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FDDH: Fast Discriminative Discrete Hashing for
Large-Scale Cross-Modal Retrieval

Xin Liu , Senior Member, IEEE, Xingzhi Wang, and Yiu-ming Cheung , Fellow, IEEE

Abstract— Cross-modal hashing, favored for its effectiveness
and efficiency, has received wide attention to facilitating efficient
retrieval across different modalities. Nevertheless, most existing
methods do not sufficiently exploit the discriminative power
of semantic information when learning the hash codes while
often involving time-consuming training procedure for handling
the large-scale dataset. To tackle these issues, we formulate
the learning of similarity-preserving hash codes in terms of
orthogonally rotating the semantic data, so as to minimize the
quantization loss of mapping such data to hamming space and
propose an efficient fast discriminative discrete hashing (FDDH)
approach for large-scale cross-modal retrieval. More specifically,
FDDH introduces an orthogonal basis to regress the targeted
hash codes of training examples to their corresponding semantic
labels and utilizes the ε-dragging technique to provide prov-
able large semantic margins. Accordingly, the discriminative
power of semantic information can be explicitly captured and
maximized. Moreover, an orthogonal transformation scheme is
further proposed to map the nonlinear embedding data into
the semantic subspace, which can well guarantee the semantic
consistency between the data feature and its semantic representa-
tion. Consequently, an efficient closed-form solution is derived for
discriminative hash code learning, which is very computationally
efficient. In addition, an effective and stable online learning
strategy is presented for optimizing modality-specific projection
functions, featuring adaptivity to different training sizes and
streaming data. The proposed FDDH approach theoretically
approximates the bi-Lipschitz continuity, runs sufficiently fast,
and also significantly improves the retrieval performance over
the state-of-the-art methods. The source code is released at
https://github.com/starxliu/FDDH.
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I. INTRODUCTION

W ITH the explosive growth of multimedia data, auto-
mated mechanisms are needed to establish a similarity

link from one multimedia item to another if they are related
to each other. In order to maximally benefit from the richness
of multimodal media data, cross-modal retrieval has recently
gained increasing attention to approximate nearest neighbors
search across different modalities, such as using an image to
search the relevant text documents or using text to search the
relevant images. Nevertheless, in real multimedia searching,
the multimodal data usually span in different feature spaces,
and each feature characterizes the data contents from different
aspects. Such modality heterogeneity has been widely consid-
ered as a great challenge to cross-modal retrieval. To alleviate
this concern, early naive studies [1] learn a common latent
subspace to minimize the modality heterogeneity, indicating
its possibility to directly compare the features from different
modalities. Although these methods have achieved impressive
performance, there is still a serious limitation for them.
That is, the existing subspace approaches are computation-
ally expensive to deal with large-scale and high-dimensional
media data.

Hashing, favored for its low storage cost and fast retrieval
speed, has recently attracted much more attention due to its
effectiveness for indexing large-scale multimedia data [2].
The main objective of cross-modal hashing is to learn the
compact binary codes for representing multiple modalities,
while faithfully preserving both intramodality similarity and
intermodality similarity. In recent years, various cross-modal
hashing researches have been devoted to compress multi-
modal data in an isomorphic Hamming space and bridge their
heterogeneity gap, which can be roughly divided into unsu-
pervised methods [3]–[6] and supervised methods [7]–[10].
Since the label information is helpful to construct the semantic
correlations across different modalities, the supervised meth-
ods often leverage the semantic labels to further improve
retrieval performance over unsupervised cases. In spite of
some supervised methods that have achieved impressive
retrieval performance, it still remains a challenging task to
achieve efficient cross-modal retrieval mainly due to the
complex integration of semantic gap, modality heterogeneity,
and mixed binary-integer optimization problem. For instance,
the utilization of label supervision in terms of large pairwise
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similarity or affinity matrix [11], [12] inevitably increases the
computational cost during the hash code learning process.
Specifically, the discrete constraints imposed on the binary
codes and hash objective functions often lead to NP-hard
optimization problems. To simplify such optimization, some
supervised methods relax the original discrete optimization
problem into the continuous one [13], and such relaxation
scheme may deteriorate the accuracy of the learned binary
codes due to the accumulated quantization error. Besides,
recent supervised discrete hashing methods attempt to learn the
hash code bit by bit [10], [14], which often involves large itera-
tions in the learning process. In recent years, deep cross-modal
hashing approaches [15], [16], integrate the feature learning
and hashing code learning together, which always yields
outstanding performance on many benchmarks. Nevertheless,
these deep works often involve the exhaustive search for
learning optimum parameters, which is quite time-consuming.

To the best of our knowledge, it can be well found that exist-
ing supervised methods just consider the semantic-preserving
property provided by the label supervision, which does
not carefully explore the discriminative power of semantic
information when learning the hash codes. Consequently,
the learned hash codes are not discriminative enough for
high retrieval performance. Besides, exiting methods rarely
consider shortening the optimization iterations during the
training process, making it unscalable to large-scale datasets.
Therefore, it is still desirable to study a fast and discriminative
cross-modal hashing method from a practical viewpoint.

In this article, we present a fast discriminative discrete
hashing (FDDH) approach to facilitating efficient retrieval
across different modalities. The main contributions of the
proposed FDDH approach are fourfold as follows.

1) The efficient learning of similarity-preserving hash
codes is newly formulated in terms of orthogonally
rotating the semantic data, whereby the quantization loss
of mapping such data to hamming space can be well
minimized.

2) The label values are reasonably relaxed to increase the
discrimination power of semantic information, and ε-
dragging methodology is introduced to provide a large
margin property for discriminative hash code learning.
To the best of our knowledge, this strategy has yet to be
studied thus far in cross-modal hashing.

3) A novel orthogonal regression method is proposed for
learning semantic-preserving hash codes, and an efficient
closed-form solution is derived in a discrete and discrim-
inative manner, which accelerates the learning process
and makes a less computational effort.

4) Extensive experiments on three public benchmarks high-
light the advantages of FDDH under various cross-
modal retrieval scenarios and show its improved retrieval
performance over the state-of-the-art ones.

The remainder of this article is structured as follows.
Section II briefly surveys the related works of cross-modal
hashing. Section III-B elaborates on FDDH and its the-
ory analysis. The experimental results and discussions are
provided in Section IV. Finally, we draw a conclusion
in Section V.

II. RELATED WORK

The primary issue of cross-modal retrieval lies in that the
features of different modalities often span in different feature
spaces, indicating its impossibility to be compared directly.
To tackle this problem, the canonical correlation analysis
(CCA) [17] is probably the most popular method that aims to
learn a common latent subspace from two modalities, where
the features of different modalities can be directly correlated
and compared. Similarly, partial least-squares (PLS) [18] and
bilinear model (BLM) [19] also learn a common latent sub-
space for cross-modal retrieval. Remarkably, these methods do
not utilize the semantic labels for the discriminative analy-
sis. Therefore, some extensions leverage the valuable label
information to improve the retrieval performance. For instance,
the multiview CCA framework [20] directly links the image
and text views under the semantic class labels, and other
extensions, e.g., cluster-CCA [21] and multilabel CCA [22],
have also been developed to address cross-modal retrieval
problem. Besides, multimodal deep models, e.g., multimodal
autoencoder [23] and deep CCA [24], have been recently
proposed to construct more powerful subspace in the hidden
layers of the neural network while capturing the nonlinear cor-
relation between the heterogeneous modalities. Remarkably,
these deep methods are computationally expensive to process
large-scale and high-dimensional media data.

