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1 EXPERIMENTAL SIMULATION

1.1 Experiment 1

TO demonstrate the performance of the RPEM, we
generated 1,000 synthetic data points from a mixture

of three bivariate Gaussian densities:
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Supposing k is equal to the true mixture number k� ¼ 3, we
randomly located three seed points m1, m2, and m3 in the
input space as shown in Fig. 2a, where the data constitute
three well-separated clusters. Moreover, we initialized each
of the�js to be an identity matrix, and all �js to be zero, i.e.,
we initialized �1 ¼ �2 ¼ �3 ¼ 1

3 . Also, we set the learning
rates � ¼ 0:001 and �� ¼ 0:0001.

We performed the learning of RPEM and showed the Q
value of (26) over the epochs in Fig. 2b. It can be seen that
the Q value has converged after 40 epochs. Fig. 2a shows
the positions of three converged seed points, which are all
stably located at the corresponding cluster centers. A
snapshot of the converged parameter values is:
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ð2Þ
It can be seen that the RPEM has given out the well estimate
of the true parameters with a permutation of subscript
indices between 2 and 3. For comparison, we also
performed the EM algorithm under the same experimental
environment. We found the EM also worked well in this
case with the similar convergent rate as the RPEM. Fig. 3b
shows that the EM has successfully located the three seed
points in the corresponding clusters.

In the above experiment, we have assumed that the
number k of seed points is equal to the true number of input
densities. In the following, we further investigated the
performance robustness of RPEM when such an assump-
tion is violated. With the same experimental data set, we
randomly assigned seven seed points rather than three ones

in the input space as shown in Fig. 4a and ran the RPEM.
After 200 epochs, Fig. 4b shows the positions of seven seed
points, among which the three ones
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ð3Þ
have successfully stabilized at the corresponding cluster
centers; meanwhile, the extra four seed points have been
gradually pushed far away from the input data region and
finally stayed at the outside. We further investigated the
corresponding values of �js. As shown in Fig. 5a, all of
those corresponding to the extra densities have been
approached to zero. According to the mixture model of
(18), we know that the effects of a density component, say
the jth one, in the model is determined by the value of �j

and the Mahalanobis distance between an input xt and the
density mean mj. The RPEM learning has led these two
values of an extra density to zero. In other words, the effects
of those extra densities have been fade out in the mixture
model through the learning. Hence, the RPEM can auto-
matically make the model selection. To further demonstrate
this property, Fig. 6b shows the distribution of the three
principal Gaussian density components learned via RPEM,
i.e., the three density components whose corresponding �js
are the first three largest ones. Compared to the true input
distribution in Fig. 6a, it can be seen that these three
principal density components have well-estimated the true
one. In contrast, under the same experimental setting, the
EM let all seed points stay at some places biased from the
cluster centers as shown in Fig. 4c. That is, EM cannot
approach the Mahalanobis distance of an extra density to
zero. Furthermore, Fig. 5b shows the learning curve of �js.
A snapshot of seven �js’ values is:

�1 ¼ 0:3121; �2 ¼ 0:1281; �3 ¼ 0:1362; �4 ¼ 0:1139;
�5 ¼ 0:1021; �6 ¼ 0:1036; �7 ¼ 0:1040:

ð4Þ
It can be seen that none of �js tends to zero. Hence, EM is
unable to select a model automatically. Fig. 6c shows the
distribution of the three principal Gaussian density compo-
nents learned via the EM, in which one Gaussian density is
disappeared because the EM has made two principal
density components mix together to approximate one true
Gaussian density. Evidently, the EM cannot work at all in
this case.
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1.2 Experiment 2

Upon the data clusters well-separated in Experiment 1, we
further investigated the performance of RPEM on the data
clusters that were considerably overlapped. Similar to
Experiment 1, we generated 1,000 synthetic data points
from a mixture of three bivariate Gaussian densities:
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ð5Þ

We set k ¼ 3, and randomly assigned three seed points in
the input space, as shown in Fig. 7a. Under the same
experimental environment setting as Experiment 1, we
performed the RPEM and EM. Figs. 7b and 7c show the
stable positions of seed points learned by the RPEM and
EM, respectively. A snapshot of �js learned by them is:

RPEM : �1 ¼ 0:3195; �2 ¼ 0:3626; �3 ¼ 0:3179; ð6Þ

EM : �1 ¼ 0:3199; �2 ¼ 0:3315; �3 ¼ 0:3486: ð7Þ
It can be seen that the �js’ estimate of RPEM is slightly

better than the EM, although both of them work in this trial.
Moreover, Fig. 8 shows the learning curve of seed points, in
which we found that the RPEM learning is much faster than
the EM. This scenario is consistent with the qualitative
analysis in [25]. That is, the rival penalization mechanism
can speed up the convergence of the seed points. We are
going to theoretically analyze the convergence property of
RPEM elsewhere because of the space limitation in this
paper.

