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Abstract—Lane detection plays a crucial role in the visual
perception system of intelligent driving, aiming to rapidly identify
various lane lines embedded in complex road scenarios. However,
accurately and quickly detecting lane lines remains a challeng-
ing task, especially with the limited representation capacity of
spatial domain. Using frequency to guide the few-visual-clue
lane detection in spatial domain can be a cure, as frequency
domain effectively describes sparse lane local contexts from a
complementary perspective. To achieve accurate and fast lane
detection, we propose a novel network that smoothly introduces
frequency space into the spatial domain. We first design two
light-weight modules, i.e., the Domain Transformation Module
(DTM) and the Bilateral Aggregation Module (BAM), to explicitly
perceive lane features with diverse semantics in bilateral domains.
Concretely, the DTM excites lane local patterns in frequency
space via a parallel sub-convolutions manner, while the BAM
selectively absorbs informative components from the intra- and
inter-domain perspectives. We then devise a small parametric
module, named Position Refinement Module (PRM), to model
fine-grained lane locations. It is instantiated into the last three
stages of network to reconstruct detailed positional relationships
by encoding global semantics and local contexts into unified lane
embeddings. Extensive experiments on two widely-used datasets
show that our method significantly outperforms the state-of-
the-art approaches. Especially, our method achieves a superior
inference efficiency of 0.011 second per image along with a total
F; score of 79.28% on the CULane dataset.

Index Terms—Intelligent vehicles, lane detection, bilateral
domains, fine-grained modeling.

I. INTRODUCTION

FFICIENT lane detection is pivotal in the visual per-
ception systems of intelligent transportation. It provides
a series of significantly fundamental information for intelli-
gent driving, road scene understanding, and advanced driver
assistance systems. However, in the real world, various factors
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(e.g., extreme lighting condition and severe occlusions) cause
lane lines to exhibit sparse visual appearance signals, making
networks difficult to accurately predict these lines. Another
practical dilemma is the strict requirement for model inference
efficiency. Therefore, accurately and quickly detecting diverse
lane lines remains a key challenge.

In the literature, the classical lane detection methods ([1],
[2], [3], [4]) rely on highly predefined hand-craft features
(e.g., colors and structures) to detect lanes. Consequently,
they frequently struggle in complex road environments, i.e.,
nights, traffic jams and landmark noises. Recently, advanced
convolution neural networks (CNNs) have achieved impressive
success in lane detection, and deep learning-based methods
can be roughly divided into three categories. Firstly, most
papers ([5], [6], [7], [8], [9], [10], [11], [12], [13]) treat
the lane detection task as a segmentation problem, such as
semantic segmentation or instance segmentation. However,
the numerous pixel-level prediction operations on the entire
image are time-consuming. Secondly, some studies ([14], [15],
[16], [17]) make attempts at adopting plenty of predefined
anchors to regress real lanes of an image. Besides that, another
line of work ([18], [19]) makes efforts to rapidly locate
lanes by gridding the raw image into numerous cells, thereby
converting pixel-wise prediction into row-wise classification.
Through these approaches are simple and fast, their overall
performance is relatively inferior due to the coarse feature
representations. In general, most of them are either time-
consuming or struggle to achieve higher detection accuracy.
Thus, it is still challenging to develop algorithms that can
accurately detect lane lines while maintaining a competitive
inference speed.

Another crucial yet under-explored problem in lane detec-
tion is that existing methods often struggle to address the
frequency bias, a phenomenon that entails severe risks. Firstly,
the frequency bias of CNN models often causes them to
overlook valuable lane local contexts during the feature
extraction process. That is, CNN models are more sensi-
tive to low-frequency information than the high-frequency
signals, which may lead to CNNs being trapped in local
optima ([20], [21]). Specifically, high-frequency responses
come from local regions with significant grayscale variations,
such as edges and textures, and encode rich details crucial
for accurate detection of even unforeseen lane lines. For
example, previous study ([22]) found that CNN models can
correctly predict low-frequency removed images, but incor-
rectly predict high-frequency removed images. Thus, without
the delicate control of frequency-domain cues flow into the

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-9544-0348
https://orcid.org/0000-0001-9887-511X
https://orcid.org/0000-0001-7629-4648

20110

(a) 'ere Occlusion

(c) Night

(d) Lane Abrasion

Fig. 1. Samples of few-visual-clue lane detection. In the real world, due
to elongate prior shape and various factors (e.g., occlusion, extreme lighting
condition and etc.), lane lines typically exhibit sparse visual appearances,
resulting in subtle supervisory signals for lane detection.

(b)

(@

Fig. 2. Tllustrations of various features with different distributions. (a) Original
RGB Image. (b) Discriminative lane representations. (c) Local contexts with
rich locational relations but full of noises. (d) Global information with ample
semantics but lacks accurate position details.

CNN models, many discriminative high-frequency features
will be missed, potentially leading to suboptimal detection
performance. Secondly, global semantics suffer irreversible
information loss and distortion because of the continuous
down-sampling operation ([14]). As shown in Fig. 1, the visual
appearances of lane lines are extremely subtle due to various
factors. Furthermore, as illustrated in Fig. 2, the process of
capturing global semantic information involves consecutive
down-sampling operations, which significantly reduces the
feature map resolution (Fig. 2 (d)) to ﬁ of the original image
(Fig. 2 (a)). This substantial reduction in resolution leads to
a considerable loss of detailed lane information, resulting in
sparser supervisory signals and low detection accuracy ([23],
[24]). In fact, inspired by human vision system, the accurate
detection of few-visual-clue lane line is mainly relied on global
semantics and local contexts. These two features are important
to identify lane lines with elongated shape and weak visual
appearance. To generate global semantics with large receptive
field, down-sampling high-resolution images is a prevalent
choice, but it inevitably incurs the loss of lane local contexts.
All of the aforementioned lane detection methods reduce local
information loss by solely reinforcing spatial domain features
of RGB images. Nevertheless, it is not sufficient to consider
the spatial domain only. In contrast, the frequency domain,
with its inherent advantages in information preservation and
edge enhancement, can better describe the local contexts of the
lane. In addition, frequency spectrums come from local regions
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and thus encode abundant details with locational importance,
which is beneficial for fine-grained lane modeling.

