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Abstract— Single sample per person (SSPP) face recognition
with a contaminated biometric enrolment database (SSPP-ce FR)
is an emerging practical FR problem, where the SSPP in the
enrolment database is no longer standard but contaminated by
nuisance facial variations such as expression, lighting, pose, and
disguise. In this case, the conventional SSPP FR methods, includ-
ing the patch-based and generic learning methods, will suffer
from serious performance degradation. Few recent methods were
proposed to tackle SSPP-ce FR by either performing prototype
learning on the contaminated enrolment database or learning
discriminative representations that are robust against variation.
Despite that, most of these approaches can only handle a specified
single variation, e.g., pose, but cannot be extended to multiple
variations. To address these two limitations, we propose a novel
Variation Disentangling Generative Adversarial Network (VD-
GAN) to jointly perform prototype learning and representation
learning in a unified framework. The proposed VD-GAN consists
of an encoder-decoder structural generator and a multi-task
discriminator to handle universal variations including single,
multiple, and even mixed variations in practice. The generator
and discriminator play an adversarial game such that the gener-
ator learns a discriminative identity representation and generates
an identity-preserved prototype for each face image, while the
discriminator aims to predict face identity label, distinguish real
vs. fake prototype, and disentangle target variations from the
learned representations. Qualitative and quantitative evaluations
on various real-world face datasets containing single/multiple and
mixed variations demonstrate the effectiveness of VD-GAN.

Index Terms— Single sample per person, prototype learning,
representation learning, generative adversarial network.
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I. INTRODUCTION

S INGLE sample per person face recognition (SSPP FR),
i.e., recognizing an identity based on his/her single image

sample from the biometric enrolment database,1 has attracted
considerable attentions in information security owing to its
potential applications in criminal identification, access con-
trol, video surveillance, person re-identification, to name a
few [1]–[12]. Fisher-based methods [13]–[17] are inapplicable
to SSPP FR as they require within-class information that is
unavailable. Besides, the classic sparse representation-based
classifier (SRC) [18] and collaborative representation-based
classifier (CRC) [19] are also limited, due to insufficient
enrolment data.

In the literature, there are two types of SSPP FR
methods [20], namely the patch-based and generic learning
methods. The patch-based methods [21]–[25] divide each
single sample into several local patches for discriminative
learning or recognition. In contrast, the generic learning meth-
ods [26]–[30] assume that a query sample is composed by
the prototype and its intra-personal variations (i.e., the P+V
model). The prototype is approximated by the original enrol-
ment sample, while the variation dictionary is generated from
an auxiliary generic set, which contains identities not of
interest and encodes the difference between the query and
enrolment samples.

However, all the above-mentioned SSPP FR methods
assume that the biometric database contains only the standard
enrolment samples with frontal pose and neutral expres-
sion, under normal lighting, and without occlusion/disguise
(denoted as SSPP-se FR for short). In practice, many enrol-
ment samples can be collected under less constrained envi-
ronments, and are not standard faces anymore [9], [31]. For
example, in criminal identification, various nuisance variations
including expression, lighting, disguise, pose, and misalign-
ment could exist in the enrolment samples of suspects such as
the smugglers and illegal immigrants. Instead of the standard
data acquisition at the police station, these enrolments are
more likely provided by witnesses with unprocessed mobile
photos or intercepted from low-quality surveillance videos.
The SSPP FR problem with such a contaminated biometric

1More standardized biometric vocabularies can refer to the website of
https://www.christoph-busch.de/standards.html
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Fig. 1. Illustration of SSPP FR with a contaminated biometric enrolment
database (i.e., SSPP-ce FR). The samples in the green box are standard enrol-
ment samples while those in the red box are contaminated ones containing
different variations. Better view in color version.

Fig. 2. (a) One contaminated enrolment sample wearing a scarf, and (b) its
partitioned local patches. In these patches, some are damaged and capture
useless information for discriminative learning or recognition.

enrolment database is termed as the SSPP-ce FR, as illustrated
in Fig. 1.

There are two major challenges of the SSPP-ce FR problem:
(i) a contaminated enrolment sample potentially yields an
inaccurate prototype of the identity, and (ii) a query sample
may be contaminated differently comparing to the enrolment
of the same identity, which leads to an enlarged dissimilarity
between them. The conventional SSPP FR methods can hardly
tackle these challenges. For example, Fig. 2 illustrates that
the patch-based methods are highly sensitive to local patch
damages caused by sample contamination. Fig. 3 shows a
failure case in which the generic learning methods mis-pair
the query with the incorrect enrolment sample.

Most recent works attempt to tackle the SSPP-ce FR chal-
lenges, by either performing prototype learning on the contam-
inated enrolment database [31]–[38] or learning discriminative
representations against variations for recognition [39]–[44].
While the prototype learning can generate realistic-looking
prototypes for forensic experts, the discriminative represen-
tation learning can produce machine-readable features for FR.
These two approaches are closely related: on the one hand,
a highly discriminative representation can guide the generation
of proper prototypes that capture the identity characteristics;
on the other hand, an identity-preserved prototype can in turn
strengthen the discriminant capability of the representation.
Unfortunately, the two approaches have yet to be unified via
an end-to-end scheme. Besides, most of the existing prototype
learning or representation learning methods only consider a

Fig. 3. A failed classification example of a typical P+V model-based generic
learning method, i.e., SLRC [28], for SSPP-ce FR. In the example, a query
sample wearing sunglasses is misclassified as an identity wearing the similar
type of sunglasses (left), according to the representation coefficients (right).

single variation such as pose or lighting, which are hard to
generalize to multiple variations. In the literature, there are
few multi-variation methods [31], [32], [39], [41], but are
unsupervised for representation learning, or require the query
set to be known in advance for prototype learning, which
would be impractical for SSPP-ce FR.