Furthermore, we investigated the RPEM performance
when the number k of seed points was much larger than the
true one. We arbitrarily set k ¼ 25. As shown in Fig. 9a, we
randomly located the 25 seed points in the input space and
then learned about them as well as the other parameters by
the RPEM. After 500 epochs, Fig. 9b shows the stable
positions of 25 seed points, where three out of 25 seed
points are located at the corresponding cluster centers,
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Fig. 2. In this figure, (a) shows the distribution of the inputs in Experiment 1, in which three seed points marked by “�” are randomly located in the

input space and (b) gives out the Q value of (26) over the epochs when the model parameters are learned via the RPEM.

Fig. 3. The positions of three converged seed points learned by: (a) the RPEM and (b) the EM, respectively.

Fig. 4. The positions of three seed points marked by “�” in the input space: (a) the initial random positions, (b) the converged positions obtained via

the RPEM, and (c) the converged positions obtained via the EM.



while the others stay at the boundaries or the outside of the
clusters. A snapshot of converged �js is:

�2 ¼ 0:3203; �4 ¼ 0:2993; �23 ¼ 0:3012; ð8Þ
while the others tend to zero, as shown in Fig. 10a. In other
words, the input data set has been successfully recognized
from the mixture of the three densities: 2, 4, and 23.

For comparison, we also showed the EM performance
under the same experimental environment. Fig. 9c depicts
the final positions of 25 seed points in the input space,
where they are all biased from the cluster centers.
Furthermore, Fig. 10b illustrates the learning curves of
�js, in which no one is approached to zero. Instead, the EM
led 25 densities to compete each other without making extra
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Fig. 6. In this figure, (a) shows the true input distribution, whereas (b) and (c) show the distribution of the first three principal Gaussian density

Fig. 7. The positions of three seed points marked by “�” in the input space in Experiment 2: (a) the initial random positions, (b) the converged

positions obtained via the RPEM, and (c) the converged positions obtained via the EM.

Fig. 5. The learning curves of �js obtained via: (a) the RPEM and (b) the EM, respectively.

Fig. 8. In this figure, (a) shows the learning curves of three seed points learned by RPEM in Experiment 2, whereas (b) shows the curves learned by

EM.



densities die. It turns out that the EM cannot work at all in

this case. That is, similar to Experiment 1, this experiment

has shown that the RPEM outperforms the EM upon the

robust performance in terms of the mixture number k again.

1.3 Experiment 3

The previous experiment showed the performance of RPEM
under the three clusters. In this experiment, we will

investigate its performance when the true number of
clusters is large. For the sake of visibility, we generated
the data points from a mixture of 10 bivariate Gaussian
density distributions with the proportions being:

��
1 ¼ 0:10; ��

2 ¼ 0:10; ��
3 ¼ 0:15; ��

4 ¼ 0:05;
��
5 ¼ 0:10 ��

6 ¼ 0:15; ��
7 ¼ 0:05; ��

8 ¼ 0:10;
��
9 ¼ 0:10; ��

10 ¼ 0:10:
ð9Þ

Also, we set k at 30. The other experimental setting
was the same as Experiments 1 and 2. Fig. 11a shows the
initial positions of 30 seed points in the input space. After

300 epochs, Fig. 11b shows the stable positions of those
seed points. It can be seen that 10 out of 30 seed points
have been successfully converged to the corresponding
cluster centers; meanwhile, the other extra 20 seed points

have been driven away from the input set and stayed at
the boundary or the outside of the clusters. Actually,
these corresponding extra densities have been faded out
from the mixture. Fig. 11c shows the learning curves of

�js, in which 20 curves have converged toward zero and
the other 10 curves converged to the correct values. That
is, the RPEM has successfully identified that the data
points are from the mixture of 10 Gaussian densities. A

snapshot of the 10 largest convergent �js’ values is:

�6 ¼ 0:09; �10 ¼ 0:10; �12 ¼ 0:04; �13 ¼ 0:10;
�21 ¼ 0:09 �23 ¼ 0:10; �25 ¼ 0:04; �27 ¼ 0:14;
�29 ¼ 0:15; �30 ¼ 0:09;

ð10Þ

whose values are very close to the true ones in (9). It can be
seen that the RPEM has the robust performance even if both
of k� and k become large.