To tackle these problems, this paper presents a novel
network for efficient lane detection by fully utilizing com-
plementary features from bilateral domains. Specifically, to
efficiently involve frequency space into spatial domain, we
propose a Domain Transformation Module (DTM) and a
Bilateral Aggregation Module (BAM), aiming to take full
advantages of two different yet complementary clues: 1)
frequency-aware local boundary, and 2) global semantics
in spatial domain. To overcome the frequency bias issue
and leverage neglected high-frequency details, we design the
Domain Transformation Module (DTM) to explicitly activate
various lane-relevant representations in frequency space. The
parallel sub-convolution mechanism in the DTM can inde-
pendently excite the lane-related local contexts from both
low-frequency and high-frequency perspectives. By this mech-
anism, DTM greatly mitigates the frequency bias in networks
by forcing them to focus more on valuable high-frequency
signals. Then, to effectively fuse complementary information
from bilateral domains while suppressing noise, we propose
the Bilateral Aggregation Module (BAM). The symmetric
interaction pattern in the BAM allows global semantics from
the spatial domain and local contexts from the frequency
space to mutually learn and collaborate for optimization. The
DTM and BAM are devised as two small parametric modules
to ensure superior detection speed. However, as shown in
Fig. 2 (d), global information has rich semantics but lacks
accurate location details, a coarse positional relation is not
sufficient for accurate lane detection. Thus, to ensure high-
precision localization while maintaining a lightweight design,
we further introduce the Position Refinement Module (PRM),
which refines coarse-grained location embeddings gradually.
Particularly, features with different receptive fields are utilized
to iteratively encode global semantics and local positional
details into unified lane representations.

We demonstrate the effectiveness of our method on two pop-
ular datasets, i.e., CULane and TuSimple. To better compare
the lane localization capabilities of diverse methods, we further
report some visualization results on various complex road
scenes. Ablation studies are conducted to evaluate the effec-
tiveness of each module, it can be seen that our method can
detect lane lines efficiently with the help of bilateral domains.
Comprehensive experiments on two benchmarks demonstrate
that ours method greatly outperforms other existing state-of-
the-art methods in terms of both accuracy and efficiency. The
main contributions are summarized as follows:

e We present a novel network for efficient lane detection
that accurately and rapidly perceive lane representations
by using frequency space to guide spatial-domain mod-
eling process.

e We propose two small parametric modules, i.e., DTM and
BAM, to explicitly excite frequency-aware local patterns
as well as high-level global semantics from the bilateral
domain perspectives.

o We further devise a light-weight PRM, aiming to encode
features with different semantics into unified lane embed-
dings for fine-grained position modeling.
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II. RELATED WORK

A. Spatial-Based Lane Detection

With the development of intelligent driving techniques,
the lane detection task has received significantly increasing
attention. Numerous attempts have been made for spatial-
based lane detection. The advantage of traditional methods is
their ease of implementation, but they often encounter limited
performance in challenging scenes as they heavily rely on
strong prior hand-craft features of RGB images. ELDA [3]
develops a light-wight algorithm based on Haar-liked features
and predefined assumptions. HTPF [25] utilizes Statistical
Hough Transform (SHT) followed by a Particle Filter (PF)
to detect potential straight lane lines in RGB images. MHT
[26] leverages multi-resolution Hough Transform to estimate
the geometric structure of the lane boundaries. These highly
specialized lane features work well only under ideal conditions
but lack adaptive abilities to variations in road scenes. Con-
sequently, these conventional methods suffer from a weakness
of poor generalization in real-world scenarios.

Recently, convolution neural networks have manifested
remarkable feature-representation capabilities across a diverse
range of computer-vision tasks, involving traffic situation
analysis [27], [28], [29], and lane detection. Therefore, we
pay special attention to the deep learning methods, which can
be broadly categorized into three groups: segmentation-based
approaches, anchor-based approaches and other approaches.
The first class of method tries to segment lanes from back-
grounds, assigning a label to each pixel in the RGB image
to indicate whether it belongs to a lane or not. Lane-Net
[11] employs an instance segmentation network followed by a
line fitting operation to locate lanes. FlipNet [30] developed a
hierarchical feature flip fusion module (HFFF), a double-layer
attention enhancement mechanism (DAEM) and a dual-
pooling coordinate attention (DCA) to utilize spatial clues
and aggregate global content. RESA [12] presents a recurrent
feature-shift aggregator between encoder and decoder, which
endows each pixel with the ability to gather global informa-
tion. SAD [31] devises a knowledge distillation mechanism,
enabling the model to learn from itself and earning notable
performance progress. SCNN [10] proposes a message passing
mechanism to generalize common layer-by-layer convolution
to slice-by-slice convolution, which enhances the spatial fea-
ture extraction capacity for accurate lane detection. However,
segmentation-based approaches are time-consuming as they
conduct dense prediction on the high-resolution feature maps.

The anchor-based methods first predefine an extensive array
of lines and subsequently perform dense regression to predict
the position of real lanes. Similar to regular object detection,
LaneATT [17] employs substantial anchors in the feature
pooling phase. Furthermore, a anchor-based attention module
is proposed to gather global information. CLRNet [14] is
designed to fully utilize both high-level and low-level features
in a cross-layer refinement fashion. In addition, it introduces
the Line IoU loss to regress the entire lane line as a cohesive
unit, thus achieving high localization accuracy. CLRerNet [13]
reveals that confidence scores capable of precisely measur-
ing the intersection over union (IoU) with ground-truths are
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most advantageous for accurately localizing lane positions.
Consequently, it devises the LaneloU metric. This metric is
formulated by factoring in local lane angles, with the aim of
enhancing the quality of confidence scores. O2SFomer [16]
develops a one-to-several label assignment strategy to mitigate
label semantic conflicts and enhance training efficiency of
DETR (DEtection TRansformer). Although anchor-based lane
representations are adequate for most real-world lanes, they
may encounter challenges in demanding environments due to
their close association with strong priors.

In the last category of approaches, various endeavors, such
as gridding and polynomial fitting, are employed to enhance
the accuracy of lane detection. Ultra-Fast [18] first devises
a simple yet effective prediction formulation, which treats
lane detection as row-based classification task. Benefiting from
row-based global features selection, it gains extremely fast
inference speed. OConv [32] proposes an oblique convolution
method, including Oblique Rotation Module, Strip Spatial
Attention Module and Anti-oblique Rotation Module, to break
up the limitations of ordinary convolution in extracting lane
information and make the network focus on the strip lanes.
PGA-Net [33] utilizes a transformer-based DETR model to
regress parameters of cubic polynomial function used for
modeling lane shape. PolyLaneNet [34] represents each lane
lines in input image by regressing polynomial parameters. Due
to fewer parameters to regress, PolyLaneNet [34] is able to
maintain its high efficiency. FastDraw [35] introduces a fully
convolution model to directly decode lane structure without
the need for post-processing operations. However, exploiting
lane features solely in spatial domain is not sufficient, as the
frequency bias may cause CNN models to overlook valuable
high-frequency clues. All these lane detection approaches
merely reinforce spatial-domain features of RGB images,
which may result in sub-optimal performance.

