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the Hamming-ball method is no longer significantly faster
than an exhaustive search. It can also be quite often the case
that a query may not find any neighbour within the restricted
volume [8]. For hash-based methods, long binary codes tend
to result in a low recall because the collision probability
decreases exponentially with an increasing code length [9].
As a result, there is a strong motivation to develop compact
binary codes for large-scale search applications.

The main contributions of this paper are:
• We study data characteristics of MCC and observe that its

binary representation is bit-correlated. This points to the
possibility of representing a minutiae feature in a more
compact binary form.

• We propose a theoretical framework for systemati-
cally learning compact binary hash codes. In particular,
we apply the theory of Markov random field (MRF)
to model adjacent bit correlations in the binary repre-
sentation of MCC. This enables us to learn hash bits
from a generalized linear model (GLM) whose maximum
likelihood estimates can be conveniently obtained using
efficient algorithms.

• We design a hierarchical fingerprint indexing scheme
based on the proposed hash codes. Under the new
framework, the binary search code length can be signifi-
cantly reduced from 384 bits to 24 bits. This allows less
hash functions and tables to be used for nearest neighbour
search in Hamming space.

The remainder of this paper is organized as follows.
Section II provides a review of the related work in fingerprint
indexing. Section III presents the theoretical framework
for modelling bit correlations and learning hash codes
from MCC binary representations. Section IV describes
the hierarchical fingerprint indexing scheme for nearest
neighbour search based on the binary index codes. Section V
reports experimental results. Finally, we draw conclusions
in Section VI.

II. RELATED WORK

Fingerprint indexing creates index values for every identity
in the database so that those with higher matching scores can
be mapped closer to each other in the index space. Earlier
work along this line has been focused on real-valued indexing
features and relevant similarity-preserving transformations for
dimensionality reduction [10]–[12]. Typically, distances of
all points to a probe in the index space are sorted to return a
candidate list.

For fast retrieval, the index terms of database entries may
be organized into certain data structures. This can be done
following the partitioning principle as in most nearest
neighbour search algorithms [13]. Examples include tree-like
data structures such as Kd-tree [14] and minutiae tree [15].
A critical step of these methods is to identify the pivots for
partitioning the space. In this regard, the index codes [16]
based on matching scores as the indexing features also fall
into this category. However, finding an optimal set of pivots
is not trivial.

Another class of nearest neighbour search techniques is
based on the collision principle [17]. The basic idea is to

hash similar points into the same “buckets” such that, with a
relatively high probability, it will find colliding segments from
two similar instances in at least some of these buckets. The
hashing strategy has been shown to outperform tree-based
techniques in high dimensions [18]. Geometric hashing is
one of the earliest collision-based methods used for point-set
(e.g., fingerprint) recognition [19]. The model points are
represented in a transformation-invariant way and stored
redundantly with their identifiers in a hash table. Recognition
of a query object is based on accumulating the collision
scores of similar local invariants and their geometric relations.
The retrieved model with the maximum collision score is
considered as the most likely candidate for a match.

Conventional fingerprint geometric hashing algorithms
use minutiae triangulation for extracting local geometric
invariants [20], [21]. However, Delaunay triangulation is
sensitive to noise and distortion. To improve the stability
and robustness, complicated construction schemes and extra
geometric invariants are required [22]. They often result in
real-valued and high-dimensional feature descriptors in order
to achieve accuracy. Moreover, most of these algorithms
generate index values by quantizing the geometric invariant
measures. As a result, homogeneous local features are used
for both index creation and feature comparisons. As only
local information is exploited, these methods can become
problematic if two fingerprints have small overlapping
areas.

Although there is an extensive literature on nearest
neighbour search in Euclidean space, only a few strategies
exist for retrieval in Hamming space [8]. The most
popular method is locality sensitive hashing (LSH) [23], [24].
Recently, LSH-like algorithms were introduced to search
large-scale biometric databases of iris codes [25], palmprint
codes [26], and MCC [27]. In [28] and [29], LSH was also
applied to combined level-1 and level-2 fingerprint features.
In these applications, LSH mainly serves for two purposes:
1) reducing dimensionality of the input binary strings, and
2) clustering data points into buckets. For binary feature
vectors, the LSH functions of random sampling bits can
preserve Hamming distance. This is due to the fact that, if the
number of sampled bits is sufficiently large, the collision
probability of two hashes is equal to the fraction of bit
positions on which the two binary strings agree [8]. Thus,
to achieve a good precision, LSH-related methods require
more sampling bits and hash tables. Both can lead to a
significant increase in query time and storage requirement
for long inputs, typically seen in biometric representations,
that often contain hundreds, if not thousands, of bits in a
single instance.