To this end, we propose a novel Variation Disentangling
scheme using Generative Adversarial Network (VD-GAN),
to simultaneously learn prototypes and representations with
a unified framework. Fig. 4 illustrates the architecture of the
proposed VD-GAN, which consists of an encoder-decoder
structural generator G and a multi-task discriminator D =
[Did , Dvar , Dgan] that predicts face identity, detects the exis-
tence (or not) of variation, and distinguishes real vs. fake
prototype. G and D play an adversarial game: G strives
for generating an identity-preserved prototype to fool D,
while D guides G to preserve the identity information in
the learned representation. Compared to the existing variation
discriminators [42]–[44] which classify the style for a single
variation (e.g., pose angles), our Dvar is a binary classifier that
is used to decide whether there exist variations or not and is
applicable to universal variations. Thus, the learned represen-
tation by VD-GAN is discriminative in terms of identity and is
disentangled w.r.t. nuisance variations, which is very suitable
for the SSPP-ce FR task. Furthermore, VD-GAN introduces a
unique reconstruction penalty in G to preserve the prototype
generation from uncontaminated standard inputs, which can
be beneficial to SSPP-ce FR. Extensive experiments are con-
ducted to evaluate the effectiveness of VD-GAN over seven
real-world face datasets (i.e., Multi-PIE, EYaleB, CAS-PEAL,
FERET, AR, CFP, and LFW), which contain single, multiple,
and mixed variations. Both quantitative and qualitative results
show that VD-GAN can learn realistic-looking prototypes
as well as discriminative identity representations that are
disentangled from nuisance variations. Moreover, VD-GAN
outperforms the state-of-the-art SSPP-ce FR methods over all
evaluated datasets with promising improvements.

To the best of our knowledge, the proposed VD-GAN
is the first work to jointly perform prototype learning and
representation learning using a unified and end-to-end frame-
work. Furthermore, compared to many existing works that
can only handle a single variation in the samples, VD-GAN
demonstrates robust performance against universal variations.
The contributions of the paper are summarized as follows:

• We propose a novel VD-GAN, an end-to-end model for
joint prototype and representation learning. VD-GAN can
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reconstruct the realistic-looking prototypes with samples
from the contaminated biometric enrolment database.

• We propose a multi-task discriminator to assist in learning
representations that are discriminative in terms of identity
and are disentangled w.r.t. nuisance facial variations.

• We conduct extensive experiments on various real-world
face datasets with single/multiple and mixed variations to
demonstrate the effectiveness of VD-GAN for prototype
and representation learning, as well as the superiority for
SSPP-ce FR over the state-of-the-art counterparts.

The reminder of this article is organized as follows.
Section II makes an overview of the related works, and
Section III briefly reviews the vanilla GAN. Section IV details
the proposed VD-GAN. In Section V, we perform experiments
on seven real-world face datasets to evaluate the performance
of VD-GAN. Finally, we draw a conclusion in Section VI.

II. RELATED WORKS

A. Conventional SSPP FR Methods

Conventional SSPP FR methods are designed for the classic
SSPP-se FR problem and can be classified into the patch-based
methods and generic learning methods.

For the patch-based methods, one can either integrate the
classification outputs from the partitioned patches in a query
sample for recognition, or perform discriminative learning on
the patches in enrolment samples followed by the matching
between the enrolment and query samples. For example,
Wright et al. [18] and Zhu et al. [21] extended SRC and
CRC to their patch-based versions, i.e., PSRC and PCRC,
respectively, by combing the SRC or CRC outputs from the
partitioned query patches. Lu et al. [22] presented a discrimi-
native multi-manifold analysis (DMMA) method provided that
patches of each enrolment identity lie in an individual mani-
fold, thus converting FR to a manifold-to-manifold matching
problem. However, these patch-based methods cannot generate
auxiliary information and the discriminative learning from
patches is highly sensitive to image variations [29]. Particu-
larly in SSPP-ce FR, some damaged patches may even capture
useless information for discriminative learning or recognition.

The generic learning methods usually leverage the popular
P+V model [27] for recognition. Formally, given a query face
sample y, it can be represented as

y = Pα + Vβ + e, (1)

where P, V, and e are the enrolment sample dictionary,
the variation dictionary and a small noise, respectively, α is
the sparse coefficient vector choosing a few of enrolment
samples (i.e., identities) from P, and β is another sparse
coefficient vector that selects a small subset of dictionary
V. Subsequently, the coefficients α and β can be calculated
through the following optimization problem:[

α∗
β∗

]
= arg min

α,β

∥∥∥y − [P V]
[
α

β

] ∥∥∥2

2
+ λ

∥∥∥ [
α

β

] ∥∥∥
1
, (2)

where ||.||2 and ||.||1 indicate the l2-norm and l1-norm,
respectively, and λ is a regularization parameter. Finally,
similar to SRC, y will be classified into the enrolment sample

(i.e., identity) with the smallest reconstruction residual. By
virtue of the P+V model, Deng et al. [28] proposed a super-
posed linear representation classifier (SLRC) and generated
the variation dictionary by subtracting average face from the
samples of each identity in the generic set. Yang et al. [29] pro-
posed a sparse variation dictionary learning (SVDL) method
to use the relationship between the enrolment and generic
samples. Ji et al. [30] extended SVDL by additionally using
the contributions of different generic identities. However, these
generic learning methods are not optimal for the new SSPP-ce
FR problem because a contaminated enrolment sample can
hardly be treated as an appropriate prototype for the P+V
model.

B. Prototype Learning-Based Methods

Prototype learning-based methods aim to generate
identity-preserved prototypes for contaminated enrolments,
where the conventional SSPP FR methods can be applicable.
The existing prototype learning-based methods are roughly
classified into two types: the former is to exploit auxiliary
information in query set for restoring contaminated sample in
the enrolment database, while the latter is to train mappings
between contaminated and standard samples in the generic
set and then transfer them to the enrolment database for
prototype learning.

For the former type, the typical methods are semi-supervised
sparse representation based classification (S3RC) [31] and iter-
ative dynamic generic learning (IDGL) [32]. The two methods
introduce the query set into the enrolment database, and then
estimate the prototypes by the clustering centroid from a
Gaussian mixture model (GMM) [45] or a semi-supervised
low-rank representation [46]. Despite promising prototypes
obtained by them, they require the join of unknown query
set, which may be impractical from a real-time perspective.