Cross-modal hashing has received wide attention due to
its effectiveness in reducing memory cost and improving
query speed, and its main difficulty is to learn compact
hash codes that have an additional property to preserve the
semantic relationship between different modalities. It is noted
that the recent multimodal hashing [25], [26] or multiview
hashing [27] works often fuse the features from different
modalities or views to learn the comprehensive hash codes,
which are essentially different from cross-modal hashing that
concentrates on discovering the shared hash codes to corre-
late multiple modalities. Furthermore, multimodal hashing is
designed for multimedia search when multimodal features are
all provided at the query stage, while cross-modal hashing
aims to retrieve the most relevant objects represented by other
modalities for a given query characterized by one modality.
In the following, we mainly survey the cross-modal hashing
works. In the past, various cross-modal hashing attempts have
been proposed, mostly in either an unsupervised manner where
the labels are unavailable or a supervised manner where
the labels are explicitly provided. Unsupervised cross-modal
hashing methods mainly learn the projection functions to map
the original feature spaces into hamming spaces. Accordingly,
intermedia hashing (IMH) [3] obtains a common hamming
space by preserving the interview and intraview consistency,
while collective matrix factorization hashing (CMFH) [4], [28]
jointly learns the unified hash codes and hash functions
by collective matrix factorization. Similarly, latent semantic
sparse hashing (LSSH) [5] first utilizes sparse coding and
matrix factorization to extract latent semantic features and then
quantizes such latent semantic features for hash code genera-
tion. Although these methods are able to capture the semantic
correlations between heterogeneous modalities, the available
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class label information remains unexplored, and the derived
hash codes are not discriminative enough for high retrieval
performance.

Supervised cross-modal hashing methods primarily exploit
the available label information to learn the compact hash
codes, which can well mitigate the semantic gap between
heterogeneous modalities and generally show improved perfor-
mance than that of unsupervised ones. For instance, semantic
correlation maximization (SCM) [7] seamlessly integrates the
semantic labels into hash code learning procedures, while
semantic preserved hashing (SePH) [11] and its extension [29]
generate the unified binary code by modeling an affin-
ity matrix in a probability distribution. Besides, supervised
matrix factorization hashing (SMFH) [13] utilizes the label
supervision to produce unified hash codes while maintaining
the label consistency and local geometric consistency. It is
noted that hashing is essentially a discrete learning prob-
lem, and these methods utilize relaxation-based continuous
schemes to simplify the original binary optimization problem.
Nevertheless, the approximated solutions with relaxation are
suboptimal, which often degrades the discriminative power
of the final hash codes, possibly due to the accumulated
quantization error. In contrast to this, discrete methods try
to directly solve the discrete problem without continuous
relaxation. Along this way, discrete cross-modal hashing
(DCH) [10], discrete latent factor model hashing (DLFH) [30],
sequential discrete hashing [31], cross-modal discrete hash-
ing (CMDH) [32], asymmetric discrete cross-modal hash-
ing (ADCH) [33], and nonlinear robust discrete hashing
(NRDH) [34] directly update hash codes while retaining the
discrete constraints for more compact hash codes. In addi-
tion, generalized semantic preserving hashing (GSePH) [12]
constructs an affinity matrix by label supervision to discretely
approximate hash codes, while scalable discrete matrix factor-
ization hashing (SCRATCH) [35], subspace relation learning
for cross-modal hashing (SRLCH) [36], and scalaBle Asym-
metric discreTe cross-modal hashing (BATCH) [37] improve
the collective matrix factorization to discretely learn the hash
codes. Although these supervised methods are able to achieve
efficient cross-modal retrieval, they do not fully exploit the
discriminative power of semantic information when learning
hash codes and often involve a bit large iterations in the
training procedures.

In recent years, multimodal deep learning has proven to
be effective in capturing the high-level correlation in differ-
ent modalities. Accordingly, recent deep cross-modal hashing
works [16], [38]–[40] jointly learn the high-level features
and hash code in an integrated way, whereby the hash codes
can be optimized with feature representation learning through
the multilayer neural networks. Although these deep methods
have shown outstanding performance on many benchmarks,
they are always constrained by computational complexity and
exhaustive search for learning optimum network parameters.
Another potential limitation is that these deep methods still
employ the binary quantization functions to generate hash
codes from the feature space, which cannot guarantee the
learned binary codes to be semantically discriminative for
characterizing the heterogeneous modalities. Therefore, it is

still desirable to study the fast and discriminative indexing
techniques for efficient cross-modal retrieval practically.

III. FAST DISCRIMINATIVE DISCRETE HASHING

Without loss of generality, this section mainly focuses on
fast discriminative discrete hashing with only two modal-
ities (i.e., image and text), and the proposed cross-modal
hashing framework can be easily extended to three or more
modalities.

A. Notation and Problem Formulation

Throughout this article, the uppercase bold font characters
are utilized to denote matrices, while the lowercase bold font
characters are select to represent data vectors. For simplicity,
let Xt = {xt

i }n
i=1, t = 1, 2 be the training image–text examples,

where xt
i ∈ R

dt is the i th sample, dt is the feature length in
the t th modality, and n is the training number. Without loss of
generality, the data points are assumed to be zero-centered,
which means that

∑n
i=1 xt

i = 0. In practice, the zero-one
matrix Y = [y1, . . . , yn] ∈ R

c×n is utilized to represent the
label matrix corresponding to the training samples, where each
column vector yi ∈ R

c×1 is simply defined as follows: if the
t th training sample comes from the j th class (in general, each
sample belongs to no less than one class), then the j th element
of such column vector is 1, while the remaining elements
are 0. The goal of cross-modal hashing is to learn binary
codes matrix H = {hi }n

i=1 ∈ R
q×n for all training instances

and modality-specific projection matrix Pt for linking the
original feature space and the common hamming space, where
hi ∈ {−1, 1}q×1 is q bits hash code of the i th instance.

B. Proposed FDDH Methodology

1) Semantic-Preserving Hash Code Learning: For hashing
representation learning, compactness is a critical criterion to
guarantee its performance in efficient similarity search. There-
fore, it is imperative to produce an efficient code in which
the variance of each bit is maximized and the bits are
pairwise uncorrelated. To learn the compact hash code,
the orthogonal transformation is popular for discriminative
hash code learning, and Wang et al. [25] present an orthog-
onal learning structure to reduce the redundant information
lying in the hash representation. Note that this work is
designed to learn modality-specific hash codes jointly for
multimodal data representation, while cross-modal hashing
learns common hash codes to preserve the semantic relation-
ship across different modalities. Benefit from the observations
of work [41], the learning of similarity-preserving binary
codes can be successfully formulated in terms of orthog-
onally rotating zero-centered PCA-projected data, so as to
decompose correlations among hash bits and minimize the
quantization error of mapping that data to the vertices of a
zero-centered binary hypercube. In practice, the length of hash
bits is often larger than the number of semantic categories,
i.e., q ≥ c. Geometrically, it is not difficult to find that
hamming space is consistent with the vertices of the unit
hypercube, and we heuristically introduce an orthogonal basis
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Fig. 1. Geometric example of 3-D semantic subspace illustration for
semantic-preserving and quantization error reduction.

