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Abstract—The successive switching nature of multimode
processes, coupled with data scarcity, challenges tradi-
tional quality prediction models. Specifically, the difficulty
of simultaneously collecting abundant labeled datasets
from all modes forces the model to update its parameters
as modes switch. This leads to the forgetting of historical
mode knowledge and hinders the aggregation of knowl-
edge, thereby degrading generalization across modes. To
this end, we propose a novel continual semisupervised
graph echo state network (CS2GESN). First, a semisuper-
vised graph echo state network (S2GESN) is designed
based on the graph smoothing assumption to extract dy-
namic information from unlabeled samples within each
mode. The S2GESN model then evolves into a continual
model, CS2GESN, employing an elastic weight consolida-
tion strategy for parameter importance estimation derived
from pseudoinverse parameter optimization, facilitating the
accumulation of historically learned knowledge. This man-
ner alleviates performance deterioration from data scarcity
and information forgetting, and enables more flexible mod-
eling of successive arriving operating modes. The superior-
ity and feasibility of the proposed method are demonstrated
through its application to the Tennessee Eastman process
and the three-phase flow facility process.
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I. INTRODUCTION

IN THE competitive landscape of modern industries, multi-
mode processes are indispensable, enabling the production

of diverse and specialized products [1], [2]. Effective quality
prediction is critical to reduce product defects and optimize
operational efficiency [3], [4]. The collection of abundant pro-
cess datasets has significantly fueled the development of data-
driven models that predict product quality by measurable process
variables. In particular, data-driven dynamic models [5], [6],
[7], [8], [9] exhibit superior performance by concentrating on
dynamic information within process datasets, usually imple-
mented by various recurrent neural networks (RNNs), such as
long short-term memory [6], gated recurrent unit [7], and echo
state networks (ESN) [8], [9], [10], [11].

As a variant of RNNs, ESN has garnered significant interest
for modeling dynamic relations, which stem from the con-
cept of sparse reservoir computation. For example, Patanè and
Xibilia [10] employed ESN to monitor the tail gas concentrations
of the sulfur recovery process. Yang et al. [11] introduced a deep
memory ESN for predicting temperature in the blast furnace.
In addition, to address the issue of collinearity, a distribution
ESN integrated with autoencoder [8] is developed for quality
prediction of dynamic processes. However, most ESN improve-
ments are difficult to adapt to multimode processes. Specifically,
frequent changes in operating modes or feed ingredient ratios
can cause significant data distribution discrepancies between
modes [12], [13], rendering existing ESN-based dynamic mod-
els inappropriate.

To tackle the complexity of modeling multimode processes,
various strategies have been developed, such as mixture mod-
els [1], [14], [15], adaptive learning-based methods [16], [17],
[18], and multiple model-based techniques [19]. However, these
approaches require all mode datasets during training, which is
often difficult in industrial scenarios. A defining characteristic of
multimode processes is the sequential arrival of operating mode,
rather than their simultaneous occurrence [20]. This makes it dif-
ficult to collect datasets from each mode simultaneously. When
a new mode emerges, most approaches build a local prediction
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model using only the new mode’s datasets, but this may lead to
information forgetting of historical modes, causing performance
deterioration when historical modes reappear. An alternative is
to retrain the model from scratch with all available datasets,
including newly collected mode datasets and stored historical
mode datasets. However, this solution imposes a significant
burden on data storage and computing resources, and struggles to
balance learning across multiple modes. Therefore, developing a
quality prediction model that aligns with the nature of successive
switching remains a challenge.

The label sparseness is another challenge in modeling mul-
timode processes. In general, the sampling frequency of qual-
ity variables is significantly slower than that of process vari-
ables [14], [21], [22]. The frequent switching of modes fur-
ther exacerbates the phenomenon of sparse labeled samples
alongside abundant unlabeled samples within each mode [14],
[21]. Under these circumstances, supervised learning models
struggle to achieve satisfactory performance with limited labeled
samples. To alleviate the effect of data scarcity, scholars have
developed various methods, primarily including active learning
(AL) [23], data augmentation (DA) [24], [25], [26], and semisu-
pervised learning (SSL) [14], [15], [21], [22], [27], [28], [29].
AL and DA directly enrich labeled samples, but they cannot
easily adapt to different scenarios. In contrast, SSL offers a vi-
able alternative by mining valuable information from unlabeled
samples, exhibiting better generalization and adaptability. For
instance, Shao et al. [21] developed a semisupervised Gaussian
mixture regression for quality prediction of multimode pro-
cesses. Furthermore, Yao et al. [14] proposed a semisupervised
mixture variational autoencoder regression model. However,
these SSL-based approaches that require the precollection of
datasets of each mode cannot deal with the successive switching
nature of multimode processes. In other words, insufficient data
acquired from the single mode make it difficult to aggregate
across modes.