B. Frequency-Domain Feature Learning

Frequency analysis is of great importance for digit image
processing and has already been extensively used in computer
vision community, encompassing tasks such as classification,
semantic segmentation, and image compression and encoding.
LFA [36] demonstrates that images generated through GANs
(Generative Adversarial Networks) appear highly photore-
alistic in the RGB domain but exhibit severe artifacts in
the frequency space. Thus, they perform a comprehensive
analysis in frequency domain to recognition forged images.
LFD [20] proposes a learning-based frequency selection strat-
egy to removal trivial frequency signals without accuracy
loss. FNN [37] captures powerful features from frequency
domain for fast image classification. OFD [38] designs a
powerful network to introduce frequency as an additional
clue to better detect various objects from their camouflaged
environments. DRL [39] designs a model conversion approach
to transform spatial-domain CNN models into the frequency
domain. Despite frequency analysis has made notable success
in previous methods, how to utilize frequency domain for
accurate lane detection is still under explored. In contrast to
previous methods, we present two well-designed decoders to
explicitly model both high- and low-band frequency clues,
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Fig. 3. Overview of our proposed method. Notably, given the demand of fast inference, the prediction generated by the Position-aware decoder serves as
the sole final output throughout the inference phase. In contrast, the components, excluding the DTM and BAM, responsible for generating the output of the

Frequency-aware decoder are activated solely during the training stage.

guiding the spatial-domain lane features learning. In this way,
the proposed method realizes remarkable performance since it
can perceive more comprehensive lane indicators from both
intra- and inter-domain perspectives.

III. PROPOSED METHOD

In this section, we describe the details of our proposed
Network, including Domain Transformation Module (DTM),
Bilateral Aggregation Module (BAM) and Position Refinement
Module (PRM). First, in Sec. III-A, we outline our method to
provide a concise yet accurate definition of crucial concepts.
Subsequently, three core components (DTM, BAM and PRM)
are elaborated in Sec. III-B, III-C, and III-D, respectively.

A. Overview

The overall architecture of our method can be seen in
Fig. 3, which comprises a shared and light-weight encoder and
two small parametric decoders, i.e., frequency-aware decoder
and position-aware decoder. In particular, a DTM and three
BAMs are instantiated into frequency-aware decoder, while
the stacked PRMs are integrated into position-aware decoder.
It is an efficient lane detection network designed to cope with
aforementioned frequency bias as well as irreversible infor-
mation loss problems. This is achieved by utilizing frequency
space signals to guide spatial-domain modeling process.

Firstly, the RGB inputs are fed separately into the spatial
path of encoder and frequency path of DTM. Specifically,
the former path utilizes a light-weight encoder to extract
multi-level spatial-domain features from RGB inputs, i.e.,
Si(i€{1,2,3,4,5}). Meanwhile, in the latter path, the DTM is
employed at the early stage to excite lane local patterns in fre-
quency space and removal trivial noise signals. Subsequently,

the BAM is built to produce more comprehensive lane repre-
sentations D; by selectively absorbing features from bilateral
domains. This mechanism guides our model to prioritize high-
frequency local boundaries and high-level global semantics.
Then, to model fine-grained lane position information, the
PRM works in a top-down manner, iteratively refining previous
coarse features D; and S; with more detailed local contexts.

In the output of first decoder, frequency-aware decoder,
we assign each pixel with a probability score to indicate
whether it belongs to a lane or not. However, considering
inference efficiency, this pixel-wise prediction operation is
only conducted during the training phase to more effectively
supervise model convergence. Meanwhile, for the output of
second decoder, position-aware decoder, each lane comprises
four types of elements: (1) lane confidence score c, (2) start
point p; and direction angle ®, (3) end point p,, and (4) the
offset for each point between p, and p,.

B. Domain Transformation Module

High-frequency image components are strongly correlated
to landmarks with intense grayscale variations like lane line
edges. However, the frequency bias of CNN models causes
previous methods to predominantly focus on low-frequency
content in RGB image, yielding an inaccurate lane detection
performance. To this end, the DTM is designed to explicitly
perceive lane local contexts in frequency domain.

As shown in Fig. 4, it encompasses both a base filter and
two enhanced filters. Concretely, an RGB image x € R *">3
is converted to the YCbCr color space and then separated into
a group of 8 x 8 blocks (standard block resolution in image
compression). Subsequently, a base filter f,5, comprising the
discrete cosine transform (DCT) and two convolution layers,
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Fig. 4. Illustration of the presented Domain Transformation Module (DTM).

is performed on each block to generate the corresponding
frequency spectrum f;;,i € [1,%],j € [1, ¥]. Therefore, the
frequency domain of RGB inputs can be obtained by:

fij = thase(@(x)),  fi; € R¥®O (1)

where ¢ denotes color transformation and image decomposi-
tion operations. We take DCT as the first unit of base filter
thase due to its excellent organization of the frequency distri-
bution. To be specific, in its frequency spectrum, the left-top
corner encompasses low-frequency signals while the right-
bottom corner gathers high-frequency responses. Moreover, we
employ two convolution layers at the last phase of base filter
fpase to suppress noises of frequency spectrum f; ;. All f; ; are
flatten and decomposed into low- and high-band frequencies
(denoted by fw/hish) based on their intensities:

flow/high — H(flatten(fx)), flow/high c R% X % x 192 (2)

where II is frequency band partition. However, the base filter
Ipase Might not be powerful enough to adaptively capture the
dynamic variations of lanes in complex scenarios.