For the latter type, benefiting from the powerful mapping
ability of GAN, a series of GAN variants [33]–[38] have been
proposed to decrease specified variations and to synthesize
the corresponding identity-preserved prototypes. For example,
Ma et al. [33] proposed a style translation GAN to learn
the mappings between arbitrary lighting domains and standard
lighting domain for normalization; Chen et al. [34] developed
an occlusion-aware GAN to detect and recover missing regions
in occluded or disguised samples; Song et al. [35] presented
a geometry-guided GAN by using fiducial points to guide
facial expression transfer and neutralization; Huang et al. [36]
presented a two-pathway GAN to correct the ill-posed samples
through both global and local transformations. Although these
GAN variants perform well for the specified single variation
such as lighting, disguise, expression or pose, they need to
know the input pattern of the variation in advance and cannot
handle unspecified multiple variations, which is unsuitable for
SSPP-ce FR from the practical point of view.

C. Representation Learning-Based Methods

Representation learning is a major and hot topic in artificial
intelligence, but how to design a reasonable objective for learn-
ing good representations is still an open-ended question [47].
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Among a number of representation learning-based methods,
some can be applied to SSPP-ce FR. In addition to traditional
unsupervised subspace learning methods [48]–[51] such as
principal component analysis (PCA) [48], increasing attentions
have been given to the auto-encoder based methods [39]–[44],
[52]. Vincent et al. [39] proposed a de-noising auto-encoder
(DAE) to learn features which are robust to some predefined
noises. Gao et al. [40] extended DAE to a stacked supervised
auto-encoder to deal with realistic facial variations. Kingma
and Welling [41] developed a variational auto-encoder (VAE)
architecture to disentangle the factors of variation. Based on
VAE, Kulkarni et al. [42] proposed a deep convolution inverse
graphics network to generate representations disentangled
w.r.t. pose and lighting. Furthermore, Tran et al. [43], [44]
introduced GAN into auto-encoder and proposed a disentan-
gled representation learning GAN (DR-GAN), which learns
a pose-invariant representation and meanwhile rotating input
face to a specified pose. The architecture of our VD-GAN
is inspired by that of DR-GAN, but the purpose is different.
In VD-GAN, we aim to learn neutral prototypes for conta-
minated samples but not performing face rotation. Besides,
VD-GAN is designed for disentangling universal variations
in the learned representations, but not limited to the pose
variation.

III. BACKGROUND ON GAN

Goodfellow et al. [53] proposed the generative adversarial
network (GAN) consisting of two main components, i.e., a
generator G and a discriminator D, which play a minimax
two-player game. The discriminator D is trained to distinguish
between the real image x and the generated fake image x̂,
while the generator G is trained to generate realistic-looking
images, i.e., G(z), from a random noise vector z to fool D.
The optimization problem with the objective function of GAN
is formulated as

min
G

max
D

V (D, G) = Ex∼pdata [log D(x)]
+ Ez∼pz[log(1 − D(G(z)))], (3)

where pdata and pz denote the distributions of the training
data and the noise z, respectively. Note that the minimization
of log(1 − D(G(z))) can be replaced by the maximization
of log(D(G(z))) to provide much stronger gradients early
in learning [53]. Therefore, the objective in Eq. (3) can be
reformulated as follows:

max
D

VD(G, D) = Ex∼pdata [log D(x)]
+ Ez∼pz [log(1 − D(G(z)))], (4)

max
G

VG(G, D) = Ez∼pz [log(D(G(z)))]. (5)

The generator G in Eq. (5) and discriminator D in Eq. (4)
are iteratively updated until convergence is achieved or a
predefined maximum number of iterations is reached.

IV. THE PROPOSED METHOD

In this section, we start by defining the problem we are
solving and the proposed objectives, followed by introducing
the proposed VD-GAN with the network architecture, training
and evaluation schemes.

Fig. 4. The architecture of the proposed VD-GAN. x, xrp , x̂, and f (x)
denote the input face image, the standard/real prototype image, the generated
prototype image, and the learned representation of x, respectively. A unique
reconstruction penalty is introduced in G to preserve the prototype generation
from uncontaminated standard inputs. When training D, Did and Dvar predict
the ID and variation of x, respectively; Dgan aims to assign a high score to
xrp but a low score to x̂ so as to distinguish real vs. fake prototype. When
training G , x̂ aims to fool Did , Dvar , and Dgan to classify it into the ID of
x, to judge it with no variation, and to assign it a high score of being real
prototype, respectively.

A. Problem and Objectives

We propose to jointly conduct the prototype and represen-
tation learning for face images using a unified framework.
To be specific, for an input face image x, the proposed
VG-GAN generates a prototype x̂ and a discriminative identity
representation f (x) to achieve the following objectives:

• Prototype learning: to reconstruct a high-quality (i.e.,
realistic-looking) prototype x̂ for the input face image
x, such that x̂ 1) is variation-free, and 2) preserves the
individual characteristics of x.

• Representation learning: to learn a discriminative iden-
tity representation f (x) for x, such that f (x) 1) captures
the identity information of x, and 2) is invariant to any
facial variations in x.

It is clear that both the prototype learning and representation
learning need to be robust to variations and preserve face
identity. The two learning tasks are optimized by an end-to-end
training from data with the annotations y = {yid , yvar}, where
yid and yvar denote the face identity and whether the face
contains variation (i.e., yvar is a binary label), respectively.
Besides, the proposed multi-task discriminator ensures x̂ to be
realistic-looking via adversarial learning.

B. VD-GAN

We propose a variation disentangling scheme using GAN
(VD-GAN), whose architecture is illustrated in Fig. 4.
The proposed VD-GAN consists of two main parts: an
encoder-decoder network serving as the generator G and a
multi-task discriminator D. In the following, we first introduce
the generator G and the discriminator D, and then present the
alternative training scheme between G and D.
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1) Generator G: The proposed generator G is composed
of an encoder Genc and a decoder Gdec. Given an input
face image x, Genc aims to learn an identity representation
f (x) = Genc(x) for x, while Gdec aims to synthesize the
prototype image x̂ such that it has the same identity as x.
Specifically, Gdec takes the concatenation of the representation
f (x) and a random noise vector z ∈ RNz sampled from
a distribution pz as the input, then generates the prototype
image x̂ = Gdec( f (x), z). Here, the noise vector z, which we
draw from a uniform distribution [−1, 1]Nz , is to enhance the
robustness and generalizability of the trained generator.