Recently, a promising learning paradigm known as continual
learning (CL), inspired by the human learning process, has
been developed and applied to sequential tasks [30], [31], [32],
[33], [34], [35], [36], [37]. A major challenge in sequential
tasks is the tendency of models to forget crucial information
from previous tasks as they acquire new knowledge, leading to
catastrophic forgetting [32], [33]. CL addresses this by facili-
tating the retention of previously learned information alongside
new knowledge acquisition, effectively mitigating catastrophic
forgetting and reducing the data storage demands for model
retraining. In the literature, the development of CL is generally
categorized into three types [36]: regularization-based CL [20],
[37], [38], isolation-based CL [39], and memory replay-based
CL [40]. Specifically, regularization-based CL introduces a
quadratic term to preserve learned knowledge by estimating
the importance of model parameters. Isolation-based CL aims
to isolate and assign parameters. The basic idea of memory
replay-based CL is to store past experiences and replay them
whenever it is necessary. In general, regularization-based CL is
easy to implement and integrate with the other techniques.

Given that the switching nature of multimode processes is
successive and sequential [34], [35], [36], CL presents a viable

Fig. 1. Switching of different operating modes.

solution for constructing a single model capable of continuously
learning new knowledge without forgetting the previous ones.
Although CL has been explored for multimode processes [20],
[38], quality prediction for multimode processes with sparse
labels remains unsolved. It is worth noting that data scarcity may
lead to overfitting in CL, preventing the effective consolidation
of important knowledge. With this regard, this article presents
a continual semisupervised dynamic quality prediction method,
termed continual semisupervised graph ESN (CS2GESN). This
method is specifically designed for multimode processes with
successive arrival modes and sparse labels for each mode. First,
leveraging the fast learning capabilities and dynamic description
strengths of ESN, a semisupervised graph ESN (S2GESN) is
designed to improve generalization performance within each
operating mode characterized by sparse labels, which employs
manifold regularization to extract valuable information from
unlabeled datasets. Second, a regularization-based CL strategy
known as elastic weight consolidation (EWC) [37] is introduced
to derive a novel continual semisupervised learning (CSSL) al-
gorithm, CS2GESN, which facilitates knowledge accumulation
across all operating modes. Notably, EWC is primarily selected
for the CL in terms of lower computational cost and the flexibility
of integrating it with nondeep learning methods. Finally, the
proposed CS2GESN enables flexible modeling by achieving
effective combination between SSL and CL for multimode
processes with sparse labels. The main contributions of this work
are three-fold as follows.

1) The concept of CSSL is introduced for quality prediction
in the presence of data scarcity, which is the first attempt
to multimode processes with sparse labels.

2) A novel CSSL-based dynamic modeling method,
CS2GESN, is developed to aggregate process dynamic
information from each mode, facilitating knowledge ac-
cumulation across modes for quality prediction.

3) In the parameter consolidation phase, a Fisher informa-
tion matrix (FIM) estimation formula based on pseudoin-
verse parameter optimization is designed to assess the
significance of output weights W concerning historical
modes.

II. PROBLEM STATEMENT

Three distinct operating modes switch successively and re-
peatedly, as depicted in Fig. 1. This switching nature presents
a challenge: a local model p(θold|Sold), trained on a historical
old mode dataset {Sold}, must constantly update its parameters
θold → θnew to adapt to new modes. However, this results in an
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Fig. 2. Comparison diagram of traditional SSL modeling and the pro-
posed continual SSL modeling for multimode processes.

intractable problem: when updating the model using new mode
datasets {Snew}, the updated model p(θnew|Snew) may overwrite
previously learned information from historical modes, causing
catastrophic forgetting. As a result, the model’s performance
significantly deteriorates when a historical mode reappears.
Alternatively, one might combine all historical mode datasets
with the new mode dataset to update the model’s parame-
ters, p(θnew|Sold ∪ Snew). However, this approach is not only
resource-intensive in terms of data storage but also struggles
with balancing learning across modes due to distribution dis-
crepancies between them. Moreover, the frequent switching
between modes complicates the collection of substantial labeled
datasets for each mode, exacerbating model deterioration due to
the scarcity of labeled samples. As shown in Fig. 2, traditional
SSL modeling methods build a local SSL model (LSSM) that is
effective only within each mode but fail to aggregate incom-
plete knowledge from sparse labeled samples across modes.
This manner inevitably leads to catastrophic forgetting—where
critical features from historical modes are overwritten by new
mode datasets—resulting in model confined to specific operat-
ing mode. Furthermore, the scarcity of labeled samples allows a
loss of modeling information, which in turn hampers the ability
of CL to alleviate catastrophic forgetting. In summary, this work
proposes a new idea for constructing a continual semisupervised
model (CSSM), allowing mutual promotion between SSL and
CL in a coupled manner. This strategy facilitates effective knowl-
edge accumulation across modes, which is critical in enhancing
comprehensive generalization for multimode processes with
sparse labels.