Recently, machine learning techniques were leveraged to
pursue compact binary hash codes for similarity search of
natural images. This results in various data-dependent
algorithms by considering the distribution of data
points [30]–[32]. It is known that the solutions heavily depend
on specific data characteristics and performance requirements
of their applications [33]. Therefore, binary hashes developed
for general images may not be used directly for biometric
indexing because biometric data has its own characteristics
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and performance requirements. Compared to a nature image
search, biometric identification requires higher accuracy for
more critical security applications. Due to the large sample
variations inherent in biometric feature acquisition, the index
value of a probe is not going to be identical to that of a
match in database. For fingerprints in particular, the number
of feature points is dynamic and there is no alphabetical nor
numerical order among these points. Such specific challenges
require special hash designs in the context of fingerprint
search applications.

III. LEARNING COMPACT BINARY CODES

In this section, we provide the details of our
approach to learn compact binary codes from the binary
representation of MCC for fingerprint search applications. The
MCC representation is a robust and effective local feature
descriptor. Recent studies showed that MCC, being a minutiae-
only algorithm, can provide the best performance in terms
of accuracy [2], [34] even for cross-device matching [35].
Its bit implementation requires hundreds of bits, compared
to thousands of bits as in [3] and [4], for representing
a single minutiae feature in the minutiae point set of a
fingerprint template. It enables binary feature based fingerprint
indexing [27], [28] and high performance fingerprint matching
via parallelism [34]. Therefore, we choose to build on MCC by
exploiting the data characteristics of its binary representation.

A. Data Characteristics of MCC

The MCC representation is derived from the minutiae-only
representation (i.e., x-y coordinates and angles) of standard
fingerprint templates. It encodes the neighbourhood informa-
tion of each minutia into a 3D data structure, called minutiae
cylinder, which is invariant to translation and rotation, and
is robust against skin distortion and small feature extraction
errors. The 3D cylinder structure is divided into sections, each
corresponding to a directional difference in the range [−π, π].
Sections are discretized into a fixed number of N × N cells.
Each cell value is calculated by accumulating spatial and
directional contributions from all other minutiae in the
neighbourhood for encoding. Note that the spatial contribution
affects cell values in base and the directional contribution
affects the height (i.e., which section to assign a base
value) of the 3D cylinder. An example is provided in Fig. 1
for illustration of the MCC descriptor. In the original
MCC algorithm, each cylinder cell is associated with
two bits: one denoting the cell value and the other specifying
the cell “validity”. The corner cells may be labelled as
“invalid” so that they are not used in the cylinder matching
phase. The readers are referred to [2] for more details.

The cell values are quantized into binary values for the bit
implementation. In practice, bits from all sections are concate-
nated into one fixed-length binary feature vector. It is worth to
note that the resulting binary representation is long and with
far more zeros than ones after quantization. This effect can be
demonstrated by the statistics over 100,000 MCC bit-based
representations that we collected from 2000 fingerprints in a

Fig. 1. Illustration of the MCC descriptor: (a) The local neighbourhood of
a minutiae m; the reference frame created with m located at the origin and
the x-axis pointing to its direction. (b) A cylinder is divided into six sections,
each of which encodes some relative minutiae information in (a).

benchmark database, which shows that the average bit value
is 0.05. That is, about 95% of MCC bits are zeros on average.

We may use entropy [36] to derive a conservative estimate
of the number of bits required for representing the local
minutiae feature. In particular, let X1, X2, . . . , Xn , where
n = N × N , be a sequence of random variables, each
representing the binary value of a cell on the regular lattice
of an MCC section. If X1, X2, . . . , Xn are independent and
identically distributed, the probability p = Pr{X = 1} is the
same across all bit positions and is equivalent to the average
bit value. Given p = 0.05 as obtained in our test above,
the entropy H (p) per MCC bit is thus approximately 0.3.
Without loss of information, it is theoretically possible to find
a more compact description of 384 × 0.3 = 115.2 bits for
n = 384 in this case. If X1, X2, . . . , Xn are indepen-
dent but not identically distributed instead, we estimate
pi = Pr{Xi = 1} at each bit position for i = 1, . . . , n and
obtain the entropy as

H (X1, X2, . . . , Xn) =
n∑

i=1

H (Xi). (1)

In this latter case, the expected description length becomes
102.1 bits for the MCC bit-based representation.