2) Discriminator D: The proposed multi-task discriminator
D consists of three sub-discriminators, namely Did , Dvar and
Dgan . To be specific, they are:

1) Did outputs a Nd -dimensional vector for identity classi-
fication with Nd as the total number of identities in the
training set.

2) Dvar is a binary classifier to decide whether the target
variation exists in an input image.

3) Dgan is a standard GAN discriminator to distinguish
the real prototype vs. fake prototype generated by the
generator G. More specifically, Dgan assigns a score to
each image and a higher score indicates that the image
is closer to the real prototype image.

3) VD-GAN Training: Suppose we are given a training set
of Nd identities with each face image x annotated by the
label y = {yid , yvar }, where yid and yvar denote the face
identity and whether the face contains variation, respectively.
We also collect standard images (i.e., images not corrupted by
variations) in the training set to form the real prototype corpus.
We denote each standard/real prototype image as xrp , and its
distribution as preal . As a comparison, we denote that all face
images x in the training set are sampled from the distribution
pdata, i.e., x ∼ pdata.

For the generator G, we have the following four objectives:
• Enable Did to classify the generated prototype x̂ by G

as the same identity label as the input image x, i.e., yid .
• Enable Dvar to detect that no variation exists in the

generated prototype x̂.
• Fool Dgan to classify the generated fake prototype x̂ as

a real prototype, i.e., G makes Dgan assign a high score
to x̂ of being real prototype.

• Enable the generated prototype to well reconstruct the
standard input image. That is, for each input image
not corrupted by variations, G keeps the corresponding
generated prototype be the same as this input.

By considering all the above objectives, our final objective
function VG for training G is presented as follows:

max
G

VG = V gan
G + μ1V id

G + μ2V var
G − μ3V rec

G , (6)

where μ1, μ2, and μ3 are the weighting hyper-parameters for
the hybrid objective VG . The four sub-objectives V id

G , V var
G ,

V gan
G and V rec

G are defined as follows:
V id

G (G, Did , x, z) = Ex,y,z[log Did
yid (G(x, z))], (7)

V var
G (G, Dvar , x, z) = Ex,y,z[log Dvar

yvar (G(x, z))], (8)

V gan
G (G, Dgan, x, z) = Ex,z[log Dgan(G(x, z))], (9)

V rec
G (G, xrp, z) = Exrp,z[1

2
||xrp − G(xrp, z)||2F ], (10)

where Did
i and Dvar

i denote the i -th element in Did and Dvar ,
respectively; x, y, xrp and z are sampled from their respected
distributions, i.e., x, y ∼ pdata, xrp ∼ preal , z ∼ pz , y =
[yid , yvar ]; and ||.||F denotes the Frobenius norm. Note that
the reconstruction loss in Eq. (10) is to enable the generated
prototype image of xrp , i.e., G(xrp, z), to be close to xrp at
the pixel level.

For the discriminator D, we have the following three
objectives:

• Given the input image x, Did aims to correctly predict
its identity label yid .

• Given the input image x, Dvar aims to correctly predict
its variation label yvar , which indicates the existence (or
not) of any facial variation.

• Given the real prototype image xrp and the generated
fake prototype image by G, i.e., x̂ = G(x, z), Dgan aims
to classify xrp as the real prototype and classify x̂ as the
fake prototype.

Formally, our final objective function VD for training D =
[Did , Dvar , Dgan] is as follows:

max
D

VD = V gan
D + λ1V id

D + λ2V var
D , (11)

where λ1 and λ2 are two trade-off parameters, and V id
D , V var

D
and V gan

D are defined as follows:
V id

D (Did , x) = Ex,y[log Did
yid (x)], (12)

V var
D (Dvar , x) = Ex,y[log Dvar

yvar (x)], (13)

V gan
D (G, Dgan, xrp, x, z) = Exrp [log Dgan(xrp)]

+ Ex,z[log(1 − Dgan(G(x, z)))].
(14)

We alternatively train the generator G and the discriminator
D by solving the objective functions VG in Eq. (6) and VD

in Eq. (11) iteratively. During the alternative training process,
the generator G and the discriminator D will improve each
other. On the one hand, with D being more powerful in classi-
fying identity labels, judging the existence of target variations,
and distinguishing real vs. fake prototype images, G strives
for generating an identity-preserved prototype image in order
to fool D. On the other hand, the increasing powerful Did

can guide Genc to learn a discriminative representation that
encodes as much identity information as possible. Meanwhile,
Dgan and Dvar cooperatively disentangle the variations in the
learned representation, thus forcing the generated prototype to
contain as little variation as possible.

4) Applications: In testing, with the trained VD-GAN
model, we can leverage our generator G to do the following
tasks:
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1) Generating realistic-looking prototypes (e.g., an ID
photo) for contaminated enrolment samples in testing
set.

2) Obtaining the discriminative identity representations for
both enrolment samples and query samples in testing
set, which are robust against nuisance facial variations.

3) Applying the discriminative identity representations to
perform the challenging SSPP-ce FR.

We will demonstrate the effectiveness of the proposed
VD-GAN regarding these potential applications in Section V.

V. EXPERIMENTS

In this section, we first explain the detailed experimental set-
tings, and then demonstrate the effectiveness of the proposed
VD-GAN by presenting the experimental results:

1) In Subsection V-B, we perform experiments on five
benchmark datasets (i.e., Multi-PIE, E-YaleB, CAS-
PEAL, FERET and AR) to qualitatively and quantita-
tively evaluate the learned prototypes by VD-GAN with
four major single variations, i.e., expression, lighting,
disguise and pose, and multiple variations.

2) In Subsection V-C, we evaluate the learned representa-
tions by VD-GAN on the above five benchmark datasets
for SSPP-ce FR.

3) In Subsection V-D, we perform ablation study to inves-
tigate the importances of the identity discriminator
(Did ), GAN discriminator (Dgan), variation discrimina-
tor (Dvar ), and the reconstruction penalty in G (Grec),
respectively.

4) In Subsection V-E, we explore the feasibility of
VD-GAN to handle mixed variations on the uncon-
strained Celebrities in Frontal-Profile (CFP) and Labeled
Faces in the Wild (LFW) datasets.