To this end, two enhanced filters #,,, are added to the
base filter f,,. to improve the adaptivity of frequency-domain
signals. Each t,,, is equipped with an intra-Block Learning
(BAL) unit and an inter-Block Learning (BEL) unit to com-
prehensively exploit contextual relationships of local regions.
To excite the intra-block short-range signals, a weight matrix
W,, is computed in BAL by utilizing a popular Self-Attention
Excitation (SAE) mechanism ([40]). After that, a matrix
product between W, and f/¥/"ish is conducted to express its
impact on original frequency f"/"i¢ ie.,

Wm — SAE(flaw/high)
onw/high — flow/high ® Wm (3)

in which ® represents multiplication. To enhance the inter-
block long-range dependencies, BEL performs global average
and maximum operations separately within each frequency
block of flow/high Subsequently, the results of these operations
are concatenated and processed by two convolutional layers
and a sigmoid function to encode cross blocks interactions,
ie.,

favg/max — ConV3 (C(pa(flow/high)’ pm(flow/high)))
flow/high - (S(ConVl (favg/maX)) (4)

e
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Fig. 5. The architecture of the Bilateral Aggregation Module (BAM). The
symbol fP4 denotes the spatial-domain features that are extracted by the
employed backbone, while /"¢ represents the frequency-domain information
that is obtained from DTM. Notably, the index i, where i € [1, 3], corresponds
to the /" BAM counted from the top in Fig. 3. Specifically, i = 1 refers to
the top-most BAM, while i = 3 denotes the bottom-most one.

where C stands for concatenation, § denotes the sigmoid
function, p, and p,, represent the global average and maxi-
mum operations, respectively. The final output f/ of DTM is
obtained by injecting separated low-band frequencies ftf‘/’j into

high-band frequencies f:;fl’:

1= Coms©(fy™ + 1. " + 1) )

where + and C mean pixel-wise addition and concatenation
respectively. The convolution with kernel size 3 x 3 is applied
to eliminate the aliasing effect of aggregated frequencies.

C. Bilateral Aggregation Module

The DTM endows our model with the capacity for frequency
awareness, but the information captured by the frequency path
ends up having substantial background noises. For example,
some landmarks (e.g., rotation arrows) always share similar
structures with lane lines, making it hard to identify these lines
via isolated frequency clues. In contrast, the aforementioned
spatial path has captured global semantics that is crucial to
distinguish lane lines from noise landmarks. Consequently, we
propose the BAM to selectively absorb useful features from
both spatial domain and frequency domain.

As depicted in the BAM of Fig. 5, we employ a 1 x 1
convolution layer Conv; to halve channels of spatial-domain
feature f*P%. Simultaneously, in the parallel branch, a Conv,
followed by an up-sampling operation is utilized to ensure
that the shape of the frequency-domain feature /¢ becomes
identical to that of f*%/. We then stack f*’* and f/"*¢ along
channel axis to initially gather features from different domains.
The forward processes are formulated as:

f™P = C(Convi (f7™), yConv (f71)) (6)

in which 7y represents bilinear interpolation. Next, to generate
the cross-domain interaction matrix W,;, we perform a 3 x
3 convolution and a sigmoid function on aggregated features
f™p_ which is written as:

Wa = 6(Conv3(f™7)) )

where ¢ is defined as sigmoid function, aiming to project each
value of f"P into the range between 0 and 1. To dynamically
adjust the information intensity of each domain, we obtain
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Fig. 6. The overall structure of the Position Refinement Module (PRM). The
PRM takes three distinct features as inputs: the spatial feature f* from the
employed backbone, the frequency signal f¢ from the proposed BAM, and
the refined feature f” from the previous PRM. The index i, where i € [1, 3],
corresponds to the i PRM counted from the top in Fig. 3. Notably, in the
initial PRM (i.e., i = 1), the pathway for fl‘i | is pruned as there is no preceding
PRM to provide this refined feature.

intra-domain correlation matrix W;,, by dividing W, along
domain dimension. After that, two pixel-wise multiplications
are executed between original f spat/freq gnd W, /2 with a lateral
connection, which can be written as:

f;vpaz/freq — fspal/freq ® l_[ Wd (8)
d

in which [], denotes domain decomposition. The new embed-
ding f37/ req can be regarded as an abrupt enhancement
within each domain, overlooking the interrelationship among
domains. Therefore, we reinforce cross-domain feature con-
sistency by adding f£i7 and f/™%: f4 = fP 4 (/"9 The
design of BAM exhibits a symmetric architecture, where f/"
encodes its invisible frequency into f*7* and f*P* filters non-
lane landmarks of f/7*4. It enables our network to be aware
of frequency-domain features in spatial-domain lane modeling,
resulting in better overall performance.

D. Position Refinement Module

With the help of frequency-aware decoder, our model can
already achieve a competitive performance via global seman-
tics. However, due to sequential down-sampling, RGB inputs
suffer irreversible information loss, particularly in lane details.
Consequently, it fails to accurately locate lanes according to
a coarse-grained position representation. As we discussed in
Sec. I, global information has rich semantics but lacks accurate
position details. Contrarily, local contexts are closely bound
to ample location relations, which are widely distributed in
frequency domain and shallowed spatial features. To facilitate
this, we propose a position refinement module (PRM) to
iteratively explore fine-grained lane position information.

As shown in Fig. 6, we first apply a 1 x 1 convolution
operation to f¢ and perform element-wise addition between
f* and channel-reduced f9, followed by a 3 x 3 convolution
as described in Eq.(9):

F* = Convs(f* + Convi(f%) 9)

Afterward, f, needs to be expanded to the corresponding
shape for subsequent information interaction, as f*¢ has dis-
tinctive resolutions. Next, we use a pixel-wise multiplication
to extract feature consistencies between fP” and f*¢ and further
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import them into original f? and f*¢ via an element-wise
addition and two 3 X 3 convolutions. It can be formulated as:

134 = Convs(f** + Convs(f* ® f7))
7= Convy(f” + Convs(f” ® f*%))

(10)
(1)

In this way, f? and f*¢ can gradually absorb discriminative
indicators from each other to complement themselves, i.e., the
redundant features of f7 are removed and the lane boundaries
of £%¢ are refined.
In addition, we further excite position-aware feature com-
ponents in cross-scale semantics and frequency responses
by several simple yet effective operations. We reshape the
P € ROH*W into 2-dimensional space R“*M, where N
equals to H x W. Then, we conduct matrix product between
reshaped f7, and its transpose ( fspd)T to generate position-aware
weights W, € RV*N_ followed by a Softmax function:

W, = Softmax(r(f2)" ® r(f%))

where r and T function as matrix reshape and transpose,
respectively. W, summaries the positional importance of
cross-scale features from spatial and frequency domains. To
strengthen original feature, we carry out an element-wise
multiplication between W, and reshaped flfd. Subsequently,
the results are reshaped back to 3-dimensional space RC**W
and combine with f,fd using a learnable scalar parameter a:

frina = ax f3*+ r(r(£i) @ W))

As can be seen in Eq.(13), the final features f/™ of PRM are
obtained by weighted summation, which are powerful enough
to encode fine-grained lane position information. By taking
account of this mechanism, local contextual relationships are
reinforced and the discriminability of global semantics are
augmented.