III. PROPOSED CS2GESN ALGORITHM

A. Semisupervised Graph ESN

As a type of randomized RNN for dynamic modeling, ESN
consists of three layers, i.e., input layer, reservoir pool layer, and
output layer. It is well known that only output weights between

the reservoir pool layer and the output layer need to be trained.
However, the scarcity of labeled samples prevents the traditional
supervised ESN from accurately capturing dynamics within the
abundant unlabeled samples. SSL provides a viable solution to
make full use of unlabeled samples for dynamic modeling. In
detail, the status of the reservoir can be updated directly using all
labeled and unlabeled samples, while the calculation of output
weights is performed using only labeled samples. Under the
circumstances, the constructed model is regarded as a semisuper-
vised ESN (S2ESN). Consider for the moment all collected in-
put samples {X} = {Xl ∪Xu} = [x(1),x(2), . . . ,x(N)]� ∈
RN×m, the corresponding reservoir state vectors is denoted as
V = [v(1),v(2), . . . ,v(N)]� ∈ RN×c, where N = Nl +Nu,
m is the input size, and c is the reservoir size. The output of the
labeled samples, denoted as Yl ∈ RNl , are first zero-padded to
form another matrix Y ∈ RN . Essentially, Y preserves all rows
from Yl whenever y(i) is recorded and populates remaining
rows with zeros in instances where y(i) is not recorded. To
identify the locations where y(i) is available, a measurement
index matrix J is defined as

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

j1 · · · 0 · · · 0
...

. . . 0 · · · 0
0 · · · ji · · · 0
...

...
...

. . .
...

0 0 0 · · · jN

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ RN×N

where ji = 1 when yi is measured, and ji = 0, otherwise.
Thus, the labeled state vectors Vl ∈ RNl×c are organized

from the state matrixV by the index position of labeled samples,
which is described as

Vl = JV = [v(jl1),v(j
l
2), . . . ,v(j

l
Nl
)]� (1)

where jli(1 ≤ i ≤ Nl) denotes the index position of labeled
sample.

The output weight Wout of S2ESN is calculated by labeled
state vectors and corresponding output labels as

W∗
out =

((
Vl

)�
Vl + γIc

)−1 (
Vl

)�
Yl (2)

where γ is the regularized coefficient for alleviating overfitting.
Although S2ESN is superior to supervised ESN, it still ignores

structure information within unlabeled samples. In general, we
expect a smoothing hypothesis [27] that if two samples in the
input space are close to each other, then they should have sim-
ilar outputs, which enables label propagation between similar
samples. Therefore, a semisupervised graph echo state network
(S2GESN) is constructed by introducing manifold regularization
based on the neighbor graph, and its optimization objective is
formulated as

JS2GESN =
1
2

∥∥Yl −VlWout

∥∥2
+

γ

2
‖Wout‖2

+
λ

2

N∑
i=1

N∑
j=1

ω(i, j) ‖v(i)Wout − v(j)Wout‖2

(3)
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Fig. 3. Overall flowchart of the proposed CS2GESN.

whereλ is a balance coefficient for SSL.ω(i, j), i, j = 1, . . . , N ,
is similarity weight coefficient between neighborsx(i) andx(j),
calculated by the following function:

ω(i, j) = exp
(
−‖x(i)− x(j)‖2/ 2σ2

)
. (4)

Then, the third term of (3) can be converted into matrix form as

Ψ̂ =
λ

2
W�

outV
�LVWout

=
λ

2
W�

outV
� (D−Ω)VWout (5)

where L is the Laplacian matrix, Ω = [w(i, j)] represents the
adjacency matrix, and D is a diagonal matrix where each ele-
ment, Dii, equals the sum of weights