A. Experimental Settings

1) Dataset Description: Multi-PIE [54] consists
of 337 identities with each containing face images with
6 different expressions across four sessions (Session 1-4),
15 poses, and 20 illuminations. We use a subset
of 141 identities only containing expression variations,
where 100 identities are randomly chosen for training and the
rest 41 ones for testing.

EYaleB [55] consists of 38 identities under various light-
ing conditions and is classified into five subsets. Subset 1,
Subsets 2-3 and Subsets 4-5 depict normal, slight-to-moderate,
and severe lighting variations, respectively. Furthermore,
we introduce the AR lighting subset into EYaleB to enrich
the lighting variations as well as to expand the number of
identities. On this EYaleB&AR Light dataset, we randomly
choose 100 identities for training and the rest 38 ones for
testing.

CAS-PEAL [56] consists of 1,040 identities with varia-
tions including accessory, facing direction, age, etc., which
is believed to be the largest public dataset with occluded
face images available. We use a subset of 300 identities from
the normal and accessory categories, thus each identity has
1 neutral image and 6 images wearing different glasses and

TABLE I

THE NETWORK STRUCTURES OF Genc , Gdec AND D

hats. We randomly choose 200 identities for training and the
rest 100 ones for testing.

FERET [57] consists of 1,199 identities across ethnicity,
gender, and age. We leverage a subset of 200 identities
from five categories (“ba”, “be”, “bd”, “bf”, and “bg”) only
containing pose variations, where 150 identities are randomly
chosen for training and the rest 50 ones for testing.

AR [58] consists of 126 identities from two sessions with
each identity having 26 face images with different facial
variations. We use a subset of 100 identities containing
multiple variations including expressions, illuminations and
disguises (wearing sunglasses and scarf). We randomly choose
50 identities for training and the rest 50 ones for testing.

CFP [59] consists of 500 identities, each with 14 in-the-
wild images collected in unconstrained environments. The
face images show complex mixed variations including the
combinations of poses&expressions, disguises&expressions,
poses&lightings, etc. We leverage a subset of 3500 images
of 350 identities, where 100 identities containing neutral
images are chosen for testing and the rest 200 ones for training.

LFW [60] consists of over 13,000 images of 5,749 identities
collected under uncontrolled environments with large varia-
tions in expressions, poses, illuminations, etc. We use a subset
of 158 identities with no less than 10 images per identity from
LFW-a, which is the aligned version of LFW, for evaluation.
We choose 50 identities containing neutral images for testing
and use the rest 108 ones for training.

Fig. 5 shows some gray face samples on Multi-PIE, EYaleB,
CAS-PEAL, FERET, AR, CFP, and LFW datasets.

2) Implementation Details: We first present the network
structures of G (including Genc and Gdec) and D of VD-GAN
in Table I. For Genc and Gdec, note that batch normaliza-
tion (BN) and exponential linear unit (ELU) are used after
each convolutional layer and de-convolutional layer. Genc and
Gdec are bridged by the to-be-learned identity representation
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Fig. 5. Example gray face images from seven constrained and unconstrained datasets: (a) Multi-PIE; (b) EYaleB; (c) CAS-PEAL; (d) FERET; (e) AR;
(f) CFP; (g) LFW.

TABLE II

DATASET PARTITION AND PARAMETER SETTING

f (x) ∈ RN f , which is the output of the AvgPool layer.
Then, f (x) is concatenated with a random noise z ∈ RNz

and fed to Gdec to synthesize the prototype for x. For the
discriminator D, it has an extra fully connection (FC) layer
compared to Genc, and the output of the final FC layer is a
(Nd +3)-dimensional vector. Specifically, the first Nd elements
are the outputs of Did and are used to predict the face identity
label, the next two elements are for Dvar to judge the existence
of the target variation, and the last one element is reserved for
Dgan to distinguish real vs. fake prototype images.

We train VD-GAN 2 by the mini-batch stochastic gradient
descent (SGD) with a mini-batch size of 16. All weights are
initialized from a zero-centered Normal distribution with the
standard deviation of 0.02. We use the Adam optimizer [61]
with tuned hyperparameters for optimizing, where the learning
rate and momentum are empirically set at 0.0002 and 0.5,
respectively, as suggested in [43] and [62].

3) Parameter Setting: For each evaluated dataset, Nd is set
as the total number of identities in the training set, the dimen-
sions of the learned representation N f and the noise vector
Nz are fixed at 320 and 50, respectively. We tune all trade-off
hyper-parameters via grid search. Specifically, we observe that
VD-GAN achieves promising performance when the trade-off
parameters λ1, λ2 in Eq. (11), μ1, μ2, μ3 in Eq. (6) are set at
2.0, 0.5, 2.0, 0.5, 0.1, respectively, and fix their values across
all datasets. Moreover, the number of training and testing
identities on each dataset are also specified.

All the above parameter settings and dataset partition are
detailed in Table II.

B. Evaluation of the Learned Prototypes on Single/Multiple
Variations

In this subsection, we first evaluate the learned prototypes
by VD-GAN on Multi-PIE, E-YaleB&AR Light, CAS-PEAL,

2The code is released at https://github.com/PangMeng92/VD-GAN.git.

Fig. 6. Learned prototypes of some randomly selected examples on the Multi-
PIE, EYaleB&AR Light, CAS-PEAL, FERET, and AR datasets. Figures from
left to right are: learned prototypes by our VD-GAN, original enrolment
samples, and true prototypes for reference.

and FERET datasets, with each containing the single variation
of expression, lighting, disguise or pose, respectively. Fur-
thermore, we investigate the performance of VD-GAN on the
AR dataset containing multiple variations. In the experiments,
the quality of the learned prototypes is measured from both
qualitative and quantitative perspective.

1) Qualitative Analysis Results: We show the learned pro-
totypes for nine random enrolment samples on each dataset
in Fig. 6. Among the nine selected samples, the first three
are standard while the rest six are contaminated with different
degrees of variations. For reference, we also provide the true
prototypes of these enrolment samples. From Fig. 6, we have
the following key observations:
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TABLE III

THE VERIFICATION PERFORMANCE OF VD-GAN ON THE MULTI-PIE,
EYALEB&AR LIGHT, CAS-PEAL, FERET AND AR DATASETS

1) For all standard enrolment samples on the five datasets,
our VD-GAN enables to learn prototypes that are nearly
the same as the true prototypes, owing to the reconstruc-
tion penalty.

