes the following.

a) The cost of conducting the DFT of {X̂(i)}I3
i=1 is

O(I1I2I3 log I3) in line 4.
b) The cost of updating {Û(i), Ŝ(i), V̂(i)}I3

i=1 in line 6
is O(̂RI1I2I3). Here, R̂ = r1 = · · · = rI3 is
the initialization of tubal rank of X and we set
R̂ < min(I1, I2) in general, for example, R̂ =
1/2 or 1/4 × min(I1, I2).

c) The cost of the soft-thresholding operation of
updating {{̂s(i)

r }R̂
r=1}I3

i=1 is O(̂RI3).
d) The cost of updating X by inverse DFT is

O(I1I2I3 log I3) in line 10.
Hence, the total cost of RETNN at each iteration is
O(I1I2I3 log I3 + R̂I1I2I3).

2) For TC-RE (Algorithm 3), it consists of the cost of
RETNN and the computation of tubal-rank R approxima-
tion of X (truncated t-SVD of X ). The time complexity
of rank-R of t-SVD is O(RI1I2I3)). Thus, the computa-
tional complexity of TC-RE is the same as RETNN in
each iteration while TC-RE involves more iterations.

3) For the two robust methods RTPCA-RE (Algorithm 4)
and RTC-RE (Algorithm 5), they have similar compu-
tational complexity as TC-RE but need cost more time
to compute the soft-thresholding of E and Z [i.e., (26)
and (28), and (35) and (37), respectively]. Both the time
cost of computing E and Z are O(I1I2I3) per iteration.
In short, the time complexity of RTPCA-RE/RTC-RE is
O(I1I2I3 log I3 + R̂I1I2I3) per iteration.

1) Comparison With the TNN-Based Methods: Compared
with the existing TNN-based methods (e.g., TNN [29],
t-TNN [32], and TRPCA [30]), whose costs at each iteration
are O(I1I2I3 log I3 +min(I1, I2)I1I2I3), the proposed RETNN is
more efficient. That is because our RETNN (O(I1I2I3 log I3 +
R̂I1I2I3)) only involves the computation of R̂ (< min(I1, I2)

pairs of singular vectors, which effectively avoids the expen-
sive full SVD when computing the tensor singular value
thresholding. After obtaining the low true tubal-rank R (< R̂),
TC-RE/RTPCA-RE/RTC-RE also has a lower computational
cost than TNN-based methods per iteration.

B. Generalization of the Proposed Methods

In the preceding sections, we propose four methods:
1) RETNN; 2) TC-RE; 3) RTPCA-RE; and 4) RTC-RE, to solve
the problems of tensor RE, TC, robust tensor PCA, and robust
TC, respectively. To generalize the proposed methods, we pro-
pose a general unified framework, that is, Robust t-SVD with
RE (RtSVD-RE)

min
X ,E,U ,S,V

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F
+ λ‖S‖TNN + βf (E)

s.t. P�(T ) = P�(X + E),U� ∗ U
= I,V� ∗ V = I (38)

where the first and second terms contribute to RE, and the
third term βf (E) is a cost function that can be variant for
different problems.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on September 21,2022 at 03:08:34 UTC from IEEE Xplore.  Restrictions apply. 



SHI et al.: ROBUST TENSOR SVD AND RECOVERY WITH RANK ESTIMATION 10675

1) Connection to the Proposed Methods:
1) If β = 0, (38) is specified to RETNN model (10).
2) If λ = β = 0, (38) is specified to the TC-RE model (21).
3) If β > 0, f (E) = ‖E‖1, and � = 1 ∈ R

I1×I2×I3 (i.e., no
missing), (38) is specified to RTPCA-RE model (22).

4) If β > 0 and f (E) = ‖E‖1, the general model (38) is
specified to the RTC-RE model (31).

