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Abstract—Evolutionary sequential transfer optimization is a
paradigm that leverages search experience from solved source
optimization tasks to accelerate the evolutionary search of a tar-
get task. Even though many algorithms have been developed,
they mainly focus on objective-homogeneous problems, where
the source and target tasks possess a similar number of objec-
tives. In this work, we explore objective-heterogeneous problems,
in which knowledge transfers across single-objective optimization
problems (SOPs), multiobjective optimization problems (MOPs),
and many-objective optimization problems (MaOPs). Objective-
heterogeneous problems challenge the existing methods due to
the diverse search and objective spaces between the source and
the target task. To address this issue, we present a decision vari-
able analysis-based transfer method that can conduct knowledge
transfer across problems with the different numbers of objectives.
We first separate decision variables of MOPs and MaOPs into
convergence-related variables (CVs) and diversity-related vari-
ables (DVs), according to their roles while treating variables of
SOPs as CVs. Then, we propose a convergence transfer module to
transfer knowledge of CVs to speed up the convergence. It aligns
both solutions and fitness ranks for preserving fitness rank consis-
tency between the source and target tasks, whereby accelerating
search speed. Besides, a diversity transfer module is presented to
refine the distribution of DVs to maintain the population diver-
sity. The experimental results on objective-heterogeneous test
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problems and a real-world case study have demonstrated the
effectiveness of the proposed algorithm.

Index Terms—Convergence transfer, diversity transfer, evolu-
tionary transfer optimization (ETO), heterogeneous problems,
knowledge transfer.

I. INTRODUCTION

EVOLUTIONARY algorithm (EA) is a population-based
optimization approach based on the Darwinian theory [1].

For a given optimization task, EAs attempt to obtain a
few high-quality solutions via appropriate solution representa-
tion and evolution mechanisms [2]. Over the past decades,
EAs have been successfully applied to various real-world
applications, including aerodynamic design [3], chemical pro-
cessing [4], oil-gas field development [5], neural architecture
search [6], and vehicle routing problem [7]. However, EAs
always need a sufficient number of evaluations to achieve
a satisfactory performance, which limits their applications to
computationally expensive problems.

A number of techniques [8] have been proposed to reduce
the computational burden of EAs, such as parallel or dis-
tributed computation [9], [10], evaluation relaxation [11], [12],
hybridization [13], prior information incorporation [14], and
learning from experience [15], [16]. Among them, knowl-
edge transfer-based methods [17]–[21], known as evolutionary
transfer optimization (ETO) [22], have attracted increasing
research interests in recent years. In this study, we focus
on a special case of ETO, evolutionary sequential transfer
optimization (ESTO), which transfers knowledge from solved
source optimization tasks to a target task to be optimized.

The seeding technique is a straightforward approach to
ESTO that directly transfers solutions from source tasks. For
example, the work in [14] and [23] initializes the new popula-
tion of the target task by using good solutions from the source
tasks. In this way, the search efficiency on the target task can
be significantly improved when the target and source tasks
share the similar optimal solutions. However, these methods
may mislead the search if the optimal solutions differ a lot.
To alleviate this issue, a number of dynamic injection meth-
ods have been presented [15], [24], which periodically put
source solutions in the target population. To increase pos-
itive knowledge transfer, adaptation-based transfer methods
have been developed to project source solutions to the target
task [25]. For instance, high-order information that reflects the
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latent synergies between tasks is discovered and transferred in
combinatorial optimization problems [26], [27] and estimation
distribution algorithms [28]–[30]. More generally, in contin-
uous optimization problems, an autoencoding evolutionary
search (AES) paradigm has been proposed to conduct knowl-
edge transfer across heterogeneous tasks [17]. It employs a
single-layer denoising autoencoder to bridge the gap between
tasks so that the source solutions can be well adapted to the
target task. Following this framework, a selection strategy is
proposed to address the multisource problem [31], which aims
to select useful source tasks to reduce the risk of negative
transfer.

Even though the existing ESTO methods have achieved
great successes, to the best of our knowledge, they mainly
focus on objective-homogeneous problems, where the source
and target tasks share a similar number of objectives. In real-
world applications, optimization problems are usually modeled
with varying numbers of objectives depending on specific
problem settings. A more practical scenario is that the source
and the target tasks can be various among single-objective
optimization problems (SOPs), multiobjective optimization
problems (MOPs), and many-objective optimization prob-
lems (MaOPs), referred to as objective-heterogeneous ESTO
problems. The objective-heterogeneous scenario is more chal-
lenging than the objective-homogeneous one due to the diverse
search and objective spaces between the tasks. In this case,
decision variable analysis [32], [33] is a promising tech-
nique for handling the objective-heterogeneous problems in a
consistent way. Specifically, decision variables of MOPs and
MaOPs can generally be classified into two categories, i.e.,
convergence-related variables (CVs) and diversity-related vari-
ables (DVs), according to their control properties [34], [35].
CVs are likely to converge to a single point as they control
the distance between the population and the Pareto set (PS).
In contrast, DVs are the root of objective conflicts and are
encouraged to spread in the search space [36]. In this respect,
decision variables of SOPs can be treated as CVs. Due to the
dissimilarity between DVs and CVs, the past search experience
of CVs cannot be properly harnessed to assist the optimization
for DVs and vice versa. Therefore, the previous ESTO methods
may hinder positive knowledge transfer across SOPs, MOPs,
and MaOPs because they preserve much different number of
DVs and CVs. Besides, these ESTO approaches often neglect
fitness information during the adaptation process. The fitness
information represents solution qualities, which can be utilized
to facilitate the rank consistency between the source and tar-
get solutions in the learned mapping. Such consistency allows
the good source solutions to be effectively transferred to the
target problem.

Keeping the above in mind, this article proposes a decision
variable analysis-based ESTO (DVA-ESTO), which aims to
enhance positive knowledge transfer among problems rang-
ing from SOPs to MaOPs. First, DVA-ESTO employs the
decision variable analysis technique [33] to divide deci-
sion variables of MOPs and MaOPs into two groups, CVs
and DVs. Second, DVA-ESTO transfers the knowledge of
CVs and DVs independently from source tasks to the tar-
get task. The knowledge of CVs is used to accelerate
the optimization of the target CVs, while the knowledge

of DVs is encouraged to refine the distribution of the
target DVs. The contributions of this article are summarized
as follows.

1) This article attempts to address objective-heterogeneous
problems, including SOPs, MOPs, and MaOPs, which
greatly extends the application of ESTO in real-world
problems.

2) We propose a new approach to transfer CVs and DVs
separately based on decision variable analysis technique,
which reduces negative knowledge transfer.

3) We propose a convergence transfer module (CTM) for
CVs to improve the convergence, and a diversity transfer
module (DTM) for DVs to increase their diversity.