2) For enrolment samples contaminated by a single vari-
ation such as expression, lighting, disguise or pose,
VD-GAN successfully removes the corresponding vari-
ation in the learned prototypes. Moreover, even in the
case that AR is contaminated by multiple variations
and the input type of variation is unknown in advance,
our VD-GAN is still able to learn almost variation-free
prototypes.

3) In a few extreme cases where enrolment samples are
contaminated by serious facial variations such as severe
shadow or disguise of sunglasses, the generated proto-
types seem inaccurate in terms of identity (see the exam-
ples surrounded by the dotted lines). This is because
that some key information is missing in these severely
damaged regions.

2) Quantitative Analysis Results: As most of the learned
prototypes by our VD-GAN are visually appealing, it is
expected that the learned prototypes are more appropriate to
represent the identities than the original contaminated enrol-
ment samples. To verify this assumption, we further perform
quantitative analysis and conduct verification experiments on
the learned prototypes by VD-GAN and true prototypes.
Specifically, on each dataset, we randomly sample 600 pairs
of learned prototypes and true prototypes, where 200 pairs are
positive and the remaining 400 pairs are negative, for verifica-
tion. For comparison, we treat the verification results between
the original enrolment samples and the true prototypes as a
baseline. The cosine similarity between each pair of samples
is used for verification.

Two common metrics, i.e., average precision (AP) and true
positive rate (TPR), are employed to measure the verifica-
tion performance. For TPR, we tune the (cosine) similarity
threshold such that the false acceptance rate (FAR) equals 0.1.
Please refer to [63], [64] for the detailed definitions of the two
metrics. Each verification experiment is repeated 5 times and
the average results (± standard errors) are reported in Table III.
It can be observed that, our VD-GAN consistently achieves
better verification performance than the baseline method in
all cases, especially on the E-YaleB&AR Light, CAS-PEAL
and FERET face datasets where the differences between the
true prototypes and contaminated samples are relatively large.

For example, VD-GAN outperforms the baseline method by
12.6%, 9.6%, and 8.4% w.r.t. AP on E-YaleB&AR Light,
CAS-PEAL, and FERET, respectively. The promising quanti-
tative results validate that the learned prototypes by VD-GAN
are closer to the true prototypes than the original contaminated
enrolment samples.

C. Evaluation of the Learned Representations on
Single/Multiple Variations

In this subsection, we evaluate the learned identity repre-
sentations by VD-GAN for SSPP-ce FR on the Multi-PIE,
E-YaleB&AR Light, CAS-PEAL, FERET and AR datasets.

On each dataset, we randomly choose one sample (could be
a standard sample or a contaminated sample) for each identity
from the testing set to construct the contaminated enrolment
database, and use the rest ones as the query samples for
recognition. We set the contaminated ratio (i.e., #contaminated
samples / #total identities) ranging from 10% to 90% with an
interval of 20%. Each experiment is repeated 5 times and the
average result is reported. For comparison, we also report the
results when the contaminated ratio is zero, which is exactly
the setting of the SSPP-se FR problem.

As our testing scenarios include the specified single vari-
ation and unspecified multiple variations, we require that the
evaluated methods should be able to handle universal varia-
tions. Hence, in our experiments, we choose 9 universal meth-
ods for comparison, including 2 representation learning-based
methods, i.e., PCA [48] and VAE [41], 2 representation-
based classifiers, i.e., SRC [18] and CRC [19], 2 well-known
patch-based methods, i.e., PCRC [21] and DMMA [22],
2 recent generic learning methods, i.e., SVDL [29] and
SLRC [28], and the state-of-the-art prototype learning-based
S3RC [31]. For SVDL, SLRC and S3RC, the training set with
multiple samples per identity is used as the generic set for
generating variation dictionaries.

Regarding the parameter settings, the non-overlapped patch
size for DMMA and PCRC is empirically set as 16×16 pixels.
In addition, the other parameters of k1, k2, k, and σ in DMMA
are set to be 30, 2, 2, and 100, respectively, according to the
suggestion in [22]. The value of the regularization parameter
λ of SRC, CRC, SLRC and S3RC is fixed as 0.01. For SVDL,
in accordance with [29], the parameters λ1, λ2 and λ3 are set
to be 0.001, 0.01 and 0.0001, respectively. For PCA, VAE and
VD-GAN, the cosine distance metric is used for measuring the
similarity between two learned representations, and the nearest
neighbor classifier is adopted for classification.

Table IV presents the top-1 recognition accuracies of all
the compared methods on the five datasets for SSPP-ce FR.
We have the following observations:

1) VD-GAN consistently outperforms all the compared
methods on the five datasets.

2) When there exists no contamination (ratio=0%) in the
enrolment database, the two generic learning methods,
i.e., SVDL and SLRC, obtain comparable results with
VD-GAN on the Multi-PIE, EYaleB&AR Light, and
CAS-PEAL datasets, but perform poorly on the FERET
dataset. The reason is that the P+V model used in SVDL
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and SLRC is a linear-based superposition model, which
can handle linear expression, lighting, or disguise varia-
tion, but is less effective to deal with the non-linear pose
variation. In contrast, our VD-GAN achieves promis-
ing performance on FERET because it is designed for
disentangling universal variations (including pose) in
the learned representations, as well as preserving the
identity information by the identity discriminator. Note
that with no contamination, S3RC does not require
the prototype recovery and degenerates to a P+V-based
generic learning method. Therefore, it achieves similar
performance with SVDL and SLRC.