2) Possible Specific Cases of the RtSVD-RE Model: In
addition to the four proposed methods as specific cases of
the general model, there are some promising variants, for
example:

1) if β > 0 and f (E) = ‖E‖F , model (38) is specified
to a robust tensor model to handle both missing data
and Gaussian noise. Furthermore, if � = 1, the speci-
fied model is variant to recover data with the Gaussian
noises;

2) if β > 0 and f (E) = ‖E‖2,1, the general model is speci-
fied to a robust model used for outliers detection inspired
by [35], which combines t-SVD factorization with �2,1-
norm regularization, and provides good results in outlier
detection;

3) if β < 0 and f (E) = f (S) = ‖S(i) − Ŝ‖F ,
model (38) can be specified to a feature extraction model
inspired by [54]

min
X ,U ,S,V

∥
∥
∥X − U ∗ S ∗ V�

∥
∥
∥

2

F

+λ

∥
∥
∥S‖TNN − β ′f ‖S(i) − S̄

∥
∥
∥

F

s.t. P�(T ) = P�(X ), S̄ = 1

M

M∑

i=1

S(i)

U� ∗ U = I, V� ∗ V = I (39)

where −β ′ = β < 0 and S̄ = (1/M)
∑M

i=1 S(i), i =
1, . . . , M is the mean of extracted features, M is the total
number of data samples S is the f -diagonal tensor, which
consists of the extracted features of incomplete tensors
T with observed entries in �. Model (39) explores the
relationship among data samples via maximizing feature
variance [f (S)] and, meanwhile, estimates the missing
entries via low-rank t-SVD approximation, leading to
informative features extracted directly from observed
entries. For example, given a face dataset that has M
face images with missing pixels, we consider each face
sample (size I1 × I2) as each frontal slice of the entire
dataset X ∈ R

I1×I2×M . To extract informative features
from these incomplete face images for further applica-
tion (e.g., face recognition), we can use model (39) to
obtain the solution by viewing S as the extracted fea-
tures (S(i) consists features from each incomplete face
image). Here, the RE function can be used to deter-
mine the number of features (low dimensional). Thus,
this specific model (39) is a tensor feature extraction
method that aims to extract low-dimensional features
from incomplete data directly.

VI. EXPERIMENTS

A. Experimental Setup

1) Compared Methods: We compare the proposed methods
with the competing 17 methods in three categories.6

1) Seven TC Methods: Two Tucker-/CP-based methods:
a) HaLRTC [3] and b) TNCP [56] and three t-SVD-
based completion methods: a) TNN [29]; b) t-TNN [32];
and c) TCTF [20], smooth tensor tree completion
(STTC) [57], and TC via tensor ring with balanced
unfolding (TRBU) [58].

2) Seven Robust PCA Methods: Two matrix methods:
a) RPCA [59] and b) PSSV [60]; two Tucker-based: a)
SNN [41] and b) RKCA [21]; three t-SVD-based: a) OR-
TRPCA [35]; b) IRTPCA [61]; and c) TRPCA [30].

3) Three Robust Tensor Completion Methods: a) BRTF [6]
(CP-based); b) GWLRTF-Tucker [24] (Tucker-based);
and c) LRTCR-TNN [34] (t-SVD-based).

In addition, to further analyze the effectiveness of the
proposed RETNN, we replace the heuristic RE of TCTF as our
RETNN, that is, RETNN + TCTF, and we denote this new com-
bined method as TCTF-RE. We evaluate how RETNN improves
the performance of TCTF in Section VI-D1 and VI-E. Thus,
we actually compare 18 competing methods in total.

2) Data Setting: We generate the synthetic tensors with
low tubal-ranks following [20] and test the real-world ten-
sor (images and videos) commonly used in the literature. For
missing data setting, we uniformly sample 10%–90% entries
(observed entries) of each tensor at random for training and
denote “SR” as sample ratio, and the ratio of missing entries
= 1–SR. For the corrupted data setting, we randomly select
5%–50% entries of each tensor corrupted by gross corrup-
tions (e.g., sparse noise) drawn from an uniform distribution
U(−|H|, |H|), H = max(X (:)) following [6]. We denote “CR”
as gross corruptions ratio to refer to the ratio of entries of a
tensor corrupted by sparse noise.

3) Parameter Setting: We set the maximum
iterations K = 500 and the stopping toler-
ance tol = 1e − 15 for all methods, and
λ = 10 × ([max(P�(T ))]/[

√
mean (size(T )) × (1 – SR)]),

the initial rank R̂ = round(1/2 × min(I1, I2)) by default
for the proposed methods (see the analysis in Section VI-B).
For the parameter β regarding the sparse error regularization
in the robust methods, we use the default parameters recom-
mended by [30] and [52] for both their approaches and ours,
that is, β = 1/

√
(max(I1, I2)I3). Other parameters of the

compared methods are tuned guided by their original papers
to give the best performance. We measure tensor recovery
performance using the widely used relative square error
(RSE): ‖X − T ‖F/‖T ‖F , where X is viewed as recovered
successfully if RSE < 10−3 [3]. The average results of ten
runs are reported.