The remainder of this article is organized as follows.
Section II briefly introduces the definition of ESTO as well as
the AES paradigm and discusses the challenges of objective-
heterogeneous problems. The details of the proposed DVA-
ESTO algorithm are described in Section III. Section IV
presents the detailed experimental settings, and Section V pro-
vides a comprehensive experimental study conducted on a
wide range of objective-heterogeneous problems and a practi-
cal case. Finally, Section VI concludes this article and provides
several future directions.

II. PRELIMINARIES

A. Evolutionary Sequential Transfer Optimization

Without loss of generality, an optimization problem can be
formulated as follows:

minimize F(x) = (f1(x), . . . , fm(x))

subject to x ∈ � (1)

where x is a decision variable, � denotes the decision space
(also referred to as feasible space when a certain number of
constraints are considered), and F : � → R

m consists of m
real-valued objective functions to be optimized.

In particular, F(x) is known as an SOP when m = 1. In this
case, an optimizer attempts to find an optimal solution with
the minimum objective value. F(x) is recognized as an MOP if
m = 2 or 3, and it is defined as an MaOP if m > 3. In MOPs
and MaOPs, solution x1 is called to dominate solution x2 if
and only if fi(x1) ≤ fi(x2), i = 1, 2, . . . , m and F(x1) �= F(x2).
A point that cannot be dominated by any other solutions is
denoted as a Pareto optimal solution, and all nondominated
solutions form a Pareto optimal set (PS). The mapping of PS
in the objective space is called Pareto optimal front (PF) [37].

ESTO methods aim to improve the efficiency of an evo-
lutionary solver by transferring knowledge of solved source
tasks. Suppose a knowledge base Mb contains search experi-
ence of K − 1 source tasks F1, F2, . . . , Fk−1, ESTO methods
leverage useful knowledge from Mb to accelerate the search
process on the target task Fk [25]. With the past solving expe-
rience stored in Mb, a successful ESTO is expected to converge
faster than the baseline method with no transfer.

B. Autoencoding Evolutionary Search

The AES [17] is an adaptation-based ESTO method that
conducts knowledge transfer across continuous optimization
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Fig. 1. Schematic diagram of the adaptation-based ESTO.

problems via a single-layer denoising autoencoder. The
autoencoder serves as an adaptation model to bridge the gap
between source-target optimization instances. Fig. 1 shows the
schematic diagram of the adaptation-based ESTO method.

Let P and Q represent the populations of the source and
target tasks at a certain generation, respectively. Then, the
mapping between the two tasks can be obtained through
an autoencoder with P as inputs and Q as outputs. By
simplifying the autoencoder into a single-layer version, a
closed-form solution can be derived using the ordinary least
square method [38]

M = (
QPT)(

PPT)−1
. (2)

The learned mapping M can then project the elite source
solutions to the target task. In the original AES paradigm,
these projected source solutions are periodically injected into
the target population. In the selection process, the injected
solutions with competitive fitness will be reserved to form
a new population, and those with low fitness will be auto-
matically discarded. It can be seen that the adaptation model
plays a crucial role in generating the transferred solutions.
Most recently, Zhou et al. [39] proposed a kernelized AES
(KAES) algorithm to model the nonlinear relationship between
two heterogeneous instances. The source and target solutions
used for adaptation are sorted by solution quality to facilitate
the ordinal correlation toward effective knowledge transfer.
In [40] and [41], the mapping is learned using a two-layer
feed-forward neural network. However, the above sort-based
solution pairing may encounter a severe issue called chaotic
matching that obstructs the learning of intertask mapping [42],
since a single fitness (or fitnesses in MOPs) always corre-
sponds to an infinite number of solutions in the search space.
Consequently, the sort-based solution pairing tends to match
the source-target solutions chaotically and provide a degraded
mapping, especially when the number of learning samples is
large. A promising solution for addressing this issue is to
relax the fitness ranks, which will be introduced in the rank
adaptation model later.

C. Objective-Heterogeneous ESTO Problems

In a heterogeneous scenario, source and target problems
may vary in many aspects, such as decision variable dimen-
sion, fitness landscape, objective dimension, etc. The decision
space-related heterogeneities have been widely considered in
the existing studies [17], [39], [43]. In contrast, few efforts

Fig. 2. DVA-based knowledge transfer: (a) illustration of CVs and DVs;
(b) knowledge transfer with and without DVA.

have been devoted to addressing the objective-heterogeneous
ESTO. Unlike the objective heterogeneity discussed in [44],
the objective heterogeneity in this work refers to the inter-
task discrepancy with respect to the number of objectives.
In real-world applications, optimization problems are usually
modeled with varying numbers of objectives depending on
specific problem settings. In this way, a knowledge base col-
lected from source tasks may contain many solved instances
with different numbers of objectives, including SOPs, MOPs,
or even MaOPs. Without loss of generality, optimization prob-
lems with any number of objectives can be formulated by the
form shown in (1). Given an n-dimensional problem with m
objectives, the optimization task is to find an optimal manifold
with at most m − 1 dimensions in the n-dimensional search
space, where the manifold dimension (i.e., m − 1) depends
on the conflicting relationship among objectives. Considering
that variables may have different effects on the optimal man-
ifold, Ma et al. [33] proposed to analyze the control property
of decision variables and classify them into two categories:
1) DVs and 2) CVs. DVs control the diversity of solutions
for depicting the PF, while CVs govern the distance between
the obtained solutions and the true PS. In brief, the location
and the shape of an optimal manifold are independently con-
trolled by CVs and DVs, respectively. Variables that possess
both the above two properties are recognized as mixed vari-
ables (MVs). More details about control property analysis can
be referred to [33] and [35].

Next, we will show that the knowledge transfer between two
optimization tasks without investigating their variable control
properties may result in some undesired interferences between
the source-target variables. For illustration, CVs and DVs with
two knowledge transfer processes are shown in Fig. 2. In
Fig. 2(a), two types of variables are represented as white and
shaded circles, respectively. Optimization of the CVs is to
search for an optimal solution that minimizes the distance
to the PF, which is represented as a white circle in the PF.
In contrast, solving the DVs aims to obtain a set of diversi-
fied solutions for achieving a good coverage over the true PF,
which are shown as shaded circles in the PF. In a word, CVs
are focal variables with an optimal solution, while DVs are
distributional variables with multiple diversified solutions.

Two pairs of source and target instances for conducting
knowledge transfers are shown in Fig. 2(b). In the upper part,
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Fig. 3. Flow chart of the proposed DVA-ETSO.

the first half of the source decision variables are diversity-
related, while the target variables at the corresponding posi-
tion are convergence related. Without the decision variables
analysis, improper transfer of source DVs for target CVs
may result in convergence slow downs. Similarly, the trans-
fer of source CVs that possess a convergence trend may
harm the diversity of target DVs. Ideally, we hope that the
convergence-related search experience on a source problem
can be used to accelerate the convergence of target CVs,
and the diversity-related experience can be utilized to refine
the distribution of target DVs, as shown in the bottom part
of Fig. 2(b).