3) When the enrolment database contains contaminated
samples (ratio>0%), the accuracies of all methods have
a tendency of decreasing as the contaminated ratio
increases. However, in comparison with all the other
methods, VD-GAN shows greater robustness to toler-
ate the contaminated ratio and the superiority is more
obvious when the contaminated ratio is higher. For
example, when the contamination ratio increases from
10% to 90%, VD-GAN has a gain over the second
best method from 0.1% to 1.1% on Multi-PIE, from
2.5% to 13.4% on EYaleB&AR Light, from 2.2% to
6.4% on CAS-PEAL, from 15.7% to 25.2% on FERET,
and from 0.6% to 5.9% on AR, respectively. The
advantages of VD-GAN attribute to two key factors.
First, for contaminated samples, the three discriminators,
i.e., Did , Dvar and Dgan , work cooperatively to force
the generator to encode as much identity information
as possible (by Did ) but as little variation as possible
(by Dvar and Dgan) in the learned representation. Sec-
ond, for standard samples, VD-GAN introduces a unique
reconstruction penalty to further strengthen the learned
representation.

4) S3RC achieves higher recognition accuracies than the
generic learning methods (i.e., SVDL and SLRC) with
contamination. This is because S3RC involves a pro-
totype learning step for restoring contaminated enrol-
ment samples. However, S3RC performs poorly on
EYaleB&AR Light face dataset. The reason is that,
the quality of the learned prototypes by S3RC relies
heavily on the clustering performance of GMM, which
is sensitive to severe lightings and shadows.

5) SVDL and SLRC obtain similar accuracies because they
both use the P+V model for recognition. However,
their accuracies are much lower than VD-GAN’s and
the gap is larger as the contaminated ratio increases.
This observation validates that the classic P+V model is
suboptimal for SSPP-ce FR when the enrolment samples
are contaminated by variations.

6) The patch-based DMMA and PCRC perform better than
the conventional SRC and CRC methods, but are inferior
to the generic learning SVDL and SLRC methods.
We find that DMMA or PCRC has its own advantages
under different variations. For example, PCRC is more
robust against lighting variation than DMMA, but is
more sensitive to pose variation.

Fig. 7. Comparison results of VD-GAN and its four variants VD-GAN w/o
Did , VD-GAN w/o Dvar , VD-GAN w/o Dgan , and VD-GAN w/o Grec on
the AR dataset. (a) Verification results. (b) Recognition results.

7) The representation learning-based VAE outperforms
PCA as it also performs variation disentanglement dur-
ing encoding. However, VAE is still not competitive with
our VD-GAN because it is an unsupervised method,
i.e., it does not exploit the labeled identity information.

In summary, the promising performance of VD-GAN demon-
strates the effectiveness of its learned representations on sin-
gle/multiple variations for SSPP-ce FR, especially when the
contaminated ratio of the enrolment database is high.

D. Ablation Study on VD-GAN

In this subsection, we perform an ablation study on
VD-GAN. In VD-GAN, D includes three components,
i.e., Did , Dvar , and Dgan , for classifying identities, judging
the existence of variation, and distinguishing real prototype
vs. fake prototype, respectively. G includes a Grec aiming to
minimize the reconstruction loss for standard images. In this
experiment, we aim to study the role of these components
on VD-GAN’s performance. Accordingly, we construct four
variants of VD-GAN by removing Did , Dvar , Dgan , and Grec,
and denote them as VD-GAN w/o Did , VD-GAN w/o Dvar ,
VD-GAN w/o Dgan , and VD-GAN w/o Grec, respectively.

Subsequently, we compare VD-GAN with the four variants
in terms of: 1) the verification results of the learned prototypes;
and 2) the recognition results of the learned representations on
the AR dataset that contains multiple variations. As shown
in Fig. 7, VD-GAN consistently outperforms all the four
variants in both tasks. For example, VD-GAN has a gain over
VD-GAN w/o Did , VD-GAN w/o Dvar , VD-GAN w/o Dgan

and VD-GAN w/o Grec by 28.5% (or 58.5%), 3.7% (or 8.1%),
8.9% (or 31.4%) and 7.0% (or 16.9%), respectively, w.r.t.
AP (or recognition rate for SSPP-ce FR with the contaminated
ratio of 50%). Our results verify that all the four components
are necessary and help improve the performance of VD-GAN.

Moreover, we observe that different components have dif-
ferent impacts on the performance. Specifically, VD-GAN
w/o Did suffers the largest performance degradation, which
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TABLE IV

RECOGNITION ACCURACIES (%) AND STANDARD ERRORS (%) OF DIFFERENT METHODS ON THE MULTI-PIE, E-YALEB&AR LIGHT,
CAS-PEAL, FERET AND AR DATASETS FOR SSPP-CE FR. IN THE BRACKETS, WE SHOW THE IMPROVEMENT

OF OUR VD-GAN OVER THE SECOND BEST METHOD

demonstrates that Did plays the most important role in
VD-GAN. This is because Did is used to preserve the identity
label, which contains the most important identity information.
Dgan plays the second most important role because it is used to
control the quality of the learned prototypes as well as to dis-
entangle variations in the learned representations. Grec is less
important than the former two components since it only oper-
ates on the standard samples. Dvar has the least importance
among the four components. This can be explained by the fact
that Dgan also targets at disentangling variations and thus may
weaken the influence of Dvar on the performance. We point
out that we also have the same observations on the other four
datasets and omit their results for conciseness. Furthermore,
Fig. 8 shows the learned prototypes of an example input
image by VD-GAN and the four VD-GAN variants on the AR
dataset. We observed that, when removing Did , the identity
of the learned prototype is changed; when removing Dgan ,
the learned prototype has lower quality; when removing the
reconstruction penalty Grec , the learned prototype loses certain
facial details; when removing Dvar , the learned prototype
looks close to that of VD-GAN, but still contains noises in
the restored periocular area.

E. Evaluation on Mixed Variations Under Unconstrained
Environment

In practice, it is possible that an enrolment sample is conta-
minated by complex mixed variations such as the combination

Fig. 8. Examples of the learned prototypes on the AR dataset by VD-GAN
and its four variants VD-GAN w/o Did , VD-GAN w/o Dvar , VD-GAN w/o
Dgan , and VD-GAN w/o Grec.

of two or more different variations. In this subsection,
we explore the feasibility of VD-GAN in such a challeng-
ing scenario. Specifically, we apply our VD-GAN to the
unconstrained CFP and LFW datasets that contain mixed
variations in the wild, and evaluate VD-GAN’s performance
for both SSPP-ce FR and prototype learning with contaminated
enrolment samples. To the best of our knowledge, this is the
first work that learns prototypes for unconstrained faces with
mixed variations.