6We have tested other CP-/Tucker-based methods, such as [23] and [55],and
also compare other t-SVD based methods, for example, [19], while they
obtain similar or worse results than these 17 methods. So, their results are
not reported here for simplicity.
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B. Tensor Rank Estimation and Completion
Sensitivity on λ and R̂

We study the parameter sensitivity of RETNN and TC-RE
regarding two key parameters λ and R̂ on the synthetic
[100 × 100 × 100 (R = 5)] and real-world tensors [House
image (R = 26) and Windmill video (R = 17)]. The results
are shown in Appendix D of the supplementary material:
a wide range of values of the regularization parameter λ

and initial rank R̂ lead to good tensor RE and recovery
performance in most cases, excepting for the cases of too
many missing entries. In other words, the RE and comple-
tion performance of RETNN and TC-RE are stable and not
sensitive to the values of λ and R̂ in general. We thus can
fix λ using a fixed formula, say, λ = ρ (e.g., ρ =
5, . . . , 10) × ([max(P�(T ))]/[

√
mean (size(T )) × (1 – SR)])

by default. and set R̂ = round(1/2 × min(I1, I2)) by default,
based on our preliminary studies. Note that RTPCA-RE and
RTC-RE inherit the ability of RETNN and TC-RE and also
show stale performance with a wide range of parameters, such
as RETNN and TC-RE. For simplicity, we thus do not show
the parameter sensitivity analysis of these two methods. In
addition, for the parameter β regarding the sparse error regu-
larization in the robust methods, we use the default parameters
recommended by [30] and [52] for both their approach and
ours, that is, β = 1/

√
(max(I1, I2)I3).

In summary, the proposed methods are not sensitive to the
parameters and stably yield good tensor RE and completion
results, so we do not need to tune λ and R̂ in general and can
compute them using default formulas.

C. Convergence Study

We analyze the convergence of our methods on the syn-
thetic tensor 100 × 100 × 100 (R = 5) in terms of training
error: ‖X (k+1) − X k‖F/‖X (k+1)‖F and estimated ranks (see
the convergence curves in Appendix D of the supplementary
material). RETNN converges to the true rank solution within 30
iterations and TC-RE converges within 200 iterations for the
easy problems (e.g., SR > 30%), while they need more itera-
tions to achieve convergence if there are more missing entries.
For the robust methods RTPCA-RE and RTC-RE, they achieve
the convergence of RE within 100 iterations and converge to
very small training error (1e−15) within about 400 iterations,
which are more than that of RETNN and TC-RE due to the
corruption of noise (e.g., CR < 40%).

In general, we can stop the running of RE step within 30 (for
TC-RE)/100 (for RTPCA-RE/RTC-RE) iterations to obtain the
true ranks while letting TC-RE/RTPCA-RE/RTC-RE achieve
better recovery performance with more iterations (setting the
maximum iterations K = 500 by default).

D. Evaluation of Synthetic Data

To evaluate the proposed methods, we first conduct tests
on two third-order synthetic tensors with size I1 = I2 = I3 =
I = {100, 500} with true tubal-rank R = {5, 50}, respectively.
Setting the tensors with various problems, we report the results
in Tables I–III, where we highlight the best recovery results
and the correct estimated ranks in bold fonts and second-best
results in underline.

TABLE I
COMPARISON OF RECOVERING TENSORS WITH MISSING ENTRIES

TABLE II
COMPARISON OF RECOVERING TENSORS WITH GROSS CORRUPTIONS

TABLE III
COMPARISON OF RECOVERING TENSORS WITH BOTH MISSING ENTRIES

AND GROSS CORRUPTIONS (CR = 10%)

1) Tensor Completion: We report the comparison again of
two t-SVD methods and the five TC methods in Table I:
one is TNN [29], which is the best performing method on
synthetic tensors, and the other is TCTF [20], which is the
most recent t-SVD-based TC method with RE. Table I shows
that TC-RE consistently outperforms TNN and TCTF by
several orders of magnitude in all cases. TCTF fails to cor-
rectly estimate the tensor rank in these cases, resulting in bad
results. With the correct ranks determined by RETNN, TCTF-
RE achieves much better recovery results than TCTF in all
cases and even outperforms our RTC-RE in one case (i.e., on
100 × 100 × 100 (R = 5) with SR = 80%). These results
verify our assumption: accurate RE can improve the recovery
performance for t-SVD-based TC methods. TC-RE achieves
much better recovery results than RETNN because RETNN
focuses on RE only while TC-RE explicitly uses the cor-
rect rank to improve the completion accuracy via the relaxing
strategy.