(12)

(13)

IV. EXPERIMENTS

This section starts introducing two widely-used lane detec-
tion benchmarks (e.g., CULane [10] and TuSimple [41]).
The second subsection provides a detailed description of the
implementation of our method, encompassing data prepara-
tion, model training, and evaluation metrics. Subsequently,
to evaluate the effectiveness of the proposed network, we
conduct comparative experiments on two challenging datasets
and report corresponding results in Sec. IV-C. The two final
subsections introduce the analysis of visualizations and con-
duct an ablation study on components, respectively.

A. Dataset Description

TuSimple: TuSimple [41] is regarded as one of the most
popular benchmarks for lane detection. Due to its stable scenes
and appropriate scale, this dataset is extremely suitable for
swiftly verifying the performance of lane detection models.
As depicted in Table I, the entire dataset is derived from a
common road scene, with the goal of advancing research in
lane detection, particularly on highways. Besides, TuSimple
contains 6,408 raw images, each of them has 1280x 720 pixels.
Following the dataset’s creator, we take the annotated 3,268
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TABLE 1
BASIC INFORMATION OF TWO POPULAR LANE DETECTION DATASETS

Dataset Train Validation Test Resolution  Scenes
TuSimple [41] 3268 358 2782 1280x720 1
CULane [10] 88880 9675 34680 1640x590 9

images for training, 358 clips for validation, and the remaining
2,782 frames for testing.

Subsequently, for TuSimple dataset, we apply official met-
rics (e.g., Accuracy, FP and FN) to fairly compare our
algorithm with the state-of-the-art approaches. The accuracy
is defined as:

C;
Accuracy = 3 (14)

in which C; is the total number of correctly predicted lane
line points and S is the total number of lane points in ground
truth.

CULane: CULane [10] is a large lane detection dataset,
which is collected under dynamic lighting conditions in nine
different road scenarios (i.e., night, normal, crowded, arrow
and etc.). As shown in Table I, CULane typically provides
133,235 frames with a resolution of 1640 x 590, in which
88,880 are used for training, 9,675 for validation and 34,680
for testing. Therefore, compared to TuSimple benchmark, it is
more challenging in terms of scale and complexity.

Following the most lane detection researches [10], [12],
[14], we take F;-measure as the CULane metric and calculate
the Intersection-over-Union (IoU) between predictions and
labels. Furthermore, the True Positives (TP) is considered as
predicted lanes with an IoU above 0.5. The F; is calculated
by:

_ 2 % Precision * Recall

F, = 15
: Precision + Recall (15
where Precision = % and Recall = %], FP and FN

denote false positive and false negative respectively.

B. Implementation Details

Following previous works (SAD [31], CLR-Net [14], etc.),
we initially crop 270 pixels along the height axis for CULane
frames and 160 pixels for TuSimple images. This aims to
removal the sky parts in RGB inputs, as they do not con-
tain any lane clues. Then, we resize all cropped images of
TuSimple and CULane to 320 x 800 to improve computational
efficiency and save memory usage. Subsequently, we apply
random data augmentations (e.g., horizontal flips, motion blur,
etc.) on reshaped images to increase sample diversity.

For the implementation of the encoder, we first adopt
light-weight pretrained ResNet-18 [47] as the backbone of
spatial path to capture global semantics and enlarge receptive
field iteratively. Meanwhile, in the frequency path, DTM
employs Discrete Cosine Transform (DCT) and hierarchical
sub-convolutions to adaptively excite frequency-aware signals.
To map the feature maps of the last BAM to pixel-wise
segmentation outputs, a 1 X 1 convolution layer followed by
an up-sampling operation is employed behind the last BAM
of the frequency-aware decoder. Notably, these operations are
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exclusively activated during the training stage, as instance
segmentation is both time-consuming and computationally
expensive. Finally, the position-aware decoder is constructed
by stacking PRM in a one-by-one manner, followed by two
fully connected layers to predict the representation of lane
lines, involving 1) lane confidence scores, 2) start points and
direction angles, 3) end points, 4) offsets between predictions
and their ground truth.

For the frequency-aware decoder, the Negative Log-
Likelihood Loss is employed to supervise the dense prediction
task, which is only used for calculating the segmentation loss
Ly.,. In contrast, for the position-aware decoder, we utilize
Focal Loss [48] and smooth L1 [49] to compute the classifica-
tion loss L., and regression loss L,.,. The overall loss function
consists of an equivalent sum of classification, regression and
segmentation losses. That i, L;pa = Leig + Lreg + Lieg-

In the training process, we use Stochastic Gradient Descent
(SGD) with a momentum of 0.9 and a weight decay of le -5
as the model optimizer, while the initial learning rate is set to
1.4e-3 for TuSimple and 0.8¢—3 for CULane, respectively. To
dynamic adjust learning rate, we adopt ‘CosineAnnealingL.R
[50]" strategy with the minimum learning rate set to 2e — 6.
The total number of training epochs is set to 20 for CULane
and 55 for TuSimple. All experiments are implemented using
PyTorch 1.9 and conducted on a machine with an NVIDIA
RTX 3090 (24G) GPU.

C. Comparison With the State-of-The-Art Methods

To generate convincing evaluations, we compare the pro-
posed method with numerous existing state-of-the-art models
on CULane [10] and TuSimple [41] datasets. The quantitative
experimental results of our models, i.e., ResNet [47] version
and ConvNext [51] version, are summarized in Table II-III.
In addition, we also report the runtime of our method against
other algorithms, as speed holds comparable importance with
accuracy in lane detection. For the sake of fairness, the runtime
is determined by averaging the inference speed over 1000
images on a single GPU.