However, without analyzing the control property of decision
variables, it is hard to ensure such consistency of knowl-
edge transfer. Thus, the improper transfer in Fig. 1(b) is more
likely to occur if the control property of source-target vari-
ables is unclear. With the above issues in mind, we attempt
to design a DVA-ESTO solver in this study. The benefit of
using the control variable analysis is twofold: 1) an SOP can
be treated as an MOP with only CVs. Such treatment allows
us to understand SOPs, MOPs, and MaOPs from a consis-
tent view and solve them in a unified paradigm and 2) The
undesired interferences caused by the improper knowledge
sharing between CVs and DVs can be greatly alleviated. To
deal with the objective heterogeneity, multiobjective EA based
on decomposition (MOEA/D) methods [37] can also transfer
knowledge easily as they transform MOPs or MaOPs to a
series of SOPs. However, the diversity in MOEA/D relies on
the distribution of component SOPs, while the convergence
depends on solving of component SOPs. For a given series

of decomposed SOPs, how to balance the knowledge transfer
among SOPs within a task and between tasks needs to be
further investigated [45].

III. PROPOSED ALGORITHM

To conduct knowledge transfer between optimization prob-
lems with any number of objectives, we will develop a
DVA-ESTO algorithm in this section, whose flow chart is illus-
trated in Fig. 3. Unlike the existing methods that learn a single
mapping between the source and target tasks, DVA-ESTO
transfers knowledge related to different types of variables inde-
pendently. Specifically, given a knowledge base (solutions)
from source tasks, DVA-ESTO separates the decision variables
into CVs and DVs via decision variable analysis. Thereafter, it
transfers knowledge of CVs and DVs via two phases: 1) con-
vergence transfer phase and 2) diversity transfer phase. The
convergence transfer aims to make the CVs converge faster
using the past convergence searching experience. The purpose
of diversity transfer is to depict the distribution of the DVs
using the past distribution searching experience. It is noted
that the later phase will not be executed for SOPs as they have
no DVs. This condition is examined by the stop condition 1
shown in the flow chart. In this work, we propose to use differ-
ent transfer mechanisms for CVs and DVs due to their distinct
roles in a problem. Following the high-level structure of the
proposed algorithm, we describe the two transfer methods in
Sections III-A and III-B, respectively. Finally, Section III-C
presents the detailed algorithmic implementation.
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Fig. 4. Illustrations of the convergence processes and their experience reuse:
(a) convergence processes of SOP, MOP, and MaOP under a specific objective
preference; (b) accelerating convergence of a target problem using the past
searching experience.

A. Convergence Transfer Module

In SOPs, CVs govern the convergence of the current popu-
lation toward the optimum. While in MOPs and MaOPs, these
variables control the distance between the current solution set
and the PS. Particularly, given a specific solution with DVs
fixed, the distance measures the convergence of an aggregated
function toward a point in the Pareto set. An example to illus-
trate the above convergence processes is shown in Fig. 4(a),
where the black arrows represent the convergence paths with
increased fitness (or aggregated fitness), and the gray dots
denote an optimum of SOP or a Pareto solution of MOP (or
MaOP). Thus, optimization of the CVs is to search for an
optimal solution to achieve the highest fitness (or aggregated
fitness). To achieve knowledge transfer, convergence transfer
optimization attempts to accelerate the convergence of tar-
get CVs using the past convergence searching experience, as
shown in Fig. 4(b). Now, two key issues are required to be
addressed under the adaptation-based ESTO framework. One
is how to adapt the source instances from the perspective of
convergence transfer, and the other is how to obtain the learned
solutions for guiding the target instance after the adaptation.

1) Convergence Mapping Learning: To adapt source
instances to the target task, we first learn a mapping between
the source and target tasks according to the collected solu-
tions. Suppose individuals and corresponding fitness values of
the source and target tasks are {(xs

i , ys
i )|ns

i=1} and {(xt
i, yt

i)|nt
i=1},

respectively. In a heterogeneous scenario, apart from the land-
scape discrepancy, the dimension ds of the source instance
can be different from that of the target instance dt. Let the
individual be a column vector and

Xs =
[
xs

1, . . . , xs
ns

]
, Xt =

[
xt

1, . . . , xt
nt

]
(3)

and let the standardized matrices of Xs and Xt be X̃s and X̃t,
where individuals are standardized to have zero mean and unit
standard deviation.

To overcome the problem gap, we project the source and
target samples into a common low-dimensional space V ⊂ R

l

us
i = PT

s x̃s
i ∈ R

l, ut
i = PT

t x̃t
i ∈ R

l (4)

where Ps ∈ R
ds×l and Pt ∈ R

dt×l. The matrices of source and
target projected samples are represented as Us ∈ R

l×ns and
Ut ∈ R

l×nt , respectively.
The moment matching is a common approach since the

moment information is a good measurement for characteriz-
ing a distribution [46]. According to the Hausdorff moment
problem [47], the collection of all the moments uniquely
determines a probabilistic distribution on a bounded interval.
Thus, adaptation between two unknown distributions can
be realized by adapting all their moment information (i.e.,
zero-order to infinite-order moments). However, it is compu-
tationally impractical for considering an infinite number of
moments. In this study, we employ the first two moments
(i.e., mean and covariance) as main moment information to
represent an individual distribution. For adaptation purpose,
we hope the moment measurements of source-target individ-
uals in the common space (i.e., {us

i |ns
i=1} and {ut

i|nt
i=1}) can

be as close as possible. Thus, an objective function to be
minimized for bridging the gap between the source-target indi-
vidual distributions in the common space can be formulated
as follows:

arg min
Ps,Pt

I(Us, Ut) =
∥
∥ūs − ūt

∥
∥2

F +
∥∥
∥∥

ŪsŪT
s

ns
− ŪtŪT

t

nt

∥∥
∥∥

2

F
(5)

where ū = (1/n)
∑

i ui. It can be easily proved that the first
moments of {us

i } and {ut
i} are zeros (i.e., ūs = ūt = 0l×1),

as the original sample data Xs and Xt are standardized. In this
case, the optimization model in (5) can be rewritten as follows:

arg min
Ps,Pt

I(Us, Ut) =
∥∥∥∥
∥

PT
s X̃sX̃T

s Ps

ns
− PT

t X̃tX̃T
t Pt

nt

∥∥∥∥
∥

2

F

. (6)