∑Nl+Nu

j=1 w(i, j).
Furthermore, (3) can be reformulated as

JS2GESN =
1
2

∥∥Yl −VlWout

∥∥2
+

γ

2
‖Wout‖2

+
λ

2
W�

outV
�LVWout. (6)

Taking derivatives of (6) concerning Wout, and setting it to zero,
we have the following equation:

∇JS2GESN =
∂JS2GESN

∂Wout

= − (
Vl

)�
Yl +

(
Vl

)�
VlWout + γWout

+ λV�LVWout = 0. (7)

In the end, (7) can be calculated as

W∗
out =

((
Vl

)�
Vl + γIc + λV�LV

)−1 (
Vl

)�
Yl. (8)

Remark 1: Note that all labeled and unlabeled samples with
noise provides valuable information for updating the reservoir
status whenever there is significant lack of labeled samples.
Meanwhile, we incorporate a manifold regularization term to
mitigate the negative effects of noises.

B. Continual S2GESN Model

The successive switching nature of multimode processes
poses a significant challenge for modeling. On one hand, incom-
plete knowledge acquired from a single mode through SSL is dif-
ficult to effectively aggregate, limiting its generalization across
modes. On the other hand, in the case of data scarcity, traditional
CL struggles to accumulate critical knowledge. To this end, we
develops a novel continual semisupervised modeling method,
i.e., CS2GESN, which achieves mutual promotion between SSL
and CL in a coupled manner, facilitating knowledge accumu-
lation across modes, and its overall flowchart is illustrated in
Fig. 3. Consider mode M1 as representing the historical mode
and mode M2 as representing the new mode, mode M1 collects
datasetsSM1 withNM1 samples, includingN l

M1
labeled samples

{Xl
M1

,Yl
M1

} and Nu
M1

unlabeled samples {Xu
M1

,∅}, where
Nu

M1

 N l

M1
. Similarly, mode M2 collects datasets SM2 with

NM2 samples, including N l
M2

labeled samples {Xl
M2

,Yl
M2

}
and Nu

M2
unlabeled samples {Xu

M1
,∅}, where Nu

M2

 N l

M2
.

After the training of mode M1, the optimal parameters θ∗M1
of
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S2GESN are obtained. We expect to be able to further learn the
new mode M2 without degrading the performance of old mode
M1. Hence, by considering the importance of parameters θ∗M1

in the old mode M1, the objective function of CS2GESN for
training new mode M2 is defined as

JCS2GESN(θ) = JS2GESN (θ,SM2)

+ Jloss

(
θ, θ∗M1

, λM1FM1

)
(9)

where JCS2GESN(θ) is the loss function of CS2GESN based on
mode M2 datasets and mode M1 parameters. JS2GESN(θ,SM2)
represents the fitting error term of S2GESN for M2.
Jloss(θ, θ

∗
M1

, λM1FM1) denotes the information loss for the old
mode M1. Here, λM1 is penalty coefficient for CL and FM1 is
the FIM for M1.

The second term on the right-hand side of (9) can be reorga-
nized as

Jloss

(
θ, θ∗M1

, λM1FM1

)
= Jloss

(
Wout,W

∗
M1

, λM1FM1

)

=
λM1

2

(
Wout −W∗

M1

)�
FM1

· (Wout −W∗
M1

)
. (10)

Substituting (6) and (10) into (9), we have

JCS2GESN(Wout) =
1
2

∥∥Yl
M2

−Vl
M2

Wout

∥∥2
+

γ

2
‖Wout‖2

+
λ

2
W�

outV
�
M2

LM2VM2Wout

+
λM1

2

(
Wout −W∗

M1

)�
FM1

· (Wout −W∗
M1

)
. (11)

It is clear that the objective function (11) can reduce to a S2GESN
objective if λM1 = 0, i.e., all information of old mode M1 is
discarded.

Taking derivatives of (11) concerning Wout, and setting it to
zero, we have the following equation:

∇JCS2GESN =
∂JCS2GESN

∂Wout

= − (
Vl

M2

)�
Yl

M2
+
(
Vl

M2

)�
Vl

M2
Wout

+ γWout + λV�
M2

LM2VM2Wout

+ λM1FM1

(
Wout −W∗

M1

)
= 0. (12)

The output weight Wout of CS2GESN is derived from (12)

W∗
out = Γ−1

((
Vl

M2

)�
Yl

M2
+ λM1FM1W

∗
M1

)
(13)

where Γ is denoted as

Γ = (Vl
M2

)�Vl
M2

+ γIk

+ λV�
M2

LM2VM2 + λM1FM1 . (14)

Remark 2: To overcome data scarcity, on one hand, manifold
regularization constraint in SSL is to decrease the upper bound
of generalization error. The inclusion of unlabeled samples

helps maintain smoothing of the data manifold, thereby enabling
the model generalization. On the other hand, an EWC-based
regularization in CL is to consolidate learned knowledge from
historical data, enabling knowledge accumulation across modes.