1) Performance Comparison on TuSimple: For TuSimple
benchmark, nine popular lane detection algorithms, includ-
ing UltraFast-V2 [19], RESA [12], OConv [32], LaneATT
[17], LaneNet [11], SAD [31], CLLD [46], FastDraw [35]
and PolyLaneNet [34], are used for comparison. Using the
standard metrics, we report the performance of our models
in terms of Accuracy, FP and FN and summarize the results
in Table III. As shown in Table III, our method outperforms
the existing state-of-the-art (SOTA) ones, with the beat accu-
racy of 96.83%. However, small accuracy variations among
different detectors strongly prove that the results of TuSimple
are saturated already. This phenomenon may be caused by
its elementary road scene and permissive metric. For lane
detection, the total number of positive samples is far less
than that of negative samples. This means that lane detectors
are easy to exhibit a high accuracy but with unsatisfactory
lane location results. For a comprehensive evaluation, we
also verify our models via FP and FN. It is clear that our
ConvNext version gains the lowest FP and FN, at 0.0217
and 0.0189 respectively. Consistently, the lower FP and FN
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TABLE I

STATE-OF-THE-ART RESULTS ON CULANE [10] DATASET. IN THE CASE OF CROSS, ONLY FP 1S SHOWN. NOTING THAT “RUNTIME” MEANS THE MODEL
INFERENCE EFFICIENCY ON SINGLE IMAGE

Method Normal Crowded Dazzle Shadow No line Arrow Curve Cross Night Total RunTime (ms)
LaneAF [42] 91.10 73.32 69.71 75.81 50.62 86.86  65.02 1844 70.90 75.63 41.7
SpinNet [43] 90.50 71.70 62.00 72.90 43.20 85.00  50.70 - 68.10 74.20 -
FastDraw [35] 85.90 63.60 57.00 59.90 40.60  79.40 6520 7013 57.80 - 11.1

SCNN [10] 90.60 69.70 58.50 66.90 43.40 84.10 6440 1990 66.10 71.60 116
ENet-SAD [31] 90.10 68.80 60.20 65.90 41.60 84.00 6570 1998 66.00 70.80 133
CurveLane [44] 90.70 72.30 67.70 70.10 49.40 85.80 6840 1746 68.90 74.80 -

RESA [12] 91.90 72.40 66.52 72.00 46.30 88.10 68.60 1896 69.80 74.50 22.0
UltraFast [18] 90.70 70.20 59.50 69.30 44.40 85.70  69.50 2037 66.70 72.30 59

MECNet [45] 89.60 67.10 59.90 60.30 41.80 83.00 61.40 2071 6190 69.50 14.5
PGA-Net [33] 87.84 70.00 62.11 67.61 46.71 80.94 58.01 1700 59.02 69.86 6.9
LaneATT [17] 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81 77.02 38.5

FlipNet [30] 924 72.6 65.1 74.3 47.2 88.6 67.9 1432 698 750 -

Ours (Res18) 93.37 77.68 73.60 78.64 5242 90.02 68.04 1204 74.83 79.28 10.9
Ours (ConvNext-S)  93.47 78.16 73.56 81.88 5436  90.66 70.63 1282 75.04 79.71 16.1
TABLE III results of the CULane dataset are described in Table II. It

STATE-OF-THE-ART RESULTS ON TUSIMPLE [41] DATASET. THE BEST
RESULT IS SHOWN IN BOLD. IT IS NOTEWORTHY THAT T INDICATES
SUPERIOR PERFORMANCE FOR MODELS WITH HIGHER VALUES
IN THIS COLUMN, WHILE | SIGNIFIES BETTER PERFORMANCE
FOR MODELS WITH LOWER SCORES IN THEIR RESPECTIVE

COLUMNS

Method Accuracyl FP| FNJ
LaneNet [11] 93.38 0.0780 0.0224
RESA [12] 96.70 0.0395 0.0283
LaneATT [17] 96.10 0.0564 0.0217

CLLD-UNet [46] 96.17 - -
FastDraw [35] 94.90 0.0610 0.0470
ENet-SAD [31] 96.64 0.0602 0.0205
PolyLaneNet [34] 93.36 0.0942 0.0933
UltraFast-V2 [19] 95.65 0.0306 0.0461
OConv [32] 96.50 0.0875 0.0312
Ours (Res18) 96.73 0.0277 0.0195
Ours (ConvNext-T) 96.83 0.0217 0.0189

scores contribute to higher location precision. Nevertheless, it
further demonstrates the effectiveness of our method because
the proposed approach could iteratively perceive both global
semantics and local contexts from bilateral domains.

2) Performance Comparison on CULane: To further evalu-
ate the efficiency and effectiveness of our method, we compare
it against twelve state-of-the-art methods, including LaneATT
[17], UltraFast [18], RESA [12], PGA-Net [33], FlipNet [30],
MECNet [45], CurveLane [44], SAD [31], LaneAF [42],
SCNN [10], FastDraw [35], SpinNet [43]. The quantitative

can be observed from Table II that our models achieve com-
pelling scores across nine distinctive scenarios in comparison
with other counterparts, as indicated by the two metrics.
It is evident that our ConvNext-Small version achieves a
total Fj-measure of 79.71%, which significantly surpasses
the second-best method with a 2.69% improvement. This
substantiates the superior robustness and generalization of the
proposed methods across various challenging environments. In
addition, these compared algorithms reinforce spatial features
by numerous techniques, but the overall performance is still
unsatisfying. One possible explanation is that substantial lane
details may be permanently lost due to long-distance down-
sampling and the frequency bias of CNN models. In contrast, it
is worth noting that the F;-measure of our model outperforms
those of other algorithms by a large margin in night and
dazzle categories, with a score improvement of 4.14% and
3.89% respectively. We attribute this remarkable improvement
to the extracted frequency-domain features and the subsequent
denoising operations. Notably, these features can effectively
separate brightness from color information, which is known to
be particularly advantageous for detecting lanes in scenarios
with significantly varying environmental lighting conditions.
Specifically, the frequency-domain features are extracted by
successively applying a conventional color-space conversion
operation, a fixed discrete cosine transform (DCT) filter, and
two learnable units. Then, the bilateral aggregation module
(BAM) is specifically designed to use spatial-domain features
with large receptive fields to adaptively suppress the substan-
tial background noises in frequency-domain signals, such as
turn landmarks on roads, crosswalk and etc.

In addition to Fj-measure, we further compare the efficiency
of our method with other state-of-the-art approaches, as model
inference speed is of equal importance to location precision.
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Crowd

Divergent Dazzle

Normal Shadow

Fig. 7. Our visualization results on various challenging scenarios, i.e. crowd, night, dazzle and etc. The first three rows from top to bottom represent original
images, official labels, and our results, respectively. Additionally, the last row involves mapping our results back to the original RGB inputs. In the above
examples, our method achieves IoU scores of 0.72 (crowd), 0.79 (divergent), 0.71 (dazzle), 0.60 (night), 0.73 (normal), and 0.82 (shadow) across the respective
challenging scenarios. Notably, following [10], [14], the IoU threshold is set to 0.5, where samples with an IoU exceeding this threshold were classified as

correctly predicted.

Labe] ©rignad

Our LaneATT

0O02SFomer

RESA SCNN UltraFast

Fig. 8. Visual comparisons of our method with other five SOTA approaches, including LaneATT [17], O2SFomer [16], RESA [12], SCNN [10], UltraFast
[18]. Notably, the white squares with dashed lines in the figure indicate specific instances where the existing methods fail to accurately detect the lane lines.