1.4 Experiment 4

In this experiment, we further investigated the robustness
of RPEM in 10 clusters that were seriously overlapped.
Fig. 12a shows the input distribution in the input space,
where we randomly allocated 15 seed points. After
100 epochs, we found that seven seed points had stabilized
at the cluster centers or the middle of two clusters as shown
in Fig. 12b, while the other seed points had been driven far
from the input sets. That is, the RPEM has led the model
parameters into a local maximum solution and identified
seven clusters only, but not the true 10 ones. Nevertheless, it
can be seen from Fig. 12b that some of clusters have been
seriously overlapped, which may be more reasonable to
regard as a single cluster, rather than count on an
individual basis. In this viewpoint, the results given by
the RPEM are acceptable and correct even if the clusters are
seriously overlapped.

1.5 Experiment 5

In the previous experiments, we consider the bivariate data
points only for easy visual demonstration. This experiment
will show the RPEM performance on high-dimensional
data. We generated 3,000 data points from a mixture of four
30-dimension Gaussians with the coefficients:

��
1 ¼ 0:2; ��

2 ¼ 0:3; ��
3 ¼ 0:2; ��

4 ¼ 0:3: ð11Þ
The projection map of the inputs on two dimensions is

shown in Fig. 13a. We randomly assigned seven seed points

in the input space and learned them by RPEM. After

300 epochs, a snapshot of �js’ values is:

�1 ¼ 0:2029; �2 ¼ 0:0067; �3 ¼ 0:2918; �4 ¼ 0:0065;
�5 ¼ 0:1942; �6 ¼ 0:2907; �7 ¼ 0:0071;

ð12Þ
in which �1, �3, �5, and �6 are very close to the true ones,

meanwhile �2, �4 and �7 tend to zero as shown in Fig. 13c.

Fig. 13b shows the two-dimension projection of the

converged seed points in the input space. We found that

m1, m3, and m5 had successfully stabilized at the

corresponding cluster centers, while m2 and m4 had been
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Fig. 9. The positions of 25 seed points marked by “�” in the input data space in Experiment 2: (a) the initial random positions, (b) the stable positions

obtained via the RPEM, and (c) the stable positions obtained via the EM.

Fig. 10. In this figure, (a) and (b) show the learning curves of �js via

RPEM and EM, respectively.



pushed away from the inputs and died. In Fig. 13b, it seems

that the positions of two seed points, m6 and m7, are very

close each other in the projection map. We further

calculated their Euclidean distance. The value is 0:9654,

which is over six times of the variance. That is, m7 is

actually far from m6 in the original 30-dimension space.

Hence, the RPEM has successfully identified the true data

distribution in this trial.

1.6 Experiment 6

This experiment demonstrated the performance of RPEM in
color image segmentation in comparison with the common
k-means algorithm. We used the benchmark Beach image
with 64� 64 pixels as shown in Fig. 14a, in which the sky is
neighbored with a small hillside and sea is connected with
the sand beach. We performed the image segmentation in
HSV color space. Before doing that, we applied Gaussian
filter to smooth the image. We initially assigned 10 seed
points as shown in Fig. 14b and learned about them by the
RPEM and k-means algorithms, respectively. Fig. 15b shows
the converged positions of these 10 seed points learned
about them by the RPEM in HSV color space. It can be seen
that the RPEM makes the four seed points remained and
puts all other seed points far way from the data set. As a
result, the image is segmented as shown in Fig. 15a, in
which the sky is well-separated with the hillside, and so is it
between the sea and the sand beach. In this trial, we noticed
that the sky color was close to the sea color. This implies
that the region of sky seriously overlaps the region of sea in
HSV color space. Subsequently, it leads the RPEM to be
trapped into a local optimal solution similar to the case in
Experiment 4. Nevertheless, the results given by the RPEM
in this experiment are still acceptable. In contrast, Figs. 16a
and 16b show the results from k-means algorithm, in which
we found that the k-means could not make a correct image
segmentation at all.

In the previous experiments, we have numerically
demonstrated the performance of RPEM in a variety of
experimental environment by using both of synthetic and
real-life data. It can be seen that the RPEM has a robust
performance in all cases we have tried so far. Nevertheless,
it should be noted that the RPEM requests the number k of
seed points to be equal to or greater than the true k�.
Otherwise, the RPEM may lead some seed points to stable
at the center of two or more clusters. To circumvent this
limitation, we can develop another algorithm from the
MWL framework by introducing a mechanism to increase
or decrease the number of seed points dynamically without

such a limitation. Since its discussion has been beyond the

scope of this paper, we prefer to leave its details elsewhere.