2) Robust Tensor PCA: As TRPCA is the best perform-
ing existing robust tensor PCA algorithm, we report its results
compared with ours in Table II. Our RTPCA-RE clearly out-
performs TRPCA in all cases even with data that have a large
ratio of corruptions (CR = 50%), where it is difficult to esti-
mate the correct tubal-rank. Moreover, using the refinement
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TABLE IV
COMPARISON OF COMPLETION RESULTS MEASURED IN RSE, TIME COST (SECOND), AND ESTIMATED RANK (EST. R) ON REAL IMAGES AND VIDEOS

(a) (b) (c)

Fig. 1. Comparison of recovery results the proposed methods with other
t-SVD methods for tensor 100 × 100 × 100 (R = 5) with various ratios of
observed entries (SR) and/or gross corruptions (CR). (a) TC. (b) Robust tensor
PCA. (c) Robust TC.

scheme, the recovery accuracies of RTPCA-RE are improved
significantly over those of the RE step.

3) Robust Tensor Completion: By applying our RTC-RE
on the synthetic data with both missing entries and gross
corruptions, we further demonstrate the superiority of mak-
ing use of the true rank information in Table III: RTC-RE
not only successfully determines the true ranks in all cases,
but also outperforms the state-of-the-art robust t-SVD method
LRTCR-TNN by several orders.

In addition, we also show the comparison in more settings
on the 100×100×100(R = 5) with SR = 30%−90% and/or
CR = 5%–50% in Fig. 1, where our methods are the best.

In summary, the proposed methods can estimate the true
tubal rank of tensors under mild conditions (e.g., CR < 50%)
and outperform the existing competing t-SVD methods with
significant improvements. Our methods are also faster on the
whole, particularly with efficient RE. Besides, with correct
estimated ranks, not only our methods improve the recovery
performance (comparing TC-RE with RE TNN, and RTPCA-
RE/RTC-RE with their RE step) but also achieve much better
results (e.g., TCTF-RE) than other methods (e.g., TCTF).
These results support our claims that current t-SVD-based
methods do not make use of rank information resulting in
degraded performance, while modeling tensors with accurate

ranks significantly improves the recovery results. In the
following, the proposed methods will be applied in various
real-world applications and compared with other methods to
further demonstrate the superior capability of our methods.

E. Application to Image and Video Completion

To evaluate the performance of the proposed RETNN and
TC-RE, we compare them against the five competing algo-
rithms in terms of recovery accuracy (RSE) and the RE
results for six real-world images and videos. Note that these
natural-color images/videos are approximately low rank, as a
small number of their leading singular values dominate the
information and a large number of singular values are very
close to zero (refer to Fig. 1 in the supplementary mate-
rial). Therefore, to directly evaluate the RE for the real data,
we examine their singular values and truncate the t-SVD to
derive the tensors with exact low tubal-ranks: {26 (House),
29 (Lenna), 36 (River Otter), 13 (Akiyo), 14 (Bus), 17
(Windmill)}.7 We test all of the methods on all tensors with
10%–90% observed entries, and our TC-RE outperforms other
methods in all cases. For simplicity, we report the results of
SR = {40%, 60%, 80%} in Table IV.8

1) Tensor Rank Estimation: We compare the RE results
obtained by our RETNN and TCTF (the other four TC methods
do not have the RE step). Table IV shows that RETNN correctly
determines the tubal ranks in all cases, while TCTF underesti-
mates or overestimates the true ranks. RETNN is robust to the
initial rank, while TCTF obtains different ranks using different

7Image/Videos with truncated exact low-rank are widely studied in the
literature [62]–[65]. In this work, we follow this line to contribute better
alternatives for robust tensor recovery with accurate RE.