Certainly, if the bits are somewhat correlated, the expected
description length can be even shorter because

H (X1, X2, . . . , Xn) ≤
n∑

i=1

H (Xi) (2)
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Fig. 2. Neighbours of cell i on a regular lattice where realizations in
lower-case letter are written for random variables associated with each site.
The outermost neighbours are encoded in different colors for the nth-order
neighbourhood system with n = 1, 2, 3, 4.

with equality if and only if the Xi ’s are independent [36].
Indeed, correlations are likely to exist in the MCC bits
due to the way they are generated. As shown in Fig. 1,
when generating the MCC descriptors, the cell values are
obtained from accumulating contributions of minutiae in the
neighbourhood. In particular, the spatial contribution that a
neighbouring minutia, denoted by mt , gives to a cell m is a
standard Gaussian function of the Euclidean distance between
mt and m [2]. The continuous function can extend minutiae
contributions to adjacent cells, resulting in correlated values
and hence bit dependencies even after quantization. This effect
enables us to develop more compact binary codes by modelling
bit correlations in the binary representation of MCC.

B. Modelling Bit Correlations

We propose to model each MCC section as an MRF for
capturing bit correlations. MRFs have been widely used in
image processing and computer vision tasks [37], [38].
They have also been adapted to fingerprint recognition
for smoothing ridge orientation fields [39] and fingerprint
enhancement [40]. Most of the work follow the paradigm of
texture modelling [41], whereas in this paper we apply MRF
for hashing long binary representations into more compact
forms.

We consider a neighbourhood system N = {N i |∀i ∈ S},
where S is the regular lattice of an MCC section and N i is
the set of sites neighbouring to cell i within an integer-
numbered radius. The radius value defines the order of the
neighbourhood system N . Figure 2 illustrates an example by
colouring outermost neighbours that encompass lower-order
ones in the nth-order system for n = 1, 2, 3, 4.

Specifically, we treat the set of random variables
X1, X2, . . . , Xn on S as a homogeneous MRF. In this way,
only the neighbouring cell values are correlated. That is,
p(xi |xS−{i}) = p(xi |xN i ), where xS−{i} denotes the values
of bits on S excluding i , and xN i denotes only the values
of bits neighbouring to i . Further, the homogeneity property
specifies that p(xi |xN i ) is translation invariant to i . That is,
if xi = x j and xN i = xN j , then p(xi |xN i ) = p(x j |xN j )
for i �= j .

There are a few methods for MRF parameter
estimation [37]. One approach is by coding [42]. The basic

Fig. 3. Coding of a second-order MRF system. The “Y” sites are mutually
independent in the presence of the “·” sites.

idea is to partition S into several disjoint sets S(k) such
that no two sites in S(k) are neighbours to each other.
Under the Markovian property, variables associated with
the sites in S(k) are mutually independent, which provides
convenience to calculate the maximum likelihood estimate of
MRF parameters.

We are inspired by the coding method for a lossy
compression. To illustrate the idea, Fig. 3 shows coding for a
second-order MRF neighbourhood system. The “Y” sites form
a coding set S(Y). Due to Markovianity and homogeneity, the
“Y” site variables are independent and identically distributed
given values at the remaining “·” sites. Accordingly, the
independent observations yi on the “Y” sites have a joint
distribution conditional on the MRF parameters θ , which is
the product of density functions f (yi |θ), i.e.,

f (y|θ) =
∏

i∈S(Y )

f (yi |θ). (3)

Since the expected value E(Yi ) = Pr{yi = 1} is a function
of f (yi), we may set

E(Yi ) = g(xN i |θ), (4)

where g(·) is an unknown function defining the relationship
between the expected value E(Yi ) and some explanatory terms
xN i in the local neighbourhood, conditional on θ . By the
homogeneity property, we can further drop the subscripts in (4)
for building the model.