2 EXPERIMENTAL DEMONSTRATIONS FOR S-RPCL

To save space, we conducted two experiments to compare

the S-RPCL and the RPCL. In each experiment, we used

six seed points, whose initial positions were randomly

assigned in the input space. Moreover, we randomly set the

learning rate � ¼ 0:001, while letting the delearning rate

�r ¼ 0:0001 by default when using the RPCL.

2.1 Experiment 1

We used the 1,000 data points from a mixture of

three Gaussian distributions:
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ð13Þ

which forms three well-separated clusters with the six seed

points m1;m2; . . . ;m6 randomly located at:

m1 ¼ 2:2580
1:9849

� �
; m2 ¼ 1:4659

5:1359

� �
; m3 ¼ 0:6893

5:0331

� �

m4 ¼ 5:2045
5:1298

� �
; m5 ¼ 1:9193

5:4489

� �
; m6 ¼ 5:5869

5:1937

� �
:

ð14Þ
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Fig. 11. The results obtained via the RPEM in Experiment 3: (a) the initial positions of 30 seed points marked by “�” in the input data space, (b) the

stable positions of the seed points learned by the RPEM, and (c) the learning curves of �js.

Fig. 12. The positions of 15 seed points marked by “�” in the input data

space in Experiment 4: (a) the initial random positions and (b) the stable

positions obtained via the RPEM.



Fig. 17a shows the positions of all seed points in the
input space after 800 epochs, and Fig. 17b shows their
learning trajectory. It can be seen that the S-RPCL has put

three seed points, m1, m2, and m4, into the three cluster
centers, meanwhile driving the other three extra seed
points, m3, m5, and m6, far away from the input data set.
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Fig. 13. The results obtained via the RPEM in Experiment 5: (a) the projection of 30-dimension data points on the plane, (b) the final positions of 7

seed points learned via the RPEM, and (c) the learning curves of �js.

Fig. 14. (a) The benchmark “Beach” image and (b) the initial positions of 10 seed points in HSV color space.

Fig. 15. In this figure, (b) shows the converged positions of seed points learned by the RPEM algorithm, while (a) shows the segmented image

accordingly.

Fig. 16. In this figure, (b) shows the converged positions of seed points learned by the k-means algorithm, while (a) shows the segmented image

accordingly.



Based on the rival penalization equation in Step 2 of Table 3,
we know that the rival penalization strength will non-
linearly decrease as an extra seed point leaves the input
data set, and they will finally become stable outside the
input data set. For comparison, we also implemented the
RPCL under the same experimental environment. Fig. 17c
shows that the RPCL has successfully driven three extra
points, m3, m5, and m6, to

m3 ¼ �3:0326
13:2891

� �
m5 ¼ 14:4600

70:6014

� �
; m6 ¼ 10:4714

5:2240

� �
;

ð15Þ
which are far away from the input data set, while the other
three seed points:

m1 ¼ 1:0167
0:9321

� �
m2 ¼ 0:9752

5:3068

� �
; m4 ¼ 5:4022

5:0054

� �
;

ð16Þ

locate at the correct positions. Hence, the RPCL can work as
well in this case. However, we have also noticed that, as
shown in Fig. 17d, the RPCL always penalizes the extra seed
points even if they are much farther away from the input
data set. Consequently, the seed points as a whole will not
tend to convergence, but those learned by the S-RPCL will.

2.2 Experiment 2

We further investigated the performance of S-RPCL by
generating 1,000 data points from a mixture of three
Gaussian distributions:
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ð17Þ

which forms three moderate overlapping clusters as
shown in Fig. 18a. After 800 epochs, we found that the
S-RPCL had given out the correct results as shown in
Fig. 18b, but the RPCL could not work as shown in Fig.
18c, even if we increased the epoch number up to 1,000.
Also, we further investigated the performance of RPCL
by adjusting the delearning rate �r along two directions:
from 0:0001 to 0:00001 and from 0:0001 to 0:0009,
respectively, with a constant step: 0:00001. Unfortunately,
we could not find out an appropriate �r in all cases we
had tried so far to make RPCL successfully work.
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Fig. 17. In this figure, (a) shows the final positions of six seed points
(marked by “�”) obtained via the S-RPCL in Experiment 1 of Section 2.1
and (b) shows the learning trajectory of six seed points, in which “+”
marks the initial positions of seed points, and “*” marks the final
positions. It can be seen that the extra seed points have been gradually
driving far away from the regions of the input data set. (c) shows a
snapshot of the seed points learned by the RPCL in the input space and
(d) is the learning trajectory of six seed points.

Fig. 18. In this figure, (a) shows the initial positions of six seed points marked by “�” in Experiment 2 of Section 2.2. (b) and (c) show the final

positions of the converged seed points learned by the S-RPCL and RPCL, respectively.