C = {ξ i }c
i=1 ∈ R

q×c to learn the semantic representation. More
specifically, we propose to orthogonally rotate the label vector
yi to approximate its semantic data si (i.e., si = Cyi ) while
ensuring si to be as close as possible to the vertices of unit
hypercube. Accordingly, the optimal orthogonal basis C can
be obtained by minimizing the following quantization loss:

min
C

n∑
i=1

�sgn(Cyi) − Cyi�2
2, s.t. CTC = Ic (1)

where Ic is a c-order identity matrix. A geometric example for
3-D semantic subspace illustration is shown in Fig. 1, where
�s1 and �s2 are semantic vectors of instances that formed by
an orthogonal basis C = {ξ1, ξ2, ξ3} and label vectors y1 =
(1, 1, 0)T, y2 = (1, 0, 1)T. The quantization errors are attainted
by computing the sum of the length of �e1 and �e2. As indicated
in (1), the smaller quantization loss indicates the better binary
code, which can well preserve the structure property of the
semantic data. As hash codes are often obtained by quantizing
the semantic data, (1) can be rewritten as

min
C

n∑
i=1

�hi − Cyi�2
2, s.t. CTC = Ic. (2)

Therefore, the learning of semantic-preserving binary codes
can be formulated in terms of orthogonally rotating the seman-
tic data to minimize the quantization loss

min
H,C

�H − CY�2
F , s.t. H ∈ {−1, 1}q×n, CTC = Ic. (3)

Remarkably, the optimization problem in (2) ensures that
Cyi→hi . Considering the linear structural equation Ax =
b, the solution of x can be determined when rank(A) =
rank(A, b). Formally, we replace A with C and b with hi and
obtain Cx = hi . Since C is constructed from the orthogonal
basis in semantic space, and hi can be linearly represented with
these basis, resulting rank(C) = rank(C, hi ). Since Cyi→hi ,
yi is in close proximity to the solution of x in equation
Cx = hi , resulting �yi − x�2 = �yi − CThi�2→0, and we
obtain the following equivalent equation:

min
C

n∑
i=1

�yi − CThi�2
2, s.t. CTC = Ic. (4)

TABLE I

IMPACTS OF ε-DRAGGING ON CLASS LABEL VECTORS

As indicated in work [42], the hash code can also be
regressed to its corresponding label, and (4) is also in accor-
dance with such feasibility. By combing all the instances, (4)
can be rewritten in the matrix representation

min
H,C

�Y − CTH�2
F , s.t. H ∈ {−1, 1}q×n, CTC = Ic. (5)

The above formulation is a typical regression problem,
which regress H to Y. That is, the zero-one class label vectors
stipulate a type of binary regression with target “1” for positive
class and target “0” for the negative classes. Evidently, for
the rigid zero-one label matrix Y, the Euclidean distances of
regression responses between samples from different classes
are a constant value, i.e.,

√
2 for single label data. This is

contrary to the expectation that the samples from different
classes should be as far as possible. To alleviate this problem,
we propose to utilize the ε-dragging technique to force the
regression targets of different classes moving along the oppo-
site directions, whereby the margin between different classes
can be enlarged. That is, with a positive slack variable εi ,
we hope the output will become 1+εi for the sample grouped
into “1” and −εi for the sample categorized into “0.” As
shown in Fig. 1, the label y2 = (1, 0, 1)T is further relaxed as
y2 = (1, 0, 1 + ε)T, and the semantic vector �s2 is updated to
�s�
2. Accordingly, the resulted length of �e�

2 is smaller than the
original one of �e2, and the total quantization error is reduced
by | �e2| − | �e�

2|.
Further interpretation of ε-dragging motivation is shown

in Table I, which reports six single label data points in three
classes, and their one-hot class label vectors are listed in
the second column. It can be observed that x1 and x2 are
marked within the same class, while x3, x4, x5, and x6 are
categorized into other different classes. Specifically, if the first
components of the class label vectors are gathered, we can get
values “1, 1, 0, 0, 0, and 0,” and their values will be relaxed
into “1 + ε11, 1 + ε21, −ε31, −ε41, −ε51, and −ε61.” As all ε
values are nonnegative, such ε-dragging technique could help
to enlarge the distance between different classes in case where
the data points are mapped. It is noted that the real datasets
may have large volume of data points and involve multiple
semantic labels, and the proposed ε-dragging operation can
be well utilized in these datasets as well. To develop a unique
compact model, we utilize a constant matrix B ∈ R

c×n to
characterize the dragging direction, in which the i th row and
the j th column element Bi j are defined as

Bi j =
{

+1, if yi j = 1

−1, otherwise
(6)
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where “+1” represents the positive direction and “−1” means
the negative direction. Performing the above ε-dragging oper-
ation on each element of Y and recording these ε values by
matrix E = {εi j ≥ 0} ∈ R

c×n, (5) can be rewritten the as
following optimization problem:

min
Y,C,E

�Y + B 	 E − CTH�2
F + δ�E�2

F

s.t. H ∈ {−1, 1}q×n, CTC = Ic (7)

where 	 is a Hadamard product operator of matrices and δ
is the weight coefficient to control the degree of relaxation.
In contrast to (5), we add an ε-dragging term B 	 E in (7)
to enlarge the distances between different classes. In this way,
each sample can be regressed efficiently with a large margin
between the true and false classes. Accordingly, the learning
model is converted to be an equivalently constrained optimiza-
tion problem. For ease of representation, let Ȳ = Y + B 	 E;
it can be easily found that the term minE �E�2

F is equivalent
to minȲ �Ȳ�2

F . Therefore, (5) can be further rewritten as

min
H,C,Ȳ

�Ȳ − CTH�2
F + δ�Ȳ�2

F

s.t. H ∈ {−1, 1}q×n, CTC = Ic. (8)

2) Semantic Embedding Learning: On the one hand, any
suitable embedding learning algorithms, linear or nonlinear,
can be utilized for mapping the data into the semantic space.
In general, the semantic correlation of multiple modalities
often exists in the high-level space, and the mapping functions
from the raw feature space to the high-level space are highly
nonlinear [11], [43]. On the other hand, for hash representation
learning, it is necessary to produce an efficient code, in which
the variance of each bit is maximized and the bits are pairwise
uncorrelated. To integrate these issues, we propose a simpler
idea of orthogonally transforming the data and utilize follow-
ing simple yet powerful nonlinear form:

min
Rt

∥∥S − RT
t φ(Xt )