Meanwhile, we hope that the fitness ranks of the source and
target tasks can be aligned in the common space. Thus, we
incorporate the fitness rank into mappings to preserve fitness
rank consistency between the source and target instances. In
this way, the elite source solution(s) are more likely to be
helpful to guide the convergence of the target CVs. First, the
source and target data are classified into many rank-labeled
individuals according to their fitness values. To this end, we
sort the individuals based on fitness values and then divide
them into several groups, where the individuals in each group
have the same fitness rank. The rank labels of the source-target
instances are represented as rs

i and rt
i ∈ {1, 2, . . . , C}, where

rs
i = j indicates that the fitness rank of ith source individual is

j. Next, we define a variable set Si used to store all the indexes
of target solution(s) that have the same fitness rank with ith
source individual. Therefore, the fitness rank adaptation can be
achieved by minimizing the following fitness rank matching
function:

arg min
Ps,Pt

F(Us, Ut) = 1

nsnt

ns∑

i=1

∑

j∈Si

∥
∥∥us

i − ut
j

∥
∥∥

2

2
. (7)
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By substituting the expanded form of u into (7), we have

arg min
Ps,Pt

F(Us, Ut) = 1

nsnt

ns∑

i=1

∑

j∈Si

∥∥∥PT
s x̃s

i − PT
t x̃t

j

∥∥∥
2

2
. (8)

To adapt the solution distributions and the fitness ranks
simultaneously, a weighted model is given as follows:

arg min
Ps,Pt

fc(Ps, Pt) = I(Us, Ut)+ αF(Us, Ut) (9)

where α is a tradeoff coefficient.
In fact, the problem here can be seen as a supervised domain

adaptation task discussed in [46], where the individual solu-
tions represent feature inputs and the fitness ranks correspond
to class labels. Another application of this adaptation tech-
nique can be found in EMT problems [48], where class labels
are determined by the Pareto domination relationship. Using
the similar derivation in [46], we proved that the projec-
tions that minimize the objective function defined in (9) can
be determined by the eigenvectors of a nonlinear eigenvalue
decomposition problem.1 With the obtained projections Ps and
Pt, the source-target instances are adapted in the common
low-dimensional space, which can be expressed as follows:

PT
s x̃s = PT

t x̃t. (10)

A mapping to bridge the problem gap can be obtained as
follows:

Mc =
(
PtP

T
t

)−1
PtP

T
s (11)

where Mc denotes the source-target mapping used for conver-
gence adaptation.

2) Adaptation of Source Convergence Experience: Once
the mapping is learned, we propose to select the best source
solution(s) with optimal convergence state and project it into
the target instance to accelerate the convergence. These elite
source solutions can be randomly selected from the final
population of the source instance

xsc
i = PopF

sc(rand), i = 1, 2, . . . , t (12)

where xsc
i denotes the ith selected source solution for conver-

gence transfer, PopF
sc is the final source population of CVs,

rand is a randomly generated exclusive index for retrieving
source converged individuals, and t represents the number of
solutions to be adapted and transferred.

Finally, multiple adapted source solutions to be injected into
the target population can be obtained as follows:

x̃tranc
i = Mcx̃sc

i , i = 1, 2, . . . , t (13)

where x̃tranc
i denotes the ith adapted solution to be injected

into the target population for convergence acceleration, x̃sc
i

represents the ith standardized source solution. It is noteworthy
that the adapted solution obtained here should be standardized
back to the original scale for further evaluation.

Algorithm 1 shows the implementation of the CTM. First,
the source and target data are collected from a certain gen-
eration. Then, the adaptation model in (9) is turned into a

1A detailed derivation is provided in Section S-I of the supplementary
document accompanying this article.

Fig. 5. Illustrations of diversity refining process and its experience reuse.

Algorithm 1: ConvergenceTransfer(Xt, yt, Xs, ys, XF
sc)

Input: Xt (current target population), yt (fitness of the target
population), Xs (source population at the current
generation), ys (fitness of the source population), XF

sc
(a selected source solution set containing t solutions)

Output: Xtranc (solutions to be transferred for convergence
acceleration)

// Data preparation
1

[
X̃t, X̃s, X̃F

sc
]← Standardize the data Xt, Xs, and XF

sc;
2

[
rt, rs]← Get fitness ranks based on yt and ys;
// Source-target mapping conduction

3 Calculate the coefficient matrices used for adaptation;
4 while stopping conditions are not satisfied do
5 Calculate the loss fc(Ps, Pt) in Eq. (9);
6 [V, �]←Solve the corresponding eigenproblem;
7 Sort V in an ascending order based on the eigenvalues �;
8 Update (Ps, Pt) using the first l sorted eigenvectors;

9 Mc ← Calculate the mapping using Eq. (11);
// Source solution adaptation

10 X̃tranc ← Obtain the adapted solution using Eq. (13);
11 Xtranc ← Standardize X̃tranc back to the original scale;
12 return Xtranc.

nonlinear eigenproblem and solved by an iterative procedure,
as shown in lines 3–8. Finally, a number of solutions to be
transferred can be obtained by adapting a selected source solu-
tion set. The obtained transferred solutions can then be injected
into the target population to undergo the selection process, as
shown in the upper part of Fig. 3. If the target task is an
SOP, then all the available computational resources will be
consumed in this convergence transfer optimization phase; oth-
erwise, a certain percentage of the recourse should be allocated
to handle the DVs.

B. Diversity Transfer Module

As mentioned earlier, DVs govern the shape of a PS. In
other words, the diversity of the PS is controlled by the DVs.
Thus, a number of well-distributed realizations of the DVs
are required to achieve diverse solutions along the PF. Unlike
the CTM, the proposed DTM transfers knowledge between
DVs, so that the past diversity searching experience can be
used to better refine the distribution of target DVs. As shown
in Fig. 5, PSs of the source and target tasks are represented
as solid lines, and the solutions are marked as gray circles.
To achieve a better coverage over the true PS of the target
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instance, several unexplored promising regions are expected to
be investigated by the transferred solutions, which are denoted
as white circles in Fig. 5. Similarly, following the adaptation-
based ESTO framework, we need to address two key issues:
1) adapting the source-target DVs and 2) obtaining the adapted
source solutions for better refining the target DVs.

1) Diversity Mapping Learning: Unlike CVs that possess a
single optimal solution with the highest fitness, DVs are distri-
butional variables that contain multiple solutions for depicting
the low-dimensional Pareto manifold. The word “distribu-
tional” here is used to describe the optimal (or final) state
of decision variables. In this way, a number of diversified
solutions for the DVs are required to approximate the true
PS. To adapt such distributional variables, we propose to
bridge the distribution gap by adapting the first- and second-
order moment information of the source-target instances. Such
an adaptation mapping can be analytically derived from the
source-target Gaussian representation models [42], because the
first- and second-order information can be fully considered by
a multivariate Gaussian distribution. It can be seen that the
diversity adaptation here can be regarded as the CTM with
only the solution distribution adaptation term in (6).