Following the setting in Subsection V-C, for each dataset,
we construct different biometric enrolment databases with the
contaminated ratio ranging from 0% to 50%. In the experi-
ments, we use SRC as the baseline method and choose three
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Fig. 9. Prototype learning on the unconstrained (a) CFP and (b) LFW datasets. Good examples are in the green box while the relatively bad ones are in
the red box. The images from top to bottom lines are the original enrolment samples (the first one is standard sample and the rest are contaminated ones),
the learned prototypes by VD-GAN, and the true prototypes for reference, respectively.

TABLE V

RANK-10 RECOGNITION RATES OF DIFFERENT METHODS FOR SSPP-CE
FR ON CFP DATASET. THE CONTAMINATION RATIO IN THE

ENROLMENT DATABASE RANGES FROM 0% TO 50%

TABLE VI

RANK-10 RECOGNITION RATES OF DIFFERENT METHODS FOR SSPP-CE

FR ON LFW DATASET. THE CONTAMINATION RATIO IN THE

ENROLMENT DATABASE RANGES FROM 0% TO 50%

other methods (i.e., SVDL, SLRC and S3RC) that obtain the
top-3 performance in Table IV for comparison. The parameters
are set in the same way as in Subsection V-C. Table V and
Table VI list the rank-10 recognition rates of different methods
for SSPP-ce FR on the unconstrained CFP and LFW datasets,
respectively. We have the following observations:

1) There exist large gaps between the performance
in Table V-VI and that in Table IV, which demonstrates
that it is rather challenging to perform SSPP-ce FR with
mixed variations in the unconstrained setting.

2) VD-GAN consistently and significantly outperforms the
other compared methods in all cases we have tried on
both datasets. For example, on CFP, VD-GAN has a
19.3%, 20.4%, 20.5%, and 19.3% performance gain
over the second best method as the contaminated ratio
increases from 0% to 50%.

3) On CFP, state-of-the-art generic learning methods (i.e.,
SVDL and SLRC) achieve comparable or even worse
performance compared to the baseline SRC. This indi-
cates that existing generic learning methods are insuffi-
cient to handle mixed variations.

Furthermore, we visualize the learned prototypes
of 12 randomly selected enrolment samples (including
1 standard sample) on CFP and LFW, respectively, in Fig. 9.

We observe that our VD-GAN learns promising prototypes
for a majority of the selected samples on both datasets.
Particularly, for the standard samples and the samples
with the mixed variations of slight poses and expressions,
the learned prototypes by VD-GAN are almost the same
as the true prototypes. Besides, VD-GAN also shows good
capabilities to learn prototypes for the samples with the
mixed variations of moderate poses and expressions, and
small occlusions and lighting/expressions. However, in some
extreme cases, e.g., mixed variations of large poses and
expressions/occlusions, VD-GAN cannot generate satisfactory
prototypes. One plausible reason is that key facial information
is missing in these cases.

Note that some recent deep learning-based methods [7],
[10], [65]–[68] have achieved promising performance for
SSPP FR under unconstrained environments, by using the
pre-trained models on large-scale web face datasets. Motivated
by this, we further enhance the proposed VD-GAN by using
the pre-trained LightCNN-29 feature extractor [69] on CASIA-
WebFace [70] and MS-Celeb-1M [71] as the encoder Genc.
Moreover, we enforce the dimension of the extracted feature
still be 320 by adding a FC layer (input: 256, output: 320)
behind Genc. The network structures of the decoder Gdec in
G and the discriminator D are kept unchanged. In training,
we freeze the parameters’ values in the LightCNN-29 but
update the parameters’ values of the FC layer, Gdec, and D.

Subsequently, we evaluate VD-GAN using the
LightCNN-29 feature extractor (i.e., VD-GANLcnn) on
LFW, and compare it with four recent deep learning-based
approaches for SSPP FR including joint and collaborative
representation with local adaptive convolution feature
(JCR-ACF) [7], Regular-face [66], Arc-face [67], and the
state-of-the-art class-level joint representation with regional
adaptive convolution features (CJR-RACF) [10]. We follow
the evaluation protocol suggested in JCR-ACF, and report
the rank-1 recognition rates of all the methods for SSPP
FR in Table VII. It can be observed that our VD-GANLcnn

achieves a promising recognition rate of 98.4%, which
is higher than that of the other four compared deep
learning-based methods.

In general, the experimental results in Fig. 9 and Table V-VI
have shown the effectiveness of our VD-GAN to learn proto-
types for in-the-wild faces containing mixed variations, as well
as the superiority to learn representations for solving SSPP-ce
FR over the existing generic learning methods. Moreover,
the inspiring recognition result of VD-GANLcnn on LFW
in Table VII verifies the feasibility of combining our VD-GAN
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TABLE VII

RANK-1 RECOGNITION RATES (%) OF VD-GAN USING THE LIGHT-CNN
FEATURE ENCODER, I.E., VD-GANLcnn, AND THE OTHER DEEP

LEARNING-BASED METHODS ON LFW DATASET

with pre-trained deep feature extractors and provides a new
promising direction for solving practical SSPP FR.

VI. CONCLUSION

We have proposed the VD-GAN model, which is the first
attempt to jointly learn prototypes and representations from the
contaminated SSPP. VD-GAN is able to deal with universal
variations, including specified single variation, unspecified
multiple variations, and even mixed variations, in the bio-
metric enrolment database. The proposed VD-GAN consists
of an encoder-decoder structural generator and a multi-task
discriminator, which play an adversarial game such that 1) the
learned prototype of each enrolment sample (i.e., identity) can
recover his/her standard face, and 2) the learned discrimina-
tive and variation-free representations for enrolment samples
and query samples can be used to perform the challenging
SSPP-ce FR. Extensive experiments on various real-world
face datasets containing single/multiple and mixed variations
have demonstrated the effectiveness of VD-GAN for joint
prototype learning and representation learning. Furthermore,
to enhance the representation learning ability of VD-GAN
under unconstrained environments, it is feasible to employ a
powerful deep feature extractor pre-trained on large-scale web
face datasets as the encoder in the generator.
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