∥∥2
F
, s.t. RT

t Rt = Iq (9)

where S ∈ R
q×n represents the semantic data, and φ(·) is the

RBF kernel [43], which could better capture the underlying
nonlinear property in feature space. Since the semantic data is
approximated by orthogonally rotating label vector, the seman-
tic subspace can be further approximated by S = CȲ. Similar
to the relationship between (3) and (5), (9) can be transformed
into following equivalent form:

min
Rt

�φ(Xt) − Rt CȲ�2
F , s.t. RT

t Rt = Iq . (10)

3) Overall Objective Function: According to the orthog-
onal relationship, the first item minH,C �Ȳ − CTH�2

F in (8)
is also equivalent to minH,C �H − CȲ�2

F . By integrating the
semantic-preserving learning and semantic embedding learn-
ing, the process of learning the discriminative hash codes can
be conducted by minimizing the following objective function:

min
H,R1,R2,C,Ȳ

�H − CȲ�2
F + μ�φ(X1) − R1CȲ�2

F

+ θ�φ(X2) − R2CȲ�2
F + δ�Ȳ�2

F

s.t. CTC = Ic, H ∈ {−1, 1}q×n

RT
1 R1 = Iq , RT

2 R2 = Iq . (11)

C. Discrete Optimization for FDDH

The discrete constraints imposed in (11) lead to
mixed-integer optimization problems, which are generally NP-
hard. In the literature, some hashing methods discard dis-
crete constraints and solve a relaxed problem to simplify
the optimization steps. Nevertheless, this relaxation strategy
may accumulate large quantization error during the hash code
learning process. To solve (11), the discrete optimization
method is selected. For all matrix variables H, R1, R2, C,
and Ȳ, it is convex with respect to any single matrix variable
while fixing the other ones, and an alternating optimization
technique can be adopted to iteratively solve such optimization
problem until the convergence is reached. The details of the
discrete optimization steps are elaborated as follows.

1) Update C: Remove the items that are irrelevant to C,
and fix H, R1, R2, and Ȳ. Then, the suboptimization problem
derived in (11) is simplified as

min
C

�H − CȲ�2
F + μ�φ(X1) − R1CȲ�2

F

+ θ�φ(X2) − R2CȲ�2
F

s.t. CTC = Ic. (12)

By expanding each item and removing the irrelevant ones,
we can rewrite (12) as follows:

min
C

�CȲ�2
F + μ�R1CȲ�2

F + θ�R2CȲ�2
F

− 2Tr(Ȳ(HT + μφ(X1)TR1 + θφ(X2)TR2)C)

s.t. CTC = Ic (13)

where Tr(·) is the trace norm. Since CTC = Ic, RT
1 R1 = Iq ,

and RT
2 R2 = Iq , it can be easily obtained that �CȲ�2

F =
�Ȳ�2

F , �R1CȲ�2
F = �Ȳ�2

F , and �R2CȲ�2
F = �Ȳ�2

F , and all
these values are constant. Therefore, the optimization problem
in (13) is equal to maximize the following trace function:

max
C

Tr(Ȳ(HT + μφ(X1)TR1 + θφ(X2)TR2)C)

s.t. CTC = Ic. (14)

It is noted that the problem in (14) corresponds to the
classic orthogonal procrustes problem [44], which can be
approximated by singular value decomposition (SVD). For
simplicity, let Q = Ȳ(HT + μφ(X1)TR1 + θφ(X2)TR2);
we utilize SVD to decompose Q, i.e., Q ≈ U�VT, where
� = diag(σ1, σ2, . . . , σ r ), r ≤ min(q, c), U ∈ R

c×r , and
V ∈ R

q×r are the transformation matrices. Let Z = VTCU,
the following properties are obtained:

Tr(QC) = Tr(U�VTC) = Tr(VTCU�)

= Tr(Z�) =
r∑

i=1

ziiσi ≤
r∑

i=1

σi . (15)

Evidently, the upper bound in (15) can be achieved if Z =
Ir , whereby the optimal solution of C can be obtained by

C =VUT. (16)

In general, the length of hash code is often larger than the
number of semantic categories, i.e., q ≥ c, and it is reasonable
to set r = c during the learning process.
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2) Update R1 and R2: Removing the items that are irrel-
evant to R1 and R2 and fix C and Ȳ, (11) can be further
simplified as

min
R1

�φ(X1) − R1CY�2
F , s.t. RT

1 R1 = Iq (17)

min
R2

�φ(X2) − R2CY�2
F , s.t. RT

2 R2 = Iq . (18)

Equivalently, the optimization problems in (17) and (18) are
equal to maximize the following trace functions:

max
R1

Tr(CȲφ(X1)TR1), s.t. RT
1 R1 = Iq (19)

max
R2

Tr(CȲφ(X2)TR2), s.t. RT
2 R2 = Iq . (20)

Similarly, the optimal solutions of R1 and R2 can be approx-
imated by respectively computing the SVD of CȲφ(X1)T and
CȲφ(X2)T, i.e., CȲφ(X1)T ≈ U1�1VT

1 and CȲφ(X2)T ≈
U2�2VT

2 . By referring to (15) and (16), the solution of R1

and R2 can be achieved by

R1 = V1UT
1 , R2 = V2UT

2 . (21)

3) Update Ȳ: Removing the items that are irrelevant to Ȳ
and fixing C, H, R1, and R2, (11) can be rewritten as

min
Ȳ

(1 + μ + θ + δ)Tr(ȲTȲ) − 2Tr(HTCȲ)

− 2μTr(φ(X1)TR1CȲ) − 2θTr(φ(X2)TR2CȲ). (22)

Furthermore, the subproblem of (22) can be simplified as

min
Ȳ

(1 + μ + θ + δ)Tr(ȲTȲ) − 2Tr(WTȲ) (23)

where W = CT(H + μRT
1 φ(X1)+θRT

2 φ(X2)). To solve such
minimization problem, the gradient descent method is selected.
More specifically, the derivative of all the terms in (23) with
respect to Ȳ is derived, and its optimal value is attained at
Ȳ� = (1/(1 + μ + θ + δ))W. It is noted that the original label
matrix Y is now extended to be Ȳ = Y + B 	 E, where E
is the ε-dragging matrix that utilized to enlarge the distances
between different classes. Evidently, the updating result for
the false class should be smaller than zero, and the regression
result for the true class should be larger than one. Therefore,
the updating scheme of optimized target matrix Ȳ is further
regularized as

Ȳi j =
{

min(Ȳ�
i j , 0), if yi j = 0

max(Ȳ�
i j , 1), if yi j = 1.

(24)

4) Update H: Removing the items that are irrelevant to H
and fixing C and Ȳ, (11) can be simplified as

min
H

�H − CȲ�2
F , s.t. H ∈ {−1, 1}q×n. (25)

The discrete solution of H can be computed from the
embedding matrix CȲ, and an efficient close-form solution
is approximated by thresholding such data matrix as

H = sgn(CȲ). (26)

It is noted that the proposed FDDH approach has a
closed-form solution for hash code learning and only requires
a single step to obtain all bits, which is highly efficient in
comparison with bit by bit learning scheme [10]. The main
procedures of the proposed FDDH method are summarized
in Algorithm 1.