We choose to remove the fitness adaptation term since the
distribution of DVs will not degenerate according to the fit-
ness information during the optimization process. Given the
source-target data Xs and Xt used for adaptation, their repre-
sentation models are represented as N (μs, �s) and N (μt, �t),
respectively. A closed-form solution of the adaptation mapping
x	A+ b is given as follows:

Md = [A, b] =
[
LsL
−1
t , μ	t − μ	s LsL

−1
t

]
(14)

where Ls and Lt denote the lower triangular matrixes obtained
from the Cholesky decomposition on the source and target
inverse covariance matrixes, respectively.

Particularly, (14) does not work on problems with distinct
dimensions (i.e., ds �= dt). In this case, a randomly gener-
ated projection matrix Rds×dt can be employed to project the
source data to make it match with the target instance, since the
source data structure can normally be well maintained using
such a projection according to the Johnson–Lindenstrauss
lemma [49]. The projected source data used for adaptation
is denoted as Xsp = XsR. Then, the source representation
model is calculated based on Xsp. Accordingly, the adaptation
mapping is modified as follows:

M′d = RMd. (15)

2) Adaptation of Source Diversity Experience: After the
adaptation, the DVs of source and target tasks share sim-
ilar distributions in the mapped space. To better refine the
distribution of the target DVs, we propose to project the well-
distributed source solutions at the final generation into the
target task and retain part of them for better depicting the
distribution, as illustrated in Fig. 5. First, the selected source
solutions are adapted by the obtained mapping Md (or M′d
when ds �= dt)

x̃ada
i = Mdx̃sd

i , i = 1, 2, . . . , Ns (16)

Algorithm 2: DiversityTransfer(Xt, Xs, XF
sd)

Input: Xt (current target population), Xs (current source
population), XF

sd (the final source population)
Output: Xtrand (solutions to be transferred for diversity

refinement)
// Source-target mapping conduction

1 Build the source-target representation models;
2 Md ← Calculate the mapping based on Eq. (14) or

Eq. (15);
// Source solution adaptation

3 X̃ada ← Obtain the adapted solution using Eq. (16);
4 Xada ← Standardize X̃ada back to the original scale;
5 [Etran, Et]← Manifold embedding of Xt and Xada;
6 Calculate the distance vector d using Eq. (17);
7 Xtrand ← t adapted solutions with larger geodesic

distances;
8 return Xtrand.

where x̃ada
i denotes the ith adapted solution, x̃sd

i represents the
ith standardized source solution stored in the final generation,
and Ns is the source population size.

Then, a portion of transferred solutions that are further away
from the known target solutions along the Pareto manifold
(i.e., larger geodesic distance) will be retained for further
evaluation since these solutions tend to investigate some
unexplored regions for better depicting the manifold. With
the Isomap algorithm [50], the geodesic distances between
the transferred solutions and the target individuals can be
calculated in an (m − 1)-dimensional Euclidean space. In
the Euclidean space, the transferred and target solutions are
denoted as {etran

i |Ns
i=1} and {et

i|Nt
i=1}, respectively, where Nt rep-

resents the target population size. The minimum geodesic
distance between each transferred solution and the target
individuals can be calculated as follows:

di = min
j∈{1,...,Nt}

∥∥∥etran
i − et

j

∥∥∥, i = 1, 2, . . . , Ns (17)

where di denotes the shortest geodesic distance from the ith
transferred solution to all the known target individuals in the
Euclidean space.

Finally, the transferred solutions are sorted in a descending
order based on the distance vector d, and the first t sorted solu-
tions are selected to be injected into the target diversity-related
population. Algorithm 2 shows the detailed implementation
of the proposed DTM. Unlike the CTM that directly trans-
fers the projected solutions via injection, the diversity transfer
employs an additional prescreening module to identify promis-
ing adapted solutions using the manifold embedding, as shown
in lines 5–7.

C. Algorithmic Implementation

The algorithmic implementation of the overall DVA-ESTO
algorithm is presented as Algorithm 3.
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Algorithm 3: Decision Variable Analysis-Based ESTO

Input: �t → R
mt (target instance), {(Xi

s, Fi
s
)|gi=1} (source data)

Output: xbest or P (Optimized solution or solution set)
// Data preparation

1

[
Pc

s , Fc
s , Pd

s

]
← Analyze the source optimization history;

2

[
Ic, Id

]
← Variable analysis on the target problem;

// Convergence transfer phase
3 FEs = 0;
4 Pc ← Initialization for the convergence-related variables;
5 FEs← FEs+ PopSize;
6 while FEs < γ · FEsMax do
7 Oc ← Generation of convergence-related offspring;
8 if transfer condition is met then
9 Tc = ConvergenceTransfer(Pc, yc, Pc

s , yc
s , Sc);

10 Oc ← Inject Tc into the offspring;

11 Pc ← Environmental selection on Pc ∪ Oc;
12 FEs← FEs+ PopSize;

13 if FEs ≥ γ · FEsMax then
14 return the best solution xbest;

// Diversity transfer phase
15 Pd ← Initialization for the diversity-related variables;
16 FEs← FEs+ PopSize;
17 while FEs < FEsMax do
18 Od ← Generation of diversity-related offspring;
19 if transfer condition is met then
20 Td = DiversityTransfer(Pd, Pd

s , Sd);
21 Od ← Inject Td into the offspring;

22 Pd ← Environmental selection on Pd ∪ Od;
23 FEs← FEs+ PopSize;

24 return the obtained solution set P = Pc ∪ Pd;

First, the past searching experience on general optimization
problems are classified into two categories: 1) convergence-
related and 2) diversity-related experience. The source pop-
ulation data on CVs and the associated objective values are
denoted as Pc

s and Fc
s , respectively, while the populations on

DVs are represented as Pd
s . Given a target optimization task,

the indexes of its CVs and DVs can be obtained as Ic and Id

using the DVA method [33]. Herein, a predefined parameter γ

is used to control the ratio of computational resources assigned
to the convergence transfer phase. Particularly, γ will be set to
1 if the target instance is an SOP (i.e., Id is empty); otherwise,
a predefined γ that leaves a certain percentage of resources
for solving DVs of MOPs and MaOPs will be adopted.

In the convergence transfer phase, a population-based SOP
solver equipped with the CTM is employed to optimize the
CVs, as shown in lines 3–12. Solutions for knowledge transfer
(i.e., Sc) are randomly selected from the final convergence-
related population stored in Pc

s . Subsequently, the diversity
transfer phase will be launched if there are some DVs remained
to be solved. A population-based MOP solver together with
the DTM is used to solve the DVs, as shown in lines 15–23.
Here, solutions selected for knowledge transfer (i.e., Sd) are
the final well-distributed individuals stored in Pd

s . Once the
overall optimization is completed, the population data on the
given target instance can be added to the database to enrich
the past searching experience further.

IV. EXPERIMENTAL SETTINGS

In this section, test problems, performance metrics, state-
of-the-art ESTO algorithms used for comparison, and the
associated parameter settings are presented in detail.