C. Estimation of FIM for CS2GESN Model

Before solving (11), output weight W∗
M1

and FIM FM1 need
to be firstly calculated. As the optimal parameters of the mode
M1, W∗

M1
is easy to obtain by S2GESN. The calculation of

FM1 about the optimal output weight W∗
M1

mainly depends on
the gradient of the S2GESN optimization objective

FM1 =
1

N l
M1

+Nu
M1

(∇JS2GESN,M1

) (∇JS2GESN,M1

)�
.

(15)

Note that the calculation of (15) is close to zero, mainly because
the optimization goal of S2GESN is expected to be minimized
by making ∇JS2GESN equal to zero. Therefore, employing FM1

in (15) approaching zero to estimate the parameters importance
is inappropriate. To avoid this issue, a small perturbation coef-
ficient δ is added to (7) to obtain a modified nonzero gradient

∇J̃S2GESN,M1
= − δ

(
Vl

M1

)�
Yl

M1
+
(
Vl

M1

)�
Vl

M1
W∗

M1

+ γW∗
M1

+ λV�
M1

LM1VM1W
∗
M1

(16)

where ∇J̃S2GESN,M1
denotes the modified nonzero gradient for

mode M1, δ can be set to any value other than δ = 1. The
detailed explanation for (16) is provided in section Appendix
I of the Supplementary Material.

Hence, (15) can be further formulated as

FM1 =
1

N l
M1

+Nu
M1

(
∇J̃S2GESN,M1

)(
∇J̃S2GESN,M1

)�
.

(17)

Remark 3: When we get the optimal output weight, the FIM
derived from these gradients of (15), with each diagonal element
close to zero, is not an effective measure of output weights
importance. According to [41], the gradients directly reflect the
rate of change of the loss function. Therefore, an output label
bias is introduced in the proposed S2GESN to obtain a nonzero
gradient. The estimated FIM in (17) with nonzero gradients are
sensitive to the historical operating modes, enabling the retention
of historical data learned knowledge and alleviating catastrophic
forgetting.

D. Recursive Form of CS2GESN Model

For more than three successive modes, the recursive form
of CS2GESN is briefly derived in this section. When datasets
SM3 from mode M3 arrives, and historical mode datasets SM1

and SM2 are not available, the Bayesian posterior is further
derived as

log p(θ|S) = log p(θ|SM1 ,SM2 ,SM3)

= log p(SM3 |θ) + log p(θ|SM1 ,SM2)

+ constant (18)
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where S contains datasets from three modes, i.e., SM1 , SM2 ,
and SM3 . After learning historical mode M1 and M2, the
corresponding datasets SM1 and SM2 are discarded. Therefore,
the recursive Laplace approximation is adopted to approximate
(18).

Similar to (9), the objective function of CS2GESN for new
mode M3 is described as

JCS2GESN(θ) = JS2GESN (θ,SM3) + Jloss

(
θ, θ∗M2

, ΥM2

)
.

(19)

With the successive arrival of new modes, the above derivation
can be reformulated as a more general form. For the emergingkth
(3 ≤ k ≤ K) mode to be learned, denoted as Mk, the datasets
are denoted as SMk

, the modeling objective is formulated as
follows:

log p(θ|S) = log p(SMk
|θ) + log p(θ|SM1 , . . . ,SMk−1)

+ constant. (20)

Using recursive Laplace approximation, (20) can be can be
approximately formulated as

− log p(θ|S) ≈ − log p(SMk
|θ) + 1

2
(θ − θM∗

k−1
)�

ΥMk−1(θ − θM∗
k−1

) + constant (21)

where

ΥMk−1 = ΥMk−2 + λMk−1FMk−1 , k ≥ 3

ΥM1 = λM1FM1 (22)

where FMk−1 denotes the FIM for mode Mk−1, which can be
calculated in sequence by (17). λMk−1 is the penalty coefficient
estimating the importance of mode Mk−1. Accordingly, the
recursive form of (19) is given as

JCS2GESN(WMk
) = JS2GESN (WMk

,SMk
)

+ Jloss

(
WMk

,W∗
Mk−1

, ΥMk−1

)
(23)

where W∗
Mk−1

is the output weight of CS2GESN in the previous
mode Mk−1. JS2GESN(WMk

,SMk
) is the objective loss of

S2GESN for mode Mk. Jloss(WMk
,W∗

Mk−1
, ΥMk−1) is an in-

formation loss approximating the loss sum of the historicalk − 1
modes. In the end, the implementation details of S2GESN and
CS2GESN are summarized in Algorithm1 and Algorithm2
of the Supplementary Material.