Algorithm 1 Learning Algorithm for FDDH

Input: Training data X1, X2; code length q; semantic labels
L, parameters μ, θ , δ and γ .

1: Initialize C, R1, R2 as random matrix respectively.
2: Initialize Ȳ = Y and H ∈ {−1, 1}q×n randomly.
3: repeat
4: Update C via Eq (16);
5: Update R1 and R2 via (21);
6: Update H via Eq (25);
7: Update Y via Eq (24);
8: until convergency or reaching maximum iterations.

Output: Obtain hash code matrix H via Eq (26).

D. Out-of-Sample Extension

The hash function is designed to project high-dimensional
real-value features to low-dimensional binary space. For any
unseen query sample, it is straightforward to predict its hash
codes via the modality-specific hash function. On the one
hand, the off-line learning method is the standard way to
learn such modality-specific hashing projections, which keeps
unchanged for all new coming data. Similar to most existing
methods, the off-line learning strategy is configured within
the proposed FDDH framework. On the other hand, the mul-
timedia data points often continuously arrive in a streaming
fashion. If the training data are increasingly accumulated,
the off-line learning method needs to recalculate the hash
functions on the whole database, which is computationally
inefficient. Therefore, it is particularly important to develop an
efficient online learning strategy to deal with the new query
data. In the following, we elaborate on the off-line strategy
and the newly proposed online strategy in tandem.

1) Off-Line Strategy: As introduced in Section III-B,
the discriminative hash codes can be well obtained by opti-
mizing the objective function in (11). Since the linear hash
function cannot characterize the nonlinearity embedded in
real-world data, we refer to the training process and first utilize
the RBF kernel to capture the underlying nonlinear informa-
tion in feature space. Then, the modality-specific projection
Pt can be obtained by minimizing the following formulation:

Goffline(Pt) = �H − Ptφ(Xt)�2
F + γ �Pt�2

F , t = 1, 2 (27)

where γ is the hyperparameter for the regularization term.
The solution of Pt can be computed by a regularized linear
regression method, and its optimal solution is obtained when
the gradient of (27) is equal to zero

Pt = Hφ(Xt)T(φ(Xt)φ(Xt)T + γ I)−1, t = 1, 2. (28)

For any query sample xt
i in the t th modality, the correspond-

ing hash code ht
i can be directly generated by

ht
i = sgn(Ptφ(xt

i )). (29)

2) Online Strategy: In practice, the multimedia data often
come in a streaming fashion, and the hashing projection func-
tions derived from the off-line strategy keep unchanged for all
new data points. If the new data are increasingly accumulated,
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the off-line learning method may accumulate large quantiza-
tion errors during the hash code learning process. To alleviate
this concern, we present a simple but effective online learning
strategy to adaptively learn the modality-specific projections,
by minimizing the following formulation:

Gonline(Pt) = Goffline(Pt) + ∥∥Ht
s − Ptφ

(
Xt

s

)∥∥2
F

(30)

where Ht
s is the corresponding hash code matrix of the stream

data Xt
s . The optimal solution of Pt and Ht

s can be obtained
when the gradients of (30) are equal to zeros. Accordingly,
the modality-specific projection Pt can be computed by

Pt = (
Hφ(Xt)T+Ht

sφ
(
Xt

s

)T)
× (

φ(Xt )φ(Xt)T + φ
(
Xt

s

)
φ
(
Xt

s

)T + γ I
)−1

. (31)

It is noted that the computation results of Hφ(Xt)T and
φ(Xt)φ(Xt )T can be stored as constants during the learning
process. For the t th modality of stream data Xt

s , the corre-
sponding hash codes Ht

s can be obtained by

Ht
s = sgn

(
Ptφ

(
Xt

s

))
, t = 1, 2. (32)

The final solutions of Pt and Ht
s are obtained iteratively by

repeating (31) and (32) until the procedure converges.

E. Theoretical Analysis

The proposed FDDH approach aims to produce discrimina-
tive semantic-preserving hash codes in a fast way while reduc-
ing the quantization error. This section shows the theoretical
analysis to prove its effectiveness. In addition, the theoretical
analysis of the online strategy is also given to prove its
stability.

1) Efficiency of Semantic-Preserving: To facilitate the
analysis of the relationship between the semantic information
and hash code, we utilize single data point for illustration.
According to (2) and (4), we can obtain the following
relationship:

hi = Cyi + ei; yi = CThi + e�
i (33)

where yi denotes the label value for the i th sample, and
ei and e�

i denote the quantization error and the regression
error, respectively. Accordingly, given two label vectors yi

and y j from the semantic space and their corresponding
hash representations hi and h j , we can obtain the following
equations:

�hi − h j�2 = �C(yi − y j) + (ei − e j)�2∥∥yi − y j − (
e�

i − e�
j

)∥∥
2 = �CT(hi − h j )�2. (34)

For any two vectors u and v, there are two norm properties
�uv�2 ≤ �u�2�v�2 and �u + v�2 ≤ �u�2 + �v�2, and the
similar properties can also be found in matrix representation.
According to the definition of the Frobenius norm, we can
further obtain that �CT�F = �C�F = κ , where κ is a
constant. According to the norm property, we can find �C�2 ≤
�C�F and obtain the following semantic structure preservation
property:
1

κ
�yi − y j�2 − �2(i, j) � �hi − h j�2 � κ�yi − y j�2

+�1(i, j) (35)

Fig. 2. Left: histogram distribution of bound errors. Right: Hamming
distances for semantic preserving illustration.

where �1(i, j) = �ei − e j�2 and �2(i, j) = (1/κ)�e�
i − e�

j�2.
Remarkably, if the bound error terms �1 and �2 are removed,
it is not difficult to find that the relationship in (35) is
in accordance with the bi-Lipschitz continuity. Equivalently,
if the quantization error (ei , e j ) and the regression error
(e�

i , e�
j ) are reduced perfectly, the error terms �1 and �2

shall closely equate to 0, whereby (35) approximates the
relationship of the bi-Lipschitz continuity. That is, the smaller
error bounds guarantee that hi is similar to h j when yi is
similar to y j . Remarkably, minimizing the objective function
in (3) and (5) can well reduce ei and e�

i because they aim
to find hi with small quantization error and regression error.
Therefore, the semantic consistency between the semantic
information and hash code is well preserved within the FDDH
framework.

Next, we investigate the value distributions concerning to
the error terms. Specifically, 5000 instances are randomly
selected from the MIRFlickr dataset to compute ei and e�

i
by (33). In order to eliminate the influence of magnitude of
input data pairs, we refer to the magnitude of �yi − y j�2

and, respectively, compute the normalized relative errors of
|�1(i, j)|/κ�yi − y j�2 and κ |�2(i, j)|/�yi − y j�2, which can
be efficiently utilized to show the impacts of the error terms
resulted by (35). As shown in the left part of Fig. 2, we draw
the value histograms of error terms and record their number
proportions among the 25M data pairs. It can be observed
that all the data errors �1 and �2 fall into the small range
[0, 0.1], which means that these errors terms have very little
impacts to the right-hand side of (35). In addition, we com-
pute the Hamming distances (32 bits) between one randomly
selected instance and other 20 different data instances. As
shown in the right part of Fig. 2, it can be clearly observed
that the Hamming distances of Image to Text (I → T),
Text to Image (T → I), and Label to Label (L → L)
often have a similar tendency, which indicates that the hash
codes derived from the proposed FDDH framework can well
hold the semantic-preserving property between heterogeneous
modalities.