A. Test Problems and Performance Metrics

1) Test Problems: To the best of our knowledge, there is
not yet a systematic benchmark suite for investigating the effi-
cacy of ESTOs on optimization problems with any number of
objectives. With this in mind, a test suite that contains a variety
of optimization instances with strong problem heterogeneities
is formulated in this work. Due to the page limit, the detailed
descriptions of the test problems are provided in the supple-
mentary document.2 Overall, there are in total 18 problems
with six SOPs, six MOPs, and six MaOPs in the conducted
ESTO test suite, which possess strong heterogeneities with
respect to both the decision and objective spaces. By treating
SOPs as general MOPs with zero-dimensional Pareto mani-
folds, it can be seen that the optimal manifolds of these 18
optimization problems have distinct positions and (or) shapes.
For solving a specific problem in the above ESTO benchmark,
the source database used to store the past searching experience
will exclude this problem.

2) Performance Metrics: For SOPs, the performance met-
ric is simply the fitness value. For MOPs or MaOPs, different
metrics can be adopted to evaluate the quality of obtained
Pareto sets. In the following experimental part, we need to
validate the efficacy of the proposed CTM and DTM inde-
pendently. The generational distance (GD) [51] is employed
to evaluate the CTM, while the pure diversity (PD) [52] is
used to investigate the DTM. The overall DVA-ESTO algo-
rithm against other ESTOs is evaluated using the inverted GD
(IGD) [53].

B. ESTO Algorithms Used in the Experimental Studies

In this work, the canonical EA, NSGA-II [51], and
NSGA-III [54] algorithms are selected as the baseline solvers
for SOPs, MOPs, and MaOPs, respectively. Two baseline
ESTOs and three advanced adaptation-based ESTOs used for
comparison are considered as follows.

1) SOLVER: Baseline solver with no transfer.
2) SOLVER-R: Injection of randomly generated solutions;
3) SOLVER-ST [31]: Injection of adapted solutions pro-

vided by the linear single-layer autoencoder using the
nearest source selection strategy.

4) SOLVER-KAE [39]: Injection of adapted solutions pro-
vided by the kernelized single-layer autoencoder.

5) SOLVER-NDA [40]: A probabilistic model-based
sequential transfer algorithm with nonlinear domain
adaptation.

A baseline variable analysis-based solver without the trans-
fer components contains two optimization phases. In this work,
the GA optimizer is used in the convergence optimization
phase, while the NSGA-II and NSGA-III solvers are adopted
in the diversity optimization phase for MOPs and MaOPs,

2See Section S-II-A of the supplementary document.
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Fig. 6. Adaptation behaviors of KAE, NDA, and the proposed models on a 2-D case: (a) source-target solutions; (b) KAE adaptation; (c) NDA adaptation;
(d) diversity-related adaptation; (e) convergence-related adaptation.

respectively. Two ESTOs extended from the baseline variable
analysis-based solver are 1) DVA-C: injection of solutions pro-
vided by the CTM only and 2) DVA-D: injection of solutions
provided by the DTM only.

C. Parameter Settings

For the sake of fairness, evolutionary operators and associ-
ated parameter settings are kept the same for all the methods.
Some of these general parameters are outlined as follows.

1) Population size (N): 50.
2) Maximum function evaluations for target tasks: 10 000.
3) Maximum function evaluations for source tasks: 20 000.
4) Evolutionary operators for all the algorithms.

a) Solutions are scaled into a standardized range.
b) SBX crossover with probability pc = 1 and

distribution index ηc = 15.
c) Polynomial mutation with probability pm = 1/d

and distribution index ηm = 15.
The settings of knowledge transfer-related parameters are

given as follows.
1) The transfer condition: certain generation gap (G = 1).
2) The number of injected solutions: t = m.
3) For the proposed DVA-based methods.

a) Variable analysis method: DVA [33].
b) The parameter for resource allocation (γ ): 0.95.
c) Dimensionality of the common space (l): 4.
d) The contribution parameter in the convergence

adaptation model (α): 0.1.
e) The maximum number of iterations for solving the

nonlinear eigenproblem: 100.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the efficacy of the proposed method against
a number of state-of-the-art ESTO solvers is investigated in
detail. First, the adaptation behaviors of a number of adapta-
tion models used in the existing ESTO methods are analyzed
on a toy example. Then, the superiorities of the overall DVA-
ESTO algorithm and the two transfer modules are verified.
In addition, an extended MOP test suite containing problems
with more complex variable control property is considered.
Finally, a practical production planning optimization problem
for mineral processing is considered.

A. Investigation of Adaptation Behaviors

As discussed earlier, the adaptation model plays a crucial
role in generating high-quality solutions to be transferred to a
target problem. In this work, two different models with distinct
adaptation goals are proposed for convergence transfer and
diversity transfer, respectively. To investigate their adaptation
behaviors, we compare them with two advanced methods on a
2-D toy case containing a pair of heterogeneous source-target
instances.

Fig. 6(a) shows the source and target solutions with known
fitness values whose magnitudes are represented as gradually
varied colors from blue to red. The source solutions are rep-
resented as circles, while the target solutions are shown as
triangles. A solution with redder color possesses higher fitness.
Consequently, the source instance tends to search northeast-
ward while the target instance prefers moving toward the
northwest. The source and the target tasks are much differ-
ent with respect to the individual distribution and the fitness
rank. In such a scenario, task adaptation is required to bridge
the gap between the source-target instances.

Fig. 6(b)–(e) plot the adapted source solutions provided by
KAE, NDA, the diversity adaptation model in Section III-B,
and the convergence adaptation model in Section III-A, and
the target solutions. As shown in Fig. 6(b), the KAE method
tends to provide an uncanny mapping which is difficult to
interpret. Using the same sort-based solution pairing manner,
the NDA model successfully adapts the source-target fitness
preferences, as shown in Fig. 6(c). The elite source solutions
with darker colors overlap the high-quality target solutions,
while the source-target bad solutions match as well. However,
the adapted source solutions tend to degrade on a line in the
target domain, especially when the number of learning sam-
ples is large. This issue is called mapping degradation in [42].
In contrast, the distribution adaptation model used for diver-
sity adaptation adapts the source-target solution distributions
very well. The first and second moments of the source-target
instances are well aligned after the adaptation, as shown in
Fig. 6(d). This indicates that the proposed diversity adapta-
tion model works well on adapting the moment information
of distributional DVs. Unlike the distribution adaptation model
that stretches the source distribution to match the target
distribution, the adaptation model used for convergence trans-
fer attempts to adapt the source-target solution distributions
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TABLE I
AVERAGE OBJECTIVE OR IGD VALUES AND STANDARD DEVIATION OBTAINED BY SOLVER, SOLVER-R, SOLVER-ST,

SOLVER-KAE, SOLVER-NDA, DVA, AND DVA-ESTO ON THE ESTO TEST SUITE. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY

BETTER (WILCOXON RANK-SUM TEST WITH HOLM p-VALUE CORRECTION, α = 0.05)

and fitness preferences simultaneously. As illustrated from
Fig. 6(e), the convergence adaptation model obtains a proper
rotation mapping to achieve the above two adaptation goals
simultaneously. For CVs, the high-quality source solutions can
be safely transferred to the target population by preserving
such fitness rank consistency, so as to accelerate the conver-
gence of target CVs. In summary, the proposed adaptation
models perform well on adapting CVs and DVs. The adap-
tation goals presented in Sections III-A and III-B can been
successfully achieved.