E. Computation Complexity Analysis

Taking two available modes M1 and M2 as an exam-
ple, the computational complexity of the proposed method
includes three components: 1) The computational complex-
ity for the optimization of S2GESN for the historical model
M1 is O(NM1mc+ c3 +N l

M1
c+ (NM1)

2); 2) the compu-
tational complexity for the estimation of FIM denoted by
FM1 for the historical mode M1 is O(c2); 3) the computa-
tional complexity for the optimization of CS2GESN model
for the new mode M2 is O(NM2mk + c3 + c2 +N l

M2
c+

(NM2)
2). Meanwhile, the computational complexity for the op-

timization of mixture semisupervised graph ESN (MS2GESN)

TABLE I
MODE PARAMETERS OF TE PROCESS

is O(
∑2

i=1 NMi
mc+ c3 +

∑2
i=1 N

l
Mi

c+ (
∑2

i=1 NMi
)2). It

is observed that the proposed CS2GESN does not impose a
significant increase on computational cost.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the effectiveness of the proposed CS2GESN, in
this section, two typical multimode industrial cases are inves-
tigated, including the Tennessee Eastman (TE) process and the
three-phase flow facility (TPFF) process. In our experiment, our
proposed CS2GESN and some baselines are listed below.

ESN: ESN, which is a supervised model only suitable for
single mode.

Continual ESN (CESN): CESN, which is a continual super-
vised model suitable for multiple successive modes.

S2ESN: S2ESN, which is a semisupervised model only suit-
able for single mode.

S2GESN: S2GESN, which is a semisupervised model that
combines graph regularization and is only suitable for single
mode.

MS2GESN: MS2ESN, which builds a model using datasets
from all available modes.

CS2ESN: CS2ESN, which is a CSSM suitable for multiple
successive modes.

CS2GESN (Proposed:) CS2GESN, which is a CSSM that com-
bines graph regularization and is suitable for multiple successive
modes.

The experimental schemes for the proposed CS2GESN and
other baselines are detailed in Table AI of the Supplemen-
tary Material. Three common metrics, root-mean-squared error
(RMSE), mean absolute error (MAE), and R-square (R2), are
adopted to evaluate the modeling performance.

A. TE Process Benchmark

The TE process in [42] is first utilized to evaluate the pro-
posed CS2GESN. It includes a reactor, a stripper, a recycle
compressor, a condenser, and a separator. In this process, there
are 12 manipulated variables XMV (1–12) and 41 measured
variables XMEAS (1–41). The measured variables are further
classified into 22 continuous variables XMEAS (1–22) and 19
component variables XMEAS (23–41). To implement quality
prediction, only 22 continuous variables XMEAS (1–22) are
selected as input variables, and the component variable XMEAS
38 is chosen as the quality variable. Meanwhile, based on the
mode parameters listed in Table I, three steady operating modes,
denoted by {M1,M2,M3}, are simulated, with 1000 samples
collected for each mode.

In the experimental phase, for each mode, the first 500 samples
are considered the training datasets, while the remaining one
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TABLE II
PREDICTION PERFORMANCE COMPARISON OF CS2GESN AND OTHER BASELINES FOR TE PROCESS

constitute the test datasets. It is noted that only a small number of
training datasets for each mode are annotated due to fast switch-
ing between modes. Consequently, three types of label ratios
(LR), i.e., 5%, 10%, and 20%, are investigated to achieve mod-
eling in scenarios with sparse labels. Through trial and error, the
relevant parameters for all methods are set identically for a fair
comparison: the input weight Win randomly initialized within
the range [−1, 1], the state weight Wres randomly initialized
within the range [0, 1], the reservoir size c = 500, the leaking
rateα = 0.95, and the spectral radius r = 1.8. Subsequently, the
regularized coefficient γ of all seven models is set to 0.05, while
the balance parameter λ, supporting smooth assumptions, is set
to 10−5 for S2GESN, MS2GESN, and CS2GESN. In addition,
for CESN, CS2GESN, and CS2ESN, the penalty parameter for
the FIM is set to 104.