In Table IT “RuntTime”, the proposed method occupies the
third-best and UltraFast is the fastest algorithm. However, by
observing the Fj-measure metric, we find that UltraFast [18]
only acquires a score of 68.4%, which drops behind our model
(Res18 version) by a large margin of 6.98%. Moreover, SCNN
attains a F; score of 71.60 with the run time of 116 ms.
The overall performance of SCNN is not satisfactory due to
its notable slow runtime. In contrast, our method obtains the
best F; score while maintaining a relatively high inference
speed (10.9 ms per image). In general, benefiting from the
unified embeddings with sufficient frequency and position-
aware information, our models obtain outstanding performance
in terms of location precision and efficiency.

D. Visualizations

Numerous challenging examples are provided in Fig. 7. We
observe that the proposed method not only has a powerful
ability to accurately detect lanes in these challenging scenarios,
but also well preserves their continuity and smoothness. In the
example of the challenging “Crowd” scenario, our network
effectively detects lanes with extremely sparse appearances,

achieving an average IoU of 0.72 by leveraging global seman-
tic cues (e.g., vehicle flow direction) and frequency-aware
information. This demonstrates that the proposed method
can definitely gather global semantics and local contexts by
learning in both spatial and frequency domains. In general,
our model performs a decent job at accurately localizing lanes,
which is illustrated in Fig. 7.

To further verify the proposed approach, we compare some
visualizations generated by our method and other counterparts
in Fig. 8. Compared with other approaches, our algorithm
shows superior performance in terms of lane integrity and
smoothness. For example, in the first two rows of Fig. 8, our
approach accurately captures the lane lines, whereas the lines
detected by other methods exhibit either incomplete or jagged,
particularly in complex scenarios with crowded vehicles and
varying lighting conditions. There are two potential reasons: 1)
our method can more accurately and comprehensively predict
various lanes, as the frequency information contributes to a
better description of local contexts; 2) the frequency-aware
signals and spatial features can mutually enhance each other
to form a more comprehensive lane representation, thereby
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Fig. 9. Classification activation maps (Grad-CAM [52]) on TuSimple and
CULane benchmarks.

TABLE IV

ABLATION STUDY ON COMPONENTS (INDICATED BY V') OF OUR METHOD.
THE IoU THRESHOLD OF F| IS SET TO 50 AND 80, RESPECTIVELY

Model DTM+BAM PRvM _ Cculane TuSimple
F1@50 F1@80 Acc Parameter (M)

M, 7810 4951 9521 +0.00

Mo v 78.63 5035 96.42 +0.74

M; v /7928 5145 96.73 +1.49

endowing our model with stronger capacity to suppress clut-
tered noises. This is evidenced by numerous visual results in
Fig. 8. In general, our model exhibits superiority on account
of perceiving dynamic lanes with subtle appearance.

As shown in Fig. 9, we adopt Grad-CAM [52] to visual-
ize feature distribution of our method, aiming at reveal the
determinant evidence that impacts final lane prediction. The
top row comprises original images from the TuSimple and
CULane datasets, while the bottom row illustrates that Grad-
CAM reversely projects the weighted heat map onto the raw
images. Specially, the highlighted image components have a
more pronounced impact on generating final decision. It is
observed in Fig. 9 that our method predominantly focuses on
the valuable high-frequency regions, such as lane lines, rather
than background noises. This strongly proves that frequency
can effectively guide the model to suppress the redundant
information, forcing it to focus on discriminative signals such
as lane edges.

E. Ablation Study

In this subsection, we analyze each component of our
approach, i.e., Domain Transformation Module (DTM), Bilat-
eral Aggregation Module (BAM) and Position Refinement
Module (PRM), and discuss their advantages respectively. To
verify the impact of each component, we conduct detailed
ablation studies. Subsequently, we analyze the effects of dif-
ferent decoding formulations on the overall performance.

1) Analysis of Each Module: To investigate the importance
of FAD and PAD, we sequentially incorporate them into the
baseline M| one by one. We take ResNet-34 as the backbone
of the model M;. Especially, the FAD comprises a DTM and
three BAMs while three PRMs are instantiated into PAD.
The results of ablation studies are summarized in Table IV.
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We first detect lanes by baseline, which concentrates on
spatial domain only. It is clear that the performance of our
baseline M; is unsatisfactory, achieving 78.10% (IoU set to
50) and 49.51% (IoU set to 80) on CULane and 95.21% on
TuSimple, respectively. This indicates that detecting lanes in
the isolated spatial domain is not sufficient. Consequently, we
introduce the DTM as an auxiliary path based on baseline
M, to explicitly encode frequency-aware lane clues. Then,
the frequency-aware clues and spatial features are fed into
the BAM, which boosts the F; (IoU set as 80) from 49.51%
to 50.35%. This demonstrates that using frequency to guide
spatial-domain encoding process is capable of producing more
comprehensive and discriminative lane representations. This is
further evidenced by consistent performance gains on TuSim-
ple, with an accuracy improvement of 1.21%. Notably, it only
increases the model size by 0.74M, which is important to
maintain high inference efficiency. The additional number of
parameters introduced by our proposed method remains the
same across both the CULane and TuSimple datasets.

In addition, fine-grained position modeling is of great
importance for accurate lane detection. The DTM and BAM
endows our model M, with a superior capacity to excite
frequency-aware signals and global semantics from both intra-
and inter-domain perspective. However, they fails to model
fine-grained lane position information and thus we apply
PRM on M, to address this limitation. The PRM is specially
designed to refine lane locations iteratively and increases the
Fy (IoU set as 80) by a large margin to 51.45%. This is
reasonable because PRM provides a more detailed contexts
from local frequency regions and multi-level spatial features.
Another noteworthy phenomenon we should notice is that the
PAD achieves more performance gains on CULane than on
TuSimple. A possible reason is that CULane comprises more
complex sample space, mitigating the risk of overfitting. In
general, each module contributes to the improved performance
while incurring only a minor increase in the number of
parameters.

2) Analysis of Fine-Grained Position Embedding: The pro-
posed method takes the ResNet-50 as the backbone and
captures cross-scale lane representations via a global-to-local
fashion. It normally perceives global semantics in the deep
spatial path to excite high-level features with large receptive
field. In contrast, local contexts from frequency domain and
shallow spatial path is further introduced to model fine-grained
lane locations, since low-level signals excel in depicting posi-
tion details. To this end, the BAM-PRM pair can be placed
in different stages to effectively detect dynamic lanes with
hierarchical domain receptive field.