8In Table IV, “–” refers to that TRBU cannot handle the tensors with
arbitrary size as it requires a good tensor ring structure, while it can process
the House and Lenna with size 28 × 28 × 3 more efficiently.
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Fig. 2. Recovery results on the Windmill video and the Lenna image. The first and second column figures are the low tubal-rank tensors and the incomplete
tensors (SR = 50%), respectively. The third column to the tenth figures are recovered tensors by HaLRTC, TNCP, TNN, t-TNN, TCTF, TCTF-RE, RETNN,
and TC-RE, respectively, (best viewed on screen or see larger figures in Appendix D of the supplementary material).

rank initializations. These results demonstrate the superiority
of our RE model.

2) Image and Video Completion: Table IV shows that TC-
RE consistently recovers all the tensors successfully (RSE
< 10−3) with much smaller reconstruction errors except in
one case (Akiyo video with SR = 40%), where the observed
entries are not sufficient. Nevertheless, TC-RE consistently
outperforms all other methods by several orders of magni-
tude in all cases, excepting one (i.e., the Windmill video with
SR = 80%), where TCTF-RE obtains the best results, benefit-
ing from the accurate RE of our RETNN. HaLRTC and TNN
are the best performing existing algorithms in the cases of
recovering images and videos, respectively. Moreover, TNCP
and TCTF successfully predict the missing entries in only a
few cases because their inaccurate CP/tubal-RE deteriorates
their recoverability. Although TCTF-RE consistently outper-
forms TCTF in all cases in Tables I and IV, it fails to retain
its good completion performance on real tensors with fewer
observed entries (e.g., SR < 80%), where TC-RE still yields
good recovery results. This verifies that TC-RE can achieve the
optimal recovery solutions with the correctly estimated ranks
and sufficient observations. In addition, TC-RE also consis-
tently achieves much better results than RETNN in real-world
tensors such as in synthetic cases, which further confirms
the effectiveness and superiority of our relaxing strategy with
accurate RE.

Fig. 2 shows examples of recovery results on the Windmill
video and the Lenna image with 50% missing entries.

3) Time Cost: Table IV shows that the proposed RETNN
is, on the whole, the fastest among all methods including the
compared t-SVD-based TC methods. That is, because RETNN
avoids computing the full t-SVD, which leads to less CPU time
cost. TC-RE is not as fast as RETNN as it needs more iterations
to compute the truncated t-SVD of X after RE, but it is not the
slowest and achieves much better recovery results than other
methods with similar computational costs (e.g., TNN).

F. Application to Video Denoising

To evaluate the performance of the proposed RTPCA-RE,
we apply it to denoising of the Basketball video (144×146×
40, R = 15) corrupted by CR = 25% sparse noise. Table V
shows that RTPCA-RE achieves much better recovery accu-
racy than the compared six methods. As RPCA and SNN
simply assume the noise to be Gaussian, they thus cannot han-
dle gross corruptions successfully, although they are faster than
other methods. PSSV shows good results for matrix data on the

TABLE V
COMPARISON OF VIDEO DENOISING ON THE BASKETBALL VIDEO

Fig. 3. Recovery comparison on basketball video (20th frame shown). Upper
left: Noisy video (CR = 25%). Upper middle: PSSV [60] recovery. Upper
right: TRPCA [30] recovery. Lower left: OR-TPCA [35] recovery. Lower
middle: RKCA [21] recovery. Lower right: RTPCA-RE recovery.

original paper while it is not capable for higher order tensors.
RKCA obtains better results than these three methods although
it performs much worse than ours because it breaks the tensor
structure and lost information resulting from the unfolding of
the data. Furthermore, TRPCA and OR-TPCA achieve limited
results, and are even worse than that of RTPCA-RE without
the refinement scheme (i.e., RE step in RTPCA-RE), although
TRPCA is the best performing existing method. This supports
our assumption that current t-SVD-based robust tensor PCA
methods do not utilize true tubal-rank information, resulting
in degraded recovery results.