A total of 38 scenarios (S1–S38) are conducted for each LR in
our work. The prediction performance comparison of CS2GESN
and other methods are listed in Table II. Some key insights are
summarized as follows.

1) By comparing the modeling scenario in a single mode of
M1,M2, andM3, that is, S1, S4, S9, S17, S20, S25, S28,

S31, and S36, it is evident that the ESN model performs
the worst. Semisupervised models, including S2GESN
and S2ESN, outperform ESN, with S2GESN showing the
best performance. The primary reason is that the sparse
label issue significantly degrades the modeling accuracy
of the supervised model, and SSL effectively alleviates it.

2) When the new mode M2 arrives, S2GESN and S2ESN
update their model parameters using the datasets from
mode M2. Observations from six scenarios (S1, S4, S5,
S17, S20, and S21) indicate that they achieve satisfactory
performance in the new mode M2. However, they suffer
from catastrophic forgetting in the historical mode M1,
leading to poor prediction performance. Furthermore,
with the arrival of the new mode M3, a similar phe-
nomenon is concluded in ten scenarios (S1, S4, S9, S10,
S11, S17, S20, S25, S26, and S27), where catastrophic
forgetting of historical modesM1 andM2 occurs despite
satisfactory performance in the new mode M3.

3) In contrast to 2), observing four scenarios (S2, S3,
S18, and S19) reveals that the proposed CS2GESN and
CS2ESN effectively mitigate catastrophic forgetting by
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TABLE III
COMPREHENSIVE PERFORMANCE COMPARISON OF CS2GESN, MS2GESN, CS2ESN, AND CESN FOR TE PROCESS

retaining important knowledge from the historical mode
M1. Similarly, in six scenarios (S6, S7, S8, S22, S23,
and S24), catastrophic forgetting of historical modes M1

and M2 is mitigated when the new mode M3 appears.
Furthermore, CS2GESN outperforms CS2ESN due to the
effective integration of CL and SSL advantages.

4) In scenarios S28–S32, although CESN can mitigate the
catastrophic forgetting observed in ESN, it struggles to
achieve satisfactory performance due to the sparse labels
that hinder accurate knowledge capture.

5) From the five scenarios (S12–S16), it can be seen that
although MS2GESN does not forget much about the his-
torical modes, it is difficult to achieve satisfactory perfor-
mance for all modes. Specifically, the MS2GESN model
may be influenced by distribution differences between
modes, hindering its ability to simultaneously describe
the complicated data properties of multiple modes. In
addition, training on all mode datasets when a new mode
arrives is not an ideal solution, as it can lead to a data
storage burden.

In summary, from Table II, when SSL and CL are separately
applied to the S9–S11 scenarios and the S33–S35 scenarios,
neither of them supports the unified modeling objective of aggre-
gating the incomplete process dynamics of the modes, and thus
it is difficult to obtain satisfactory performance. In the scenarios
of S6-S8, the proposed CS2GESN model achieves an effective
combination between SSL and CL, mitigating the negative ef-
fect of sparse labels and catastrophic forgetting across modes.
Fig. A1 in the Supplementary Material displays the predicted
values and absolute errors for CS2GESN, MS2GESN, CS2ESN,
and CESN, using 5% labeled training samples. Furthermore,
comprehensive prediction performance across all modes is pre-
sented in Table III, showing that CS2GESN is the best in all
scenarios.

B. TPFF Process

The TPFF process [43], which aims to supply a controlled
flow rate of water, oil, and air to a pressurized facility, is an
industrial system from Cranfield University. It can operate in
different modes by adjusting two manipulated variables, i.e., the
ariflow rate and the waterflow rate. Fig. A2 of the Supplementary
Material includes a gas–liquid separator, a three-phase sepa-
rator (TPS), numerous coalesces, and storage tanks connected
by pipelines of different specifications and geometries. In this
process, 16 process variables are chosen as inputs and the TPS
pressure is chosen as the quality variable. A detailed description

TABLE IV
SETTINGS FOR MODE PARAMETERS

of the chosen process variables can be found in the work of [43].
In this case, we only investigate three steady operating modes,
denoted as {M1,M2,M3}, with the corresponding parameters
listed in Table IV. There are 1000, 700, and 800 samples forM1,
M2, and M3, respectively.