2) Stability of Online Strategy: We further discuss another
potential benefit of the newly proposed online hash function
learning strategy, which stabilizes the hash code generation
for out-of-sample extensions. In a stable algorithm, the output
hash codes do not change significantly if a training example is
replaced with an independent and identically distributed (i.i.d.)
one. According to (32), the hash code learning for new data
is closely related to the modality-specific projections. More
specifically, let Xt

s be the new streaming dataset of the tth
modality and Xt/ i

s be the dataset with the i th example in Xt
s

replaced with an i.i.d. one; the proposed online hash projection
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strategy holds the following stable property:∥∥Pt
(
Xt

s

) − Pt
(
Xt/ i

s

)∥∥
F

≤ �(n) (36)

where �(n) converges to zero as the sample size n goes to
infinity. In supplementary material, we provide its detailed
proof.

3) Efficiency of Complexity Analysis: The computational
complexity of FDDH mainly involves RBF mapping and the
optimization in (11). For RBF mapping, whose complexity
is O(m2 + kdn), where d = max(d1, d2), m is the number
of instances selected to compute the kernel width, and k is
the number of anchor points. For optimization in (11), whose
complexity is O(n(q +c+qd +qc+d2+q2)+q3+qd2 +d3),
since c ≤ q < d � n, the optimization complexity can be
simplified as O(n(q + c + d2) + d3). Let t be the iterative
number to converge; the overall complexity is approximated
as O(m2 + kdn + ((q + c + d2)n + d3)t), which is linear to n,
and it is very competitive to existing methods. In practice, the
iteration number is always less than 15, and more illustrations
about the learning speed will be discussed in Section IV.

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: The popular multimodal PASCAL-VOC-
2007 [45], MIRFlickr [46], and NUS-WIDE [47] datasets are
selected for evaluation. Similar to [16], the PASCAL-VOC-
2007 dataset (abbreviated as PASCAL-VOC) is divided into
train, val, and test subsets. By dropping those pairs without
text annotation, we conduct experiments on trainval and test
splits, which, respectively, contain 5000 and 4919 pairs. For
MIRFlickr, we keep 20015 image–text pairs whose textual tags
appear more than 20 times and randomly select 2000 instances
as a query set while choosing the rest as the training set. For
the NUS-WIDE dataset, we select 186 577 annotated instances
from the top-ten most frequent concepts to guarantee that
each concept has abundant training samples and randomly
select 1866 instances as a query set. For these three datasets,
the image is respectively represented as the 512-d GIST feature
vector, the 512-d SIFT feature vector, and the 500-d BoW
feature vector, and the text is characterized by the 399-d,
1386-d, and 1000-d BoW feature vectors. These handcrafted
features are very useful for evaluating the effectiveness of
different learning algorithms. In addition, the recent convolu-
tional neural network (CNN) has been popularized for visual
feature extraction, and we also extract 4096-d CNN visual
features from the last fully connected layer of the classic
VGG19 model [48], [49].

2) Baseline Methods: For meaningful comparisons,
the state-of-the-art unsupervised methods (i.e., CMFH [28],
CCQ [6], and IMH [3]) and supervised methods (SePH [11],
GSePH [9], DCH [10], DLFH [30], SCRATCH [35],
SRLCH [36], and BATCH [37]) are selected for evaluation.
It is noted that the recent deep cross-modal hashing
methods [38]–[40] jointly learn the high-level feature represen-
tations and hash code in an integrated way, and the proposed
framework is totally different from those works. In that sense,
it is really difficult to perform a relatively fair and meaningful

comparison with these approaches appropriately. In spite
of such differences, we also select one representative deep
cross-modal hashing method (DCMH [15]) for comparison.
As CMFH [28], SePH [11], and GSePH [9] methods are
computationally expensive in the training process, it is difficult
to learn their corresponding hash functions on the whole
NUS-WIDE dataset. Following the training strategy adopted in
the literature [10], [11], we randomly select 10 000 instances
from its retrieval set to learn the hash functions in the
training process and then utilize the learned hash functions to
generate binary codes for all instances in the dataset. For all
the baselines, we utilize the source codes and initialize the
relevant parameters kindly provided by the respective authors.

3) Evaluation Metric: The goal of cross-modal hashing
is to index the relevant neighbors from the database of
another modality, and the relevant instances are defined as
those sharing at least one semantic label with the query.
Similar to most works [9], [10], mean average precision
(mAP), top-K precision, and precision–recall curves are
selected for quantitative analysis, including retrieving text
with given image (I → T) and retrieving image with
given text (T → I). In general, the larger mAP scores and
top-K precision values often indicate the better retrieval
performance. In the experiments, parameters μ, θ , and δ
are empirically set at {100, 10−3, 103}, {10−2, 10−3, 103},
and {10−3, 10−3, 103}, respectively, for the PASCAL-VOC,
MIRFlickr, and NUS-WIDE multimodal datasets.

B. Results and Discussion

1) Results of Retrieval Performances: The mAP scores and
top-50 precision values tested with different datasets are sum-
marized in Tables II–IV, respectively. For handcrafted features,
it can be observed that the proposed FDDH approach has
achieved very promising cross-modal retrieval performances in
different hash length settings and outperforms most baselines.
For instance, the proposed FDDH approach has delivered
much better retrieval performances than that generated by
unsupervised methods, i.e., CMFH, CCQ, and IMH, and also
yielded comparable or even the better retrieval performances
than that generated by the competing supervised methods, (i.e.,
SePH_km, GSePH_km, DCH, DLFH, SCRATCH, SRLCH,
and BATCH). The main reason lies in that those unsupervised
methods intuitively learn the hash codes from the original
feature space to the Hamming space, and the hash codes
learned in an unsupervised way are not discriminative enough.
As a result, the corresponding semantic similarity is not well
preserved in the Hamming space, and the relevant retrieval
performances are a bit poor. In contrast to this, the supervised
cross-modal hashing methods often deliver better retrieval
performances, and the proposed FDDH method always yields
the highest mAP scores in most cases and delivers the best
top-50 precisions in all hash lengths. For instance, the mAP
scores obtained by FDDH (32 bits on T → I) reach up to
0.9048, 0.8022, and 0.8133, respectively, evaluated on the
PASCAL-VOC, MIRFlickr, and NUS-WIDE datasets. Specif-
ically, DLFH [30] proposes a novel discrete latent factor
model to learn the binary hash codes without continuous
relaxation, which performs well on some T → I retrieval task,
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TABLE II

QUANTITATIVE COMPARISONS OF MAP AND TOP-50 PRECISION ON PASCAL-VOC-2007, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE III

QUANTITATIVE COMPARISONS OF MAP AND TOP-50 PRECISION ON MIRFLICKR, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

mainly tested on the MIRFlickr and NUS-WIDE datasets.
Comparatively speaking, the proposed FDDH approach out-
performs the DLFH method in most cases. It is noted that
the top-50 precision values obtained by the proposed FDDH
approach are all higher than that produced by the DLFH
method, which indicates that the proposed FDDH approach
is able to search much more similar samples at the top-ranked

instances. That is, the hash codes derived from the proposed
framework are more discriminative and semantically mean-
ingful, which can well guarantee the semantic consistency
between the data and its semantic representation for better
cross-modal retrieval.

