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Abstract—The recent Maximum Weighted Likelihood (MWL) [18], [19] has

provided a general learning paradigm for density-mixture model selection and

learning, in which weight design, however, is a key issue. This paper will therefore

explore such a design, and through which a heuristic extended Expectation-

Maximization (X-EM) algorithm is presented accordingly. Unlike the EM algorithm

[1], the X-EM algorithm is able to perform model selection by fading the redundant

components out from a density mixture, meanwhile estimating the model

parameters appropriately. The numerical simulations demonstrate the efficacy of

our algorithm.
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1 INTRODUCTION

AS a general solution for the parameter estimate in a density
mixture model, the Expectation-Maximization (EM) algorithm [1]
and its variants, e.g., see [2], [3], [4], [5], [6] have been extensively
applied to a variety of applications such as data clustering [7],
Bayesian network [8], hidden Markov model [9], bioinformatics
[10], and so forth. Nevertheless, the EM is unable to make a model
selection, i.e., to determine the appropriate number of model
components in a density mixture. If the number of components is
not correctly assigned, the EM will generally lead to a poor
estimate of the model parameters. In general, it is a nontrivial task
to determine such a number.

In the literature, Bayes factors [11] have provided a general
framework for model comparisons, which gives a systematic
means of selecting not only the parameterization of the model, but
also the number of components. From Bayes factors, there are
some typical model selection criteria, e.g., AIC [12], [13], BIC [14],
CAIC [15], and SIC [14]. Generally, the EM algorithm and these
criteria are used separately for the parameter estimation and
model selection. Alternatively, another interesting way is to learn
the parameter estimation and model selection jointly in a single
paradigm. One example is the Reversible Jump Markov Chain
Monte Carlo (RJMCMC) method proposed by Green [16], which is
essentially a random sweep Metropolis-Hastings method. The
RJMCMC algorithm has been successfully applied to the Gaussian
mixture model (GMM) [17]. Another example is the Competitive
EM (CEM) [5]. Analogous to the SMEM algorithm [4], the CEM
utilizes a heuristic split-and-merge mechanism to either split the
model components in an underpopulated region or merge the
components in an overpopulated region iteratively so that the
algorithm is able to avoid local solutions. Furthermore, the CEM
also exploits a heuristic component annihilation mechanism to
determine the number of model components. The experiments in
[5] have shown the promising results of this method. Nevertheless,

the computations of the CEM are rather heavier than the EM. In
particular, its split-and-merge mechanism introduces two new
parameters, which have close relations with the performance of the
CEM. To the best of our knowledge, how to determine their values
is still an open problem from the theoretical viewpoint.

Recently, the second author of this paper has proposed a new
novel learning framework, namely, Maximum Weighted Like-
lihood (MWL) [18], [19]. With a specific weight design, it has been
shown that the MWL is able to select the models automatically
during the parameter learning process. Nevertheless, the MWL
leaves two open questions: 1) How to design the weights so that an
MWL algorithm is able to perform model selection? 2) What are
the general convergence properties of an MWL algorithm,
although the convergence of a specific MWL algorithm proposed
in [18], [19] has been guaranteed?

In this paper, we will concentrate on the first question only to
explore the weight design, and through which a heuristic extended
EM (X-EM) algorithm is presented accordingly. Keeping the
number of model components unchanged, this new algorithm
updates the parameters analogous to the EM [1], and is able to
perform the model selection by fading the redundant components
out from a density mixture during the parameter learning process.
Experimental results have shown the efficacy of our algorithm.