In the experimental phase, the former 400 sample points in
each mode serve as the training datasets, and the remaining
samples constitute the test datasets. Given that the study in [43]
provided high-quality datasets with different data distributions,
the datasets are normalized first. Three types of LR, i.e., 5%,
10%, and 20%, are investigated to evaluate the proposed model
under sparse label scenarios. Through trial and error, the rel-
evant parameters for all methods are set identically for a fair
comparison: the input weight Win randomly initialized within
the range [−1, 1], the state weight Wres randomly initialized
within the range [0, 1], the size of reservoir c = 1500, the leaking
rateα = 0.95, and the spectral radius r = 1.8. Subsequently, the
regularized coefficient γ of all seven models is set to 0.05, while
the balance coefficient λ, supporting smooth assumptions, is set
to 10−5 for S2GESN, MS2GESN, and CS2GESN. In addition,
for CESN, CS2GESN, and CS2ESN, the penalty coefficient for
the FIM is 106.

The prediction performance comparison of CS2GESN and
other baselines is listed in Table V. Several key insights are
summarized below.

1) CS2GESN consistently outperforms other baselines,
showing lower RMSE and MAE values and higher R2

values. For instance, in scenario S2 of 5% LR, CS2GESN
has an RMSE of 1.6063, an MAE of 1.3002, and an R2 of
0.7503, outperforming both S2GESN in scenario S4 and
MS2GESN in scenario S12.

2) Compared to four scenarios (S3, S5, S21, and S32),
CS2GESN performs better than S2GESN, S2ESN, and
ESN, effectively alleviating the catastrophic forgetting
for historical mode. In addition, as observed in three
scenarios (S3, S19, and S30), CS2GESN performs bet-
ter than CS2ESN and CESN. This implies that ac-
curate extraction of valuable knowledge information
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TABLE V
PREDICTION PERFORMANCE COMPARISON OF CS2GESN AND OTHER BASELINES FOR TPFF PROCESS

TABLE VI
COMPREHENSIVE PERFORMANCE COMPARISON OF CS2GESN, MS2GESN, CS2ESN, AND CESN FOR TPFF PROCESS

from unlabeled datasets can help mitigate catastrophic
forgetting.

3) It is clear from 11 scenarios (S28–S38), that CESN and
ESN exhibit poorer performance with higher RMSE and
MAE values and lower R2 values in most scenarios. For
example, in S32 with 5% LR, ESN has an RMSE of
2.9775, an MAE of 2.4062, and an R2 of 0.1087. Although
CESN alleviates the catastrophic forgetting of ESN, their
modeling performance is not ideal owing to the issue of
sparse labels.

4) As observed in five scenarios (S12–S16), it is evident
that MS2GESN struggles the most, exhibiting high errors
and low overall performance. The primary reason is that
MS2GESN cannot adequately describe the complex data
properties of multiple modes. In addition, it is not suitable
for practical situations due to a data storage burden.

5) More importantly, in three scenarios (S11, S27, and
S38), S2GESN, S2ESN, and ESN do not perform very
well against the historical mode M1. The primary rea-
son is the significant difference between mode M3 and
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historical modeM1. This further demonstrates that while
preserving important knowledge from the historical mode
M1, the performance of CS2GESN in S6, CS2ESN in
S22, and CESN in S33 is not ideal in the new mode
M3. However, CS2GESN still exhibits the best among
them.

In the Supplementary Material, Fig. A3 presents the pre-
dicted values and corresponding absolute errors of the proposed
CS2GESN compared to other approaches, including MS2GESN,
CS2ESN, and CESN, with 5% labeled training samples. Subse-
quently, these four models are utilized to predict all modes under
three LR simultaneously, and their comprehensive prediction
performance are listed in Table VI. It is clear that the proposed
CS2GESN exhibits superior performance for multimode pro-
cesses with sparse labels.

V. CONCLUSION

In this article, we have developed the CS2GESN for online
prediction of product quality in multimode processes, where
each mode arrives successively with sparse labels. Unlike con-
ventional modeling approaches, the proposed CS2GESN has
CL capabilities that alleviate the issue of catastrophic forgetting
when updating mode parameters for a new mode, aligning well
with practical demands. Meanwhile, a SSL technique is com-
bined to extract the valuable information of unlabeled samples
for each single mode with sparse labels, which not only im-
proves modeling performance within each single mode but also
strengthens the retention of key parameters across all modes,
further alleviating catastrophic forgetting. The comprehensive
experimental results of the TE and TPFF processes have verified
the effectiveness of the proposed CS2GESN model, achieving a
more flexible solution for multimode processes.

In the future, we will make improvements in the following
two aspects: 1) EWC-based CL methods still have a learning
bottleneck despite their low computational complexity, and it is
crucial to investigate more advanced CL strategies; 2) we will
explore effective combination of SSL with CL to enable mutual
promotion in noisy environments.
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