We illustrate the recovery results by showing the 20th frame
of the video in Fig. 3 (for simplicity, we do not show the results
of three worse methods: 1) RPCA; 2) SNN; and 3) IRTPCA).9

G. Application to Robust Completion for Images With Both
Missing and Corrupted Entries

To evaluate RTC-RE in the presence of both missing data
and sparse noise, we test on 100 images from the Berkeley

9We have also evaluated these seven RPCA methods on Berkeley images
with CR = {10%, 30%}, while the recovery performance of these compet-
ing approaches is much worse than RTPCA-RE. Due to space limitation, we
omit the image denoising results and show the robust completion of Berkeley
images in Table VI and Fig. 4.
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TABLE VI
ROBUST COMPLETION FOR EXAMPLE IMAGES FROM THE BERKELEY

Segmentation Dataset [66]. The sizes of these images are
481 × 321 × 3. We truncate them into the exact low-tubal
rank images for RE evaluation, where the ranks range from
12 to 53. The second column of Fig. 4 shows the observed
images, which are generated by randomly selecting 40% of the
corresponding image pixels as missing and randomly setting
CR = 10% of pixels to random values in [0, 255].

We report the robust recovery results of six examples in
Table VI and illustrate the corresponding figures in Fig. 4. As
Table VI shows, RTC-RE outperforms all of the competing
methods with significant improvements in all images and suc-
cessfully determines the tubal-ranks. This conclusion is also
consistent for all the 100 tested images. With these correct
ranks, RTC-RE refines the model and improves the recovery,
which demonstrates the importance of accurate RE and also
confirms the effectiveness of the refinement scheme. BRTF
fails to recover these color images because it requires accurate
CP-RE while it under-estimates their tensor ranks. GWLRTF-
Tucker does not achieve good recovery as it needs to unfold
the observed tensors, which can destroy the intrinsic struc-
ture of tensorial data and lose vital information. Furthermore,
LRTCR-TNN is the best performing existing method but its
achieved accuracies are much lower than ours because it does
not utilize rank information.

H. Application to Video Background Modeling

We now further apply our methods to the real-world appli-
cation of surveillance videos with the aim of subtracting the
foreground objects from the background (i.e., background
modeling problems). As video background is highly corre-
lated along the frames, they can be represented by a low-rank
tensor, while the foreground objects are moving along frames,
and thus can be represented by a sparse component [6]. We
conduct experiments on two popular video sequences: 1) shop-
ping mall sequences with 100 frames, where each frame size
is 256 × 320 and 2) airport hall sequences with 300 frames,
where each frame size is 144 × 176. To illustrate the capa-
bility of simultaneous robust completion and RPCA of our
RTC-RE, we randomly remove 90% pixels from these two

(a) (b) (c) (d) (e) (f)

Fig. 4. Recovery performance comparison of six example images cor-
rupted by 40% missing entries and 10% sparse noise (best viewed on screen).
(a) Original low tubal-rank images. (b) Observed images. (c)–(e) Recovered
images by BRTF, GWLRTF-Tucker, LRTCR-TNN, and RTC-RE, respectively.

videos and evaluate the performance of background modeling
under this missing data scenario, which may occur in reality
(e.g., the camera is broken and obtains incomplete surveillance
videos). We further study two cases: one is the common case,
in which we are given all frames of videos, and in the other,
we are given partial frames of videos (assume that we could
not obtain enough video sequences, or partial frames might be
missing).

Fig. 5(a) shows that: given all of the frames from the Airport
Hall and Shopping Mall videos, our method is superior to
the compared methods. Although BRTF can obtain slightly
clearer results than ours, it loses partial RGB color. That is
because BRTF must reshape the input to [256 × 320, 3, 100]
format, for example, it fails to work if it retains the original
size of videos as the input. This reshaping limits the estimated
rank to up to three, and results in the compression (lost par-
tial) of RGB information, particularly with fewer frames of
videos, as shown in Fig. 5(b) and 5(c). With fewer frames
from the original videos, the ghost effects are more severe
with other methods, particularly BRTF, which fails to work
on the Shopping Mall video with only 25 frames [1/4 of total
frames, shown in Fig. 5(c)], while RTC-RE can still obtain
relatively good results. This indicates that RTC-RE has better
robustness to missing data, and has less (missing) frames and
gross corruptions.