Once the model is trained, we can estimate E(Yi ) and
apply a threshold to produce one bit at each “Y” site i .
In this way, (4) can be regarded as hashing the neighbourhood
information, carried by xN i , into a single bit, by quantiz-
ing E(Yi ). The compression ratio is effectively 4 : 1 for a
second-order neighbourhood system, as shown in Fig. 3, and
9 : 1 for a third- or fourth-order scheme accordingly.

Usually, the set of MRF parameters θ is estimated by taking
an arithmetic average of the maximum likelihood estimates
over all coding sets. This is done by shifting the coding
framework over the MRF lattice [41], [42]. For fingerprint data
and with the homogeneity property, it is possible to collect
a large number of (yi , xN i ) samples on a single coding set
from MCC sections across all minutiae templates. With such
a large sample size available, the MRF parameters θ can
be approximated by a single coding estimate as the sample
statistics converge to the same value from all coding sets.

C. Learning Binary Hash Codes

Instead of estimating the MRF parameters θ , we propose to
regard the statistical relationship in (4) as a regression with
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of 384 bits, 96 bits and 24 bits, respectively. For the ease
of comparison, the search radius r is normalized by the code
length n as the x-axis. As r increases, more points are probed
in the search space. When r/n = 1, it becomes an exhaustive
search of all enrolled points. Note that the number of random
selection bits h = n − r . When only one bit is selected, half
of the points will be put into the same bucket. In particular,
we increase r by every 1/12 of the respective code length n.
For example, the normalized radius r/n = 0.08 indicates
a Hamming ball radius of r = 2 bits for a 24-bit code,
r = 8 bits for a 96-bit code and r = 32 bits for a 384-bit
code, respectively.

The y-axis plots the top rank accuracy corresponding to the
search radius, i.e., the percentage of true match in the top-rank
results retrieved from the hit bucket in one hash table. It can
be seen that the ANN search is more effective using more
compact codes in Hamming space. With a smaller search
radius, even in the normalized scale, the chance of finding a
true match is significantly higher after hashing. For example,
at a normalized radius r/n = 0.08, finding a true match in the
top rank is on average over 65% more likely by the 24-bit code
and 30% more likely by the 96-bit code after the proposed
bit reduction on the 384-bit MCC representation. The search
performance will converge to the maximum value
(below 1.0 and is determined by the point comparison
method) in all three cases when r/n = 1 equivalent to an
exhaustive search.

The search accuracy of 384-bit long binary codes can be
largely boosted by using multiple hash tables. However, this
will also increase the search time significantly as can be seen
in the indexing experiments below. It is also worth to note
that more hash tables implies more replicates of data points
as they are hashed to different buckets via the LSH functions.
This increases the storage requirement, which can become
impractical for large data sets.

B. Fingerprint Indexing Experiments
Here, we evaluate the performance of our hierarchical

indexing approach, Geo-LSH, proposed in this paper.
In particular, we focus on the effect of using binary hash
codes in the proposed framework. The indexing performance
is typically indicated by the trade-off between identification
accuracy and efficiency [48]. The identification accuracy is
often measured by the hit rate which is the percentage of
queries found with correct identities, while the efficiency is
measured by the penetration rate which is the proportion of
database that the system has to search.

The 384-bit MCC and the resulting binary hash codes
are used as input to the Geo-LSH scheme, which are
named hereafter as 384-bit Geo-LSH, 96-bit Geo-LSH and
24-bit Geo-LSH, respectively. For comparison, we used the
384-bit MCC based LSH algorithm as the performance
benchmark, since the LSH algorithm outperforms many other
non-hash based and conventional hash based methods for
fingerprint indexing [27], [45]. The MCC-LSH results were
produced from the MCC SDK v1.3 software [47] with the
MCC and LSH parameter setting following those reported
in [27].

Fig. 8. Indexing performance on FVC2002 DB1.

TABLE I

LSH PARAMETERS USED FOR FVC2002 DB1

Figure 8 plots the FVC2002 DB1 indexing results. A drop of
the MCC-LSH performance can be noticed in Fig. 8 compared
to that reported in [27] on the same database. We believe that
the discrepancy is largely due to different minutiae extraction
tools. In our experimental settings, we do not carried out any
pre-processing step on the fingerprints before the minutiae
feature extraction. Thus, the extracted features are likely to
contain more noise such as spurious detections and missing
points. The noisy input to the SDK software may affect
the indexing performance. Nevertheless, we used the same
minutiae features as input to all the testing methods in our
experiments. We consider that the indexing results are still
fairly comparable in this case. Moreover, the noisy inputs can
be useful to test the robustness of the comparing methods in
the presence of noise.