B. Performance Comparison With the State-of-the-Art

In this section, the superiority of the overall DVA-ESTO
algorithm against other state-of-the-art ESTOs on the ESTO
test suite is investigated. In the overall DVA-ESTO algo-
rithm, both the CTM and DTM will be activated. Table I
presents the objective or IGD mean and standard deviation
obtained by SOLVER, SOLVER-R, SOLVER-ST, SOLVER-
KAE, SOLVER-NDA, DVA, and DVA-ESTO over 30 inde-
pendent runs on the ESTO test suite. Superior performance is
highlighted in bold based on the Wilcoxon rank-sum test with
a 95% confidence level. An instance without any highlighted
entry indicates that all the ESTO solvers show comparable
performance in solving the problem.

From the table, we can see that the proposed DVA-ESTO
algorithm outperforms the compared methods on most of
the test problems, ranging from SOPs to MaOPs. The past
searching experience can be effectively reused to assist the
optimization of an interested target instance, whether it is an

SOP, MOP, or MaOP. More importantly, as the new instances
at hand to be solved, they can be used to enrich the past search-
ing experience further. Next, to find out the effects of CTM
and DTM on the overall DVA-ESTO algorithm, we investigate
their performance independently.

C. Effectiveness of the Proposed CTM

The proposed DVA-ESTO algorithms with no transfer and
only the convergence transfer are termed as DVA and DVA-C,
respectively. Detailed optimization results are provided in the
supplementary document due to the page limit. Table II sum-
marizes the experimental results to compare the performance
of DVA-C against other ESTO methods on the 18 test prob-
lems. All experimental results are based on 30 independent
runs. To test the statistical significance of the results, all other
ESTO solvers are compared with the baseline (DVA-C) using
a two-tailed Wilcoxon rank-sum test with α = 0.05.

On the six SOPs, the DVA-C method shows the best conver-
gence performance among the ESTO solvers. Fig. 7(a) shows
the average convergence curves on three selected SOPs. The
results on SOP 1 and SOP 6 verify the convergence accelera-
tion of the proposed CTM. However, such improvement cannot
be guaranteed on a wide variety of SOPs, as can be seen from
the convergence curves on SOP 4. Fortunately, the injection-
based transfer manner allows an optimizer to automatically
eject the transferred solutions with low fitness in the selec-
tion phase. This mechanism enhances the robustness of the
optimizer in receiving transferred solutions and thus reduces
the risk of encountering the negative transfer. As can be seen
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Fig. 7. Convergence curves and nondominated solutions in the objective space of SOLVER, SOLVER-R, SOLVER-ST, SOLVER-KAE, SOLVER-NDA,
DVA, and DVA-C on three selected SOPs and three selected MOPs: (a) convergence curves on SOPs; (b) nondominated solutions on MaOPs.

TABLE II
PERFORMANCE COMPARISON OF DVA-C AGAINST THE REST OF THE

SOLVERS ON THE 18 TEST PROBLEMS. DVA-C’S NUMBER OF WINS,
TIES, AND LOSSES AGAINST OTHER METHODS IS REPORTED

from the averaged convergence curves, the EA-R shows com-
parable performance with the baseline solver, even though the
transferred knowledge is randomly generated.

The comparison results based on the GD metric listed in
Table II witness the convergence acceleration of the proposed
CTM on MOPs and MaOPs.

The DVA-C shows superior performance over a wide range
of problems as compared to all the other ESTO solvers.
Particularly, the final nondominated solutions in the objec-
tive space obtained by all the algorithms on three MOPs are
graphically compared in Fig. 7(b). We can see that the DVA
and DVA-C algorithms significantly outperform other solvers
in terms of both convergence and diversity. The nondomi-
nated solutions provided by the DVA and DVA-C methods
are uniformly distributed in the objective space. Further,
the DVA-C is able to achieve better convergence state as
compared to the DVA algorithm with no knowledge trans-
fer. The solutions from the DVA-C completely dominate the

solutions provided by the DVA. In summary, the proposed
CTM works well on accelerating the convergence of SOPs,
MOPs, and MaOPs based on the past experience drawn from
heterogeneous instances.

D. Effectiveness of the Proposed DTM

When evaluating the performance of an MOP or MaOP
solver, the priority should be given to convergence rather than
diversity. For example, the superior diversity performance of
solver A is trivial when a single solution obtained by solver B
dominates all the well-distributed solutions from A. In such a
scenario, solver B is significantly better than solver A despite
its poor diversity. Thus, the diversity performance of different
algorithms should be compared based on the same conver-
gence state. Herein, the efficacy of the proposed DTM is
verified within the DVA-ESTO framework.

Before we move on, the superiorities of the DVA and
DVA-C algorithms over other ESTOs are confirmed first using
the IGD metric. Due to the page limit, we compare the solver
ranks measured by the IGD metric, which are shown as radar
charts in Fig. 8. We can see that the DVA-based solvers show
significantly better performance among the ESTO solvers
under the IGD metric. Notably, benefiting from the control
variable analysis, the baseline DVA solver with no knowl-
edge transfer shows better performance than all the non-DVA
solvers on most of the problems.

To verify the efficacy of the DTM, two comparison pairs
are considered: 1) DVA versus DVA-D and 2) DVA-C ver-
sus DVA-ESTO. To eliminate the impact of convergence
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Fig. 8. Radar charts of the performance ranks measured by IGD of the seven
solvers on six MOPs and six MaOPs: (a) IGD ranks on MOPs; (b) IGD ranks
on MaOPs.