I. Summary of Experimental Results

1) The proposed four methods outperform all competing
methods with significant improvements in all cases of
RE, TC, and robust tensor recovery in various applica-
tions and settings on synthetic and real-world tensors.
With correct tubal-ranks determined by RETNN, TC-RE
can achieve optimal solutions via the relaxing strategy.
RTPCA-RE and RTC-RE not only inherit the ability
of RETNN to achieve accurate RE but also share a
similar spirit with TC-RE by explicitly utilizing esti-
mated tubal-ranks to further refine their models (the
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(a)

(b)

(c)

Fig. 5. Background modeling when 90% pixels of the Airport Hall and
Shopping Mall videos are missing. The {200th, 100th}, {100th, 50th}, {50th,
25th} frames of results are shown as examples from the first to sixth rows,
respectively. (a) Given all the frames of the videos as training. (b) Given
only 1/2 of the total frames of the videos. (c) Given only 1/4 of the total
frames of the videos. The first and second column figures are the original
and the observed video frames (SR = 10%), respectively. The third column
to the sixth figures are obtained by BRTF, GWLRTF-Tucker, LRTCR-TNN,
and RTC-RE, respectively, (best viewed on screen).

refinement schemes) and, thus, obtain successful results.
These results confirm the importance of RE and verify
the effectiveness and superiority of our methods.

2) The compared CP-based (e.g., TNCP and BRTF) and
Tucker-based methods (e.g., HaLRTC and GWLRTF-
Tucker) do not achieve as good results as the t-SVD
models (e.g., TNN, TRPCA, and our methods) in most
cases, which verifies our predictions: T-SVD models
have more advantages than CP and Tucker models.
CP-based methods reply on accurate RE while exist-
ing techniques often underestimate or overestimate the
ranks, and the Tucker-based methods require unfold-
ing of the observed tensors, which destroys the intrinsic
tensor structure and loses vital information. These draw-
backs lead to more degraded recovery performances
of the CP-/Tucker-based methods than t-SVD-based
methods.

3) Current t-SVD-based methods (e.g., TNN, t-TNN,
TRPCA, and OR-TPCA) obtain a few good results but
have much worse performance than ours. With the cor-
rect estimated ranks by RETNN, TCTF-RE consistently
outperforms TCTF. These results confirm the advantage
of t-SVD models with accurate RE and verify our claim
that existing t-SVD-based methods neither make use of
the low-rank prior (e.g., TNN and t-TNN) nor provide
accurate RE (e.g., TCTF), resulting in limited recovery
results.

4) The proposed RE techniques (e.g., RETNN) are the
fastest on the whole among all compared tensor methods
including the compared t-SVD-based methods. ARDTNN
avoids computing the full t-SVD and thus costs less CPU
time. TC-ARD and RTPCA-RE/RTC-RE are not as fast
as ARDTNN/RE steps because they involve the computa-
tion of the relaxing strategy and refinement schemes with
more iterations, respectively. Nevertheless, they are not
the slowest and consistently achieve much better recov-
ery results than other methods with less computational
costs (in most cases). Although our implementations are
not optimized for efficiency as our focus is on the accu-
racy, we could speed up our implementation by, for
example, updating all {X̂(i)}I3

i=1 in parallel, to achieve
better efficiency in future work.

VII. CONCLUSION

In this article, we have proposed four t-SVD-based meth-
ods: 1) RETNN; 2) TC-RE; 3) RTPCA-RE; and 4) RTC-RE.
RETNN has solved the challenging RE problem by simultane-
ously minimizing the reconstruction error and the TNN of the
f -diagonal tensor of an incomplete tensor, where the TNN
of the f -diagonal is equivalent to that of the entire tensor
and can be further recast as the �1-norm of singular val-
ues in the Fourier domain. With accurate RE, TC-RE can
obtain optimal completion via the relaxing strategy. RTPCA-
RE and RTC-RE have solved the robust tensor PCA and
robust TC problems, respectively. By explicitly using the cor-
rect estimated rank to further refine the models, RTPCA-RE
and RTC-RE can achieve a successful recovery. We have also
discussed the generalization of the proposed methods and ana-
lyzed some variants for other problems. As demonstrated in the
experimental results on synthetic and real-world images/videos
in various applications, the proposed methods not only cor-
rectly determine the true ranks but also successfully recover
the tensors with missing entries and/or sparse noise under
mild conditions and, thus, outperform the competing methods
in all cases with significant improvements. Nevertheless, the
proposed methods cannot keep such significant tensor recov-
ery performance on original data without rank truncation as
there is no “correct rank” to estimate, which is worth studying
elsewhere as our future work.
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