Our experimental results showed that the proposed
Geo-LSH scheme outperforms MCC-LSH in terms of the
search accuracy by the candidates returned. We believe that
the performance gain is credited to two main reasons. Firstly,
the point similarity is measured instead of being approximated.
Secondly, the global geometric configuration is incorporated
via the dictionary set and provides complementary information
to the local feature for matching. The gain may come with
a cost of time though. This is especially so for long binary
codes, as will be seen in later experiments. Table I provides the
LSH parameters used for the binary codes of different length.

In Fig. 8, it can be observed that the 384-bit MCC has
the best hit rate among all. Note that its normalized search
radius is (n − l)/n = (384− 24)/384 = 0.94 which is fairly
close to 1 in Fig. 7. Thus, there are more points hashed
to each used bucket. By using multiple (32 in this case)
LSH functions, the search performance is largely boosted
by accumulating collisions under many hash functions.
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Fig. 9. Searching partial minutiae points on FVC2002 DB1.

Fig. 10. Indexing performance on 2,000 segmented fingerprints of NIST
SD14.

Whereas after bit reduction, the binary hash codes require
much less hash functions and smaller search radius
(r/n = 0.33 for 24 bits and r/n = 0.83 for 96 bits) to reach
an accuracy close to that of 384 bits.

Figure 9 plots the indexing performance by searching partial
fingerprints on the FVC database. In particular, we used only
the first half part and discarded the second half part of the
minutiae features in each query template generated by the
VeriFinger 6.6 software to search the FVC database. It can be
observed that the proposed search algorithm again outperforms
MCC-LSH and the proposed hash codes are able to maintain
a similar level of accuracy as that of the 384-bit MCC.

We also performed the indexing experiments on
NIST SD 14. We firstly conducted a small-scale experiment
on the last 2,700 pairs of fingerprints from NIST SD 14.
The 2,700 pairs of fingerprint images are foreground
segmented. Among them, about 700 fingerprints are used for
training parameters and the remaining 2,000 pairs are used
for the tests. Figure 10 plots the indexing results of enrolling
2,000 fingerprints and searching on their counterparts. Again,
there is a significant gain (about 20%) of accuracy achieved
by the proposed Geo-LSH method over LSH. With the same

TABLE II

LSH PARAMETERS USED FOR NIST SD 14

Fig. 11. Indexing performance on 20,000 fingerprints from NIST SD 14.

search algorithm, the maximum difference in hit rate between
the 96-bit code and the 384-bit MCC is about 2.1% while that
between the 24-bit code and the 384-bit MCC is about 4.5%.
The LSH parameters in this case are listed in Table II.

Figure 11 plots the indexing results of the comparing
method on NIST SD 14 by enrolling the first
20,000 fingerprints and excluding the last 7,000 prints
for training model parameters. Compared to Fig. 10, the
search accuracy is dropped in both schemes because the
20,000 pairs of fingerprints used in the test are not foreground
segmented and thus tend to contain more noise in the extracted
minutiae templates. However, the proposed Geo-LSH method
is more robust in the presence of noise.

It is important to note that the binary hash codes can
achieve a significant speed-up as well as savings of storage
space by reducing the number of hash functions (thus hash
tables) and bits selected per hash function. For example,
by using 32 hash functions, the 384-bit MCC representation
requires 32 replicates of all points from the enrolled templates,
whereas the 24-bit code only requires 4 hash functions. This
is particularly important for large-scale data sets.

Figure 12 plots the average time by searching one query
print against an increasing number of templates enrolled in the
database. The timer refers to C# implementations on a 3.4 GHz
Intel(R) machine. The results show a general linear increment
of search time as the database rolls bigger. The 384-bit
Geo-LSH scheme is much slower than the MCC-LSH because
of the second-level hashing for point similarity comparisons.
However, this time inefficiency of Geo-LSH can be largely
mitigated by using the more compact binary codes proposed
in this paper. As shown in Fig. 12, Geo-LSH based on the
24-bit code can significantly reduce the search time per query
after bit reduction from the 384-bit code. Table III reports the
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