We compared four model variations of our approach and
summarized the results in Table V. For localization, we look
at the recall value, which is the ratio of the number of correctly
localized lanes to the total number of labels. For classification,
we look at the precision of the correctly predicted lanes.
From the version My, we can find that the BAM-PRM pair
is positioned at the last stage and thus obtain a sub-optimal
F; score, with a F; @60 of 74.05. It is obvious that the global
semantics from deepest stage help strengthen lane classifica-
tion capacity but performs poor in terms of lane localization. A
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TABLE V
ABLATION STUDY ON NUMBER OF STACKED “BAM-PAM” PAIRS

Model Number CULane
F1 @60 Precision Recall
My 1 74.05 81.09 68.14
M5 2 74.91 81.15 69.58
Ms 3 75.15 81.41 69.79
M~ 4 75.02 81.19 69.72
TABLE VI

ABLATION STUDY ON THE COLOR SPACE TRANSFORMATION OPERATION
IN OUR PROPOSED DTM. HERE, T AND | DENOTE BETTER PERFOR-
MANCE FOR HIGHER AND LOWER VALUES, RESPECTIVELY

Color Space CULane TuSimple
F1 @551  PrecisionT  Acct FP| FNJ
RGB 69.97 77.36 94.57  0.0429  0.0592
YCbCr 70.88 78.95 95.02  0.0419  0.0553

potential reason is that embeddings from deepest stage
encounter seriously unrecoverable information loss. Benefit-
ing from the rich details of shallow layer, Ms significantly
enhances its localization capacity. This is evidenced by a
notable recall value improvement, from 68.14 to 69.58. Addi-
tionally, from the results in line 3, it is observed that Mg further
increases the performance by placing the BAM-PRM pairs at
last three stages. This indicates that the proposed approach
achieves the best localization performance with the help of
local contexts from both high-band frequency and shallow
spatial domain. In contrast, when placing the BAM-PRM pairs
at the last four stages, the precision drops by a percentage
of 0.13. This indicates that some redundant features (e.g.,
background noises from low-level layers) are introduced and
lead to performance degradation.

3) Analysis of Color Space Transformation in DTM:
Different color spaces have been investigated in order to find a
better one for accurate lane detection. Notably, to underscore
the effects of different color spaces, we perform this ablation
experiment without pre-trained weights, data augmentation
techniques, or the proposed PRM. The experimental results
are summarized in Table VI. It can be observed that the
performance metrics for both CULane and TuSimple datasets
show improvements when using YCbCr color space compared
to RGB. Specifically, for CULane, the F; @55 score increased
from 69.97% with RGB to 70.88% with YCbCr. Additionally,
the precision improved from 77.36% to 78.95%, indicating a
more reliable detection performance. Similar trends can also
be observed in the TuSimple dataset.

These results suggest that the transformation to YCbCr color
space provides a consistent enhancement in the performance of
our method across different datasets. It is reasonable because
the YCbCr color space is known to separate brightness from
color information, which can be beneficial for reliably sepa-
rating different-band frequencies.
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TABLE VII

ABLATION STUDY ON COMPONENTS (INDICATED BY v) OF OUR METHOD.
THE IoU THRESHOLD OF F Is SET TO 50. FOR “CR0OSS” CATEGORY,
ONLY FALSE POSITIVES (FP) ARE SHOWN. T DENOTES BETTER
PERFORMANCE WITH HIGHER VALUES, WHILE | INDICATES
BETTER PERFORMANCE WITH LOWER VALUES

Model DTM+BAM PRM Night? Crowded{ Cross] Totalf
Mg 74.24 77.18 1638  78.57
My v 74.94 77.29 1323 79.04

Mo 4 v 75.04 78.16 1282 79.71

4) Analysis of Each Module Under Challenging Scenarios:
To investigate the effect of each module under challeng-
ing conditions of the CULane dataset such as nighttime
and occlusions, we conduct additional ablation studies using
ConvNext-small as the backbone of our models. The exper-
imental results are summarized in Table VII. The Mg serves
as the baseline model, which achieves F| scores of 74.24 for
nighttime, 77.18 for occlusions, and a Total F; score of 78.57.
By incorporating the “DTM+BAM” component into Mg, our
My remarkably improves the F; score of nighttime to 74.94,
occlusions to 77.29, and largely decreases the false positive
(FP) of “Cross” from 1638 to 1323. These performance
gains demonstrate that our DTM+BAM module (1) adaptively
perceives both high- and low-frequency signals crucial for
capturing local lane details in few-visual-clue scenarios (e.g.,
nighttime and occlusions); (2) leverages global semantics with
a large receptive field to effectively suppress non-lane noises
(e.g., road arrows) in the frequency domain; and (3) generates
more discriminative lane representations by effectively encod-
ing lane features from both spatial and frequency domains.

The addition of PRM to the My (resulting in our M) yields
a significant performance improvement. Specifically, our Mg
outperforms the variant Mg by 0.87% in the occlusions sce-
nario, rising from 77.29 to 78.16, and by 0.67% in the Total F
metric, advancing from 79.04 to 79.71. Additionally, the FP
metric of “Cross”, which measures performance with lower
values being better, shows a slight decrease from 1323 to
1282. These incremental gains highlight the positive impact
of the PRM in modeling the fine-grained lane locations.
Specifically, in the proposed PRM, we employ a position-
aware gating operation to construct the relationship of different
pixels within the integrated features, which adaptively excite
pixel-wise location responses when detecting lane lines in
different scenarios.

V. CONCLUSION

In this paper, we have proposed a novel network, which
utilizes the complementarity of bilateral domains to achieve
accurate and fast lane detection. By considering the frequency
bias of CNN models, we have designed a shallow and small
DTM to explicitly excite frequency-aware lane local signals. It
excels in perceiving valuable high-frequency boundaries and
preserving. To better distinguish lane lines from other non-
target landmarks, the BAM is further presented to adaptively
absorb global semantics of spatial domain into lane local
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signals in frequency space. Furthermore, to model fine-grained
lane locations, we have constructed three cascaded PRMs,
which iteratively refine coarse lane positions via more detailed
local contexts. The final features from both bilateral domains
further upgrades the generalization capacity on real-world
lane detection systems. Benefiting from taking advantages of
powerful bilateral-domain clues and small parametric modules,
the proposed method achieves consistent superior performance
in challenging scenarios in terms of accuracy and efficiency.
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