TABLE III
WILCOXON SIGNED-RANK TEST RESULTS FOR INVESTIGATING THE

EFFICACY OF THE DTM (SIGNIFICANCE LEVEL α = 0.05)

state, solvers in a comparison pair should share the same
convergence-related solutions in a single run. Given the solu-
tions sets S1 and S2 provided by a comparison pair (Q1, Q2),
a nondominated solution set Sn can be obtained by selecting
the nondominated solutions from S1 ∪ S2. Then, the diversity
of {Qi}i=1,2 can be quantified as the PD value based on Si

and Sn.
Table III summarizes the sign test results of comparison

pairs to test for the efficacy of the proposed DTM. The
null hypothesis H0 is that the difference between DVA-based
solvers before and after using the DTM has zero median. In
other words, the null hypothesis assumes that the DTM has
no positive effect on diversity performance. As can be seen
from Table III, the null hypothesis is rejected on most of the
problems for the DVA and DVA-C solvers. This indicates that
the proposed diversity transfer method does have a signifi-
cant impact on the diversity performance. To demonstrate how
this module improves the diversity performance, the nondom-
inated solutions in the objective space obtained by the DVA
and DVA-D solvers on two selected MOPs are compared in
Fig. 9. We can see that the solutions provided by the DVA-D
algorithm possess better diversity as compared to the base-
line solver DVA with no diversity transfer. The DVA solver
tends to provide many crowded solution clusters with poor

Fig. 9. Nondominated solutions in the objective space of DVA and DVA-D
on two selected MOPs: (a) MOP1 and (b) MOP 4.

Fig. 10. Normalized average IGDs obtained by DVA-ESTO against
NSGA-II on two selected MOPs across 30 independent runs with different
configurations of γ : (a) MOP 1 and (b) MOP 4.

diversity, while the DVA-D is able to obtain a solution set
with many well-distributed solutions. In summary, with the
proposed DTM, the past diversity-related searching experience
can be used to better refine the distribution of target DVs.

E. Parameter Analysis

In the proposed method, γ is an important parameter that is
used to allocate the computational resources for solving CVs
and DVs.

In a black-box scenario, it is a challenging task to configure
an optimal γ in advance. To this end, we further investigate
how the configuration of γ affects the performance of the
proposed DVA-ESTO.

Fig. 10 shows the normalized average IGDs obtained
by DVA-ESTO against NSGA-II on MOP 1 and MOP 4
across 30 independent runs with different configurations of
γ . We can see that the parameter does have a great impact
on the performance of the proposed method. In particular,
an extremely high value of γ may even let the proposed
method perform worse than the base-line solver, as shown
in Fig. 10(b). This phenomenon is caused by the imbalanced
allocation of computational resources for CVs and DVs. For
problems MOP 1 and MOP 4, their percentages of DVs are
0.03 and 0.06. In this case, more computational resources
should be allocated to CVs rather than DVs. Thus, a low
value of γ is suggested, which is consistent with the results
shown in Fig. 10. In practice, γ can be simply set as the
percentage of CVs. Besides, the allocation task can also be
completed by adopting a utility threshold [33], [55] used to
indicate the termination of the convergence optimization. In
this way, a prespecified γ is not required. It is noteworthy
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TABLE IV
OBJECTIVE CONFIGURATIONS OF THE SIX PRODUCTION PLANNING

PROBLEMS AND THEIR DECISION VARIABLE ANALYSIS RESULTS

that the configuration of allocation strategy does not affect the
implementation of the proposed DVA-ESTO method, as their
optimization histories can be analyzed in the same way.

The 18 optimization problems used in Sections V-B–V-D
possess clear variable control properties (i.e., either purely
convergence related or diversity related), which may not be
able to represent the characteristics of many complex real-
world problems. Besides, most of the variables in the 12 MOPs
and MaOPs are pure convergence-related variables. With this
in mind, we form an extended MOP test suite containing prob-
lems with different proportions of DVs to verify the efficacy
of the proposed DVA-ESTO further.3

F. A Real-World Case Study

The production planning optimization is one of the most
important problems in the mineral processing, which can
greatly improve the nonrenewable raw mineral resource uti-
lization. The goal of production planning optimization is to
optimize production resources so as to maximize (or min-
imize) some desired production targets [56]. Generally, a
production planning optimization problem can be modeled
with an arbitrary number of objectives depending on specific
problem settings, ranging from SOPs to MaOPs. Hopefully,
the past planning experience stored can be used to assist the
optimization of incoming tasks.

According to [56], in this work, we consider five production
targets, namely, concentrate output, concentrate grade, con-
centration ratio, metal recovery, and cost indicators, which are
denoted by f1 to f5, respectively. Three SOPs, two MOPs, and
one MaOP are conducted to form the practical test problems.
Table IV provides the detailed objective configurations of these
problems and their associated variable analysis results. For
solving a specific problem, the source database that contains
the past searching experience will exclude this problem.

Due to the page limit, the objective or IGD mean and stan-
dard deviation obtained by the solvers in comparison over 30
independent runs are provided in the supplementary document.
By leveraging the convergence-related and diversity-related
searching experience separately, the proposed DVA-ESTO
shows competitive optimization performance among the algo-
rithms in comparison. To illustrate, the convergence curves on
SOP 2 and the solution sets obtained on MOP 2 are compared
in Fig 11. We can see that the DVA-ESTO and the solver based
on NDA show superior convergence acceleration on SOP 2,
while the proposed DVA-ESTO obtains a well-distributed solu-
tion set with competitive convergence performance on MOP 2.

3See Section S-II of the supplementary document due to the page limit.

Fig. 11. Comparison of convergence curves on SOP 2 and solution sets
obtained on MOP 2: (a) SOP 2 and (b) MOP 2.

However, on the MaOP problem whose every variable is rec-
ognized as diversity related, the proposed method performs
poorly as compared to the other state-of-the-art ESTO solvers.
This observation is consistent with the results in the extended
test suite, which again suggests that the study of knowledge
transfer among problems with a large portion of DVs (or mixed
variables) is worth studying in the future.

VI. CONCLUSION

This article has attempted to address objective-
heterogeneous ESTO problems, in which the optimization
tasks vary among SOPs, MOPs, and MaOPs. To this end, this
article has proposed a DVA-ESTO approach. It first divides
decision variables of MOPs and MaOPs into CVs and DVs,
and treats variables of SOPs as CVs from the perspective of
variable control property. A CTM is then proposed to make
the optimizer approach faster toward the optimal solution(s)
using the past convergence experience. In the CTM, the fitness
rank is considered when learning the source-target mapping.
Meanwhile, for MOPs or MaOPs, a DTM is used to better
refine the distribution of the solution set. Comprehensive
experiments on a set of heterogeneous test problems have
demonstrated the superiority of DVA-ESTO for boosting the
optimizer performance via knowledge transfer.

To the best of our knowledge, this article is the first attempt
toward an objective-heterogeneous ESTO. More research
efforts should be devoted to this topic because the proposed
DVA-ESTO is only applicable for MOPs or MaOPs with
a certain portion of CVs, as observed from the results on
the extended test problems. Successful sequential knowledge
transfer across general MOPs or MaOPs with complex variable
control properties is still an open issue. A promising solution
for achieving this is to handle general optimization problems
from a new perspective without the need for analyzing con-
trol property. In addition, some more complex test problems
with strong heterogeneities with respect to both decision and
objective spaces are required for analysis and comparisons of
various ESTO methods, since such features are widespread in
many real-world problems.
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