For the CNN visual features, it can also be found that
almost all competing baselines yield the improved retrieval
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TABLE IV

QUANTITATIVE COMPARISONS OF MAP AND TOP-50 PRECISION ON THE NUS-WIDE DATASET, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

performances over the handcrafted features in most cases.
Accordingly, the proposed FDDH approach often boosts the
retrieval performances in different hash length settings and
significantly outperforms most state-of-the-art baselines. For
instance, if the hash length is set at 64 bits, the mAP
scores obtained by FDDH and tested on I → T task are
higher than 0.79, 0.87, and 0.85, respectively, evaluated on
the PASCAL-VOC, MIRFlickr, and NUS-WIDE datasets.
Remarkably, the proposed FDDH method is designed to
explicitly learn the discriminative semantic-preserving hash
codes, which can achieve very competitive and even better per-
formances compared to the deep leaning method, i.e., DCMH.
For instance, the mAP scores obtained by FDDH are higher
than the results generated by DCMH in all cases. For some
cases, the handcrafted features embedded within the proposed
FDDH approach yield better performance than the CNN visual
features. The possible reasons are twofold: 1) the handcrafted
features associated with the semantic supervision, orthogonal
regression, and ε-dragging operation are able to produce more
discriminative hash codes for better retrieval performances
and 2) the mapping functions from the raw feature space to
the high-level semantic space are highly nonlinear, and the
handcrafted features associated with RBF mapping are able to
capture the underlying nonlinear information within the visual
data and, therefore, perform comparably with the CNN visual
features.

Furthermore, the precision–recall curves and top-K pre-
cision curves tested on different feature representations are
shown in Figs. 3 and 4, respectively. On the one hand,
the precision–recall curves show that the proposed FDDH
approach has achieved the comparable cross-modal retrieval
performances in different hash length settings and outper-
formed most baselines. On the other hand, top-K precision

indicates the change of precision with respect to the number
of top-ranked K instances exhibited to the users. As shown
in Fig. 4, the top-K precision curves indicate that the proposed
FDDH method always yields the highest precision scores
than the baselines with the number of retrieved instance (K )
changes, both in handcrafted visual features and CNN visual
features. This indicates that the proposed FDDH approach is
able to index much more similar samples at the beginning,
which is very important for building a practical retrieval
system. The main superiority contributed to these very com-
petitive performances lies in that the hash codes derived from
FDDH are more discriminative and interpretable to character-
ize the heterogeneous data samples while faithfully preserving
both intramodality similarity and intermodality similarity.

2) Results of Ablation Studies: Within the proposed FDDH
framework, the label relaxing and RBF mapping schemes
are carefully considered for efficient cross-modal hashing.
Next, we further evaluate the effectiveness of each learning
module and heuristically validate the performance of differ-
ent learning modules, i.e., FDDH without label relaxation
(FDDH_NR) and its further extension without RBF map-
ping (FDDH_NRM). To be specific, their main objective
formulations, simplified directly from (11), are denoted as
�H − CY�2

F + μ�φ(X1) − R1CY�2
F + θ�φ(X2) − R2CY�2

F
and �H − CY�2

F + μ�X1 − R1CY�2
F + θ�X2 − R2CY�2

F ,
respectively. Accordingly, the mean mAP scores (m-mAP) and
mean top-50 precision (m-top50) values, averaged on I → T
and T → I tasks with all hash bits (i.e., 32, 64, and 128), are
recorded to validate these different learning mechanisms.

As illustrated in Table V, it can be found that the
m-mAP scores and m-top50 values attained by FDDH_NR
and FDDH_NRM have also delivered very competitive perfor-
mances. On the one hand, the reasonable relaxation of label
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Fig. 3. Precision–recall curves obtained by different approaches and tested on different datasets.

Fig. 4. Representative top-K precision curves obtained by different approaches and tested on handcrafted features.

TABLE V

ABLATION STUDIES OF FDDH ON THE VOC-PASCAL DATASET

values is able to offer a large class margin for discrimina-
tive analysis, which can promote the discriminative power
of hash codes. On the other hand, the utilization of RBF

mapping could capture the nonlinear structure of input data
to improve retrieval performance. Remarkably, the m-mAP
scores obtained by FDDH are higher than that produced
by FDDH_NR and FDDH_NRM in all cases, while the m-
top50 values generated by FDDH yield the best retrieval
precisions. That is, the integration of relaxed label value
learning and RBF mapping could yield more discriminative
hash codes and, therefore, significantly boost the retrieval
performance.

3) Results of Training Time: The computational complexity
of the proposed FDDH framework mainly accumulates from
the training process, in which the processing time of RBF
kernel mapping is a constant during the learning process. For
a fair comparison, we evaluate the competing algorithms on
the NUS-WIDE dataset with handcrafted features and record
the execution time of different training sizes with 128 hash
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Fig. 5. Sensitivity analysis of the hyperparameters μ and θ tested on handcrafted and CNN visual features. (a) PASCAL-VOC I → T (32 bits, handcrafted).
(b) PASCAL-VOC T → I (32 bits, handcrafted). (c) PASCAL-VOC I → T (32 bits, CNN). (d) PASCAL-VOC T → I (32 bits, CNN). (e) MIRFlikcr I → T
(32 bits, handcrafted). (f) MIRFlikcr T → I (32 bits, handcrafted). (g) MIRFlikcr I → T (32 bits, CNN). (h) MIRFlikcr T → I (32 bits, CNN). (i) NUS-WIDE
I → T (32 bits, handcrafted). (j) NUS-WIDE T → I (32 bits, handcrafted). (k) NUS-WIDE I → T (32 bits, CNN). (l) NUS-WIDE T → I (32 bits, CNN).

TABLE VI

TRAINING TIME (IN SECOND) ON SUBSETS OF NUS-WIDE

bits. It is noted that the representative CMFH, IMH, SePH,
and GSePH methods are computationally intractable on the
large-scale training dataset, and we only implement these
methods on relatively small training size, i.e., the data sizes are
less than 10k. The training times tested on different data sizes
and conducted on different methods are shown in Table VI; it
can be observed that the unsupervised CMFH and supervised
GSePH methods often require large training time to learn
the hash codes. The main reason lies in that CMFH often
involves large iterations to convergence, while the GSePH
approach takes a massive amount of computations to factorize
the large affinity matrix. Meanwhile, the deep learning method,
i.e., DLFH, often requires large training time to perform the
learning process. Evidently, these methods could be quite
time-consuming when the training database is too large.

Comparatively speaking, the competing IMH, DCH,
SCRATCH, SRLCH, BATCH, and proposed FDDH meth-
ods have significantly reduced the training time. Since the
proposed FDDH approach considers more variables to dis-
criminatively learn the hash codes, the execution time of
training time could be much higher than the relevant IMH,
DCH, SCRATCH, SRLCH, and BATCH methods. Fortunately,
the proposed FDDH method not only significantly reduces the
training time but also achieves the best cross-modal retrieval
performance in most cases. For instance, the execution time
obtained by the proposed FDDH method is only around
1.74 m, in contrast to 140.26, 4.45, 8.68, 5.01, and 3.41 m,
respectively, evaluated on IMH, DCH, SCRATCH, SRLCH,
and BATCH methods. The main advantages contributed to
such a fast training process are threefold: 1) the utilization of
orthogonal constraint to hash code learning can well reduce
the quantization error, which, therefore, speed up the learn-
ing process; 2) the ε-dragging technique is able to provide
large class margins for fast regression, which can make the
optimization procedure converge within fewer iterations; and
3) the proposed FDDH framework has a close-form solution to
hash code learning and only requires a single step to update the
whole hash codes. As a result, the FDDH algorithm performs
sufficiently fast to process the large-scale database.

4) Effects of Model Parameters: There are three main para-
meters involved within the proposed FDDH framework, i.e.,
μ, θ, and δ. Specifically, δ is the weight coefficient to control
the degree of semantic label relaxation, and the extensive
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Fig. 6. Retrieval results tested with different training sizes.

experiments find that the retrieval performance is always
stable when the value of δ is within the range of [102, 103].
Meanwhile, we fix the code length to be 32 bits and set δ at
102 to further attempt different values of μ and θ , by varying
the value of one parameter while fixing another one. More
specifically, we vary the parameter μ within {10−4, . . . , 104}
and θ within {10−4, . . . , 104}. The mAP scores tested on
different {μ, θ} values and evaluated on different retrieval tasks
are shown in Fig. 6; it can be observed that the mAP scores
obtained by the FDDH are very stable in most cases, and
the performance deteriorates only when the {μ, θ} values are
very large, e.g., μ greater than 10 and θ greater than 103.
Overall, the results perform well when μ is selected within
the range of [10−4, 10], and θ is chosen within the range of
[10−4, 103]. Besides, the different {μ, θ} values only induce
a minor fluctuation in the retrieval performance. Therefore,
these parameters are generally insensitive to the cross-modal
retrieval performances within a wide range of values.

5) Efficiency of Online Strategy: For the out-of-sample
extensions, the off-line and online strategies are both proposed
to learn the modality-specific projections. Similar to most
competing works, the off-line learning strategy is selected as
the standard way of learning. Besides, an efficient online learn-
ing strategy is newly proposed to adapt the streaming data.
For simplicity, the proposed FDDH algorithm associated with
the online learning strategy is abbreviated as FDDH_online.
Furthermore, we vary the training size of the MIRFlickr
dataset from 10% to 90% and select the handcrafted features of
the MIRFlickr dataset for illustration. Accordingly, the average
mAP@50 scores tested on I → T and T → I tasks are
shown in the Fig. 5; it can be observed that both the proposed
FDDH and FDDH_online methods always outperform other
state-of-art competing methods on different training sizes.
Remarkably, the proposed FDDH_online scheme has yielded
very promising retrieval performance when the training size is
relatively small (less than 30%). This impressive achievement
can be attributed to the stable ability of the online learning
scheme illustrated in Section III-D2, which can adaptively
learn the modality-specific projections within the different
training sizes. Therefore, the proposed online learning scheme
is able to well learn discriminative hash codes with limited
training dataset, which can be efficiently utilized to facilitate
large-scale cross-modal retrieval tasks.

6) Convergence Analysis: Algorithm 1 shows the main
procedures of the FDDH algorithm, and its complexity has
been theoretically analyzed in Section III-E. Besides, we fur-
ther study the convergence of the proposed FDDH algorithm.

Fig. 7. Results of objective function values and mAP scores recorded in
different iterations and tested on the NUS-WIDE dataset.

TABLE VII

DIFFERENT OPTIMIZATIONS TESTED ON THE NUS-WIDE
DATASET (128 bits)

By fixing the code length to be 32 bits, we record the
objective value and mAP score at each iteration and select
the NUS-WIDE dataset for illustration. As shown in Fig. 7,
it can be observed that the FDDH converges very fast during
the learning process. On the one hand, the objective values
almost converge within 30 and 20 iterations, respectively,
tested on handcrafted and CNN visual features. On the other
hand, the corresponding mAP scores converge to a stable
value within very limited iterations, e.g., five iterations for
handcrafted features and 15 iterations for CNN visual features,
respectively. Therefore, the overall computational load of the
proposed FDDH can be significantly reduced due to the fewer
iterations.

7) Different Optimizations: In the literature, several fast uni-
modal hashing methods have been presented, e.g., DPLM [50]
and FSDH [51]. Similar to the multimodal extension from
SDH [42] to DCH [10], we heuristically extend DPLM and
FSDH to adapt the multimodal data (abbreviated, respectively,
as DLPM-M and FSDH-M) and compare the proposed
FDDH approach with these fast hashing schemes. Specifically,
the large NUS-WIDE dataset associated with handcrafted
features is selected for illustration, and we also utilize the
optimization scheme within DPLM to update H in (11)
(abbreviated as FDDH-DPLM). Accordingly, we record the
retrieval performances and training times by different opti-
mizations in Table VII; it can be found that the proposed
FDDH approach not only produces the highest mAP scores
and top-50 precisions but also involves the lowest training
time. It is noted that the DPLM-M and FSDH-M methods,
respectively, share the similar optimization algorithms with
FDDH-DPLM and FDDH to achieve cross-modal retrieval
tasks, and it is easy to find that the results of FDDH-DPLM
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and FDDH involve the lower training times while producing
the better retrieval performances. The main reason lies in that
the proposed FDDH method imposes an orthogonal constraint
to reduce the quantization error while employing the relaxed
semantic label values for fast convergence. Remarkably,
the optimization algorithm within the FDDH framework sig-
nificantly speeds up the learning process and surprisingly con-
tributes to the fastest implementation. Therefore, the proposed
FDDH algorithm runs sufficiently fast, and it is particularly
suitable for processing large-scale multimedia datasets.

V. CONCLUSION

This article has proposed a novel FDDH method for
large-scale cross-modal retrieval. The proposed framework
introduces an orthogonal basis to regress the targeted hash
codes of training examples to their corresponding reason-
ably relaxed class label values, which offers provable large
margin property to efficiently reduce the quantization error.
Meanwhile, an orthogonal transformation scheme is further
proposed to guarantee the semantic consistency between the
data feature vector and its semantic representation. Through
the joint exploitation of the above, an efficient closed-form
solution is derived for discriminative hash code learning, while
an effective online strategy is newly proposed for modality-
specific projection function learning. Extensive experiments
empirically show that the proposed FDDH approach performs
sufficiently fast and brings substantial improvements over the
state-of-the-art methods.
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