2 THE FRAMEWORK OF MWL LEARNING

Given a series of N observations: x1;x2; . . . ;xN , that are all
independently and identically distributed from a mixture distribu-
tion of k� probability densities, denoted as pðxj���Þ, the Maximum
Likelihood (ML) estimate of true model parameter set ���, denoted
as ��, can be obtained via maximizing the following cost function

‘ð��Þ ¼
XN
t¼1

ln pðxtj��Þ; ð1Þ

with

pðxtj��Þ ¼
Xk
j¼1

�jpðxtj��jÞ;
Xk
j¼1

�j ¼ 1; and �j � 0 for 8j; ð2Þ

where k is an estimate of the true mixture number k�, and
�� ¼ f�j; ��jgkj¼1. Hereinafter, we suppose that pðxj��Þ is an identifi-
able density with respect to ��, i.e., for any two possible values of
��, denoted as ��1 and ��2, pðxj��1Þ ¼ pðxj��2Þ if and only if ��1 ¼ ��2.
In general, after preassigning the value of k, the learning of �� can
be achieved via the EM algorithm [1] whose major steps can be
summarized as follows:

E-Step: Let ��ðnÞ be the estimate of ��� at the nth iteration. For
each observation xt with t ¼ 1; 2; . . . ; N , calculate the posterior
probability

hðjjxt;��ðnÞÞ ¼
�
ðnÞ
j pðxtj��ðnÞj Þ
pðxtj��ðnÞÞ

; with j ¼ 1; 2; . . . ; k: ð3Þ

M-Step: Fixing all hðjjxt;��ðnÞÞs, the new improved estimate of
��� is then:

�ðnþ1Þ�ðnþ1Þ ¼ arg max
��

XN
t¼1

Xk
j¼1

hðjjxt;�ðnÞ�ðnÞÞ ln½�jpðxtj��jÞ�: ð4Þ

However, if k� is miss-estimated, the EM algorithm almost always
leads to a poor estimate of ���. For example, if k > k�, the EM will
regard a true density as a mixture of two or more densities, and
has no mechanism to push those redundant �js toward zero. As a
result, the estimate of ��� is poor.

To address this problem, papers [18], [19] have recently
proposed a new learning framework, which gives the ML estimate
�� of ��� via maximizing
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‘ð��Þ ¼ 1

N

XN
t¼1

ln pðxtj��Þ

¼ 1

N

XN
t¼1

Xk
j¼1

gðjjxt;��Þ ln pðxtj��Þ

¼ 1

N

XN
t¼1

Xk
j¼1

gðjjxt;��Þ ln½�jpðxtj��jÞ�

� 1

N

XN
t¼1

Xk
j¼1

gðjjxt;��Þ lnhðjjxt;��Þ;

ð5Þ

where k is a preassigned constant with k � k�, and gðjjx;��Þs are
designable weight functions, satisfying

8x :
Xk
j¼1

gðjjx;��Þ ¼ 1;

where each of gðjjx;��Þs can be negative; zero; or positive:

ð6Þ

Equation (5) is named the Weighted Likelihood function because the
parameter learning of each model component, i.e., the updating of
�j and ��j in the jth density pðxtj��jÞ, are weighted by the associated
weights as shown in the first term of (5). To guarantee the second
term in (5) is bounded even if hðjjx;��Þ tends to zero, the
constraints on gðjjx;��Þ are therefore imposed as follows:

8 j; gðjjx;��Þ ¼ 0 if hðjjx;��Þ ¼ 0; and

gðjjx;��Þ
hðjjx;��Þ ; hðjjx;��Þ 6¼ 0

� �
is bounded:

ð7Þ

As soon as the function form of each gðjjx;��Þ is specified, we
can learn �� toward maximizing (5) analogous to the EM. That is,
by putting �ðnÞ�ðnÞ to be an estimate of �� in hðjjx;��Þ and gðjjx;��Þ of
(5), a new approximation �ðnþ1Þ�ðnþ1Þ can be obtained with

�ðnþ1Þ�ðnþ1Þ ¼ arg max
��

XN
t¼1

Xk
j¼1

gðjjxt;�ðnÞ�ðnÞÞ ln½�jpðxtj��jÞ�: ð8Þ

Such a learning via (5) and (8) is named the Maximum Weighted
Likelihood (MWL) learning approach [18], [19]. It can be seen that
(8) is generally different from (4) unless gðjjxt;��Þ � hðjjxt;��Þ for
any value of j and xt. It has been shown [18], [19] that the MWL
learning is able to gradually decrease k� k� redundant �js toward
zero and push the corresponding redundant mjs away from the
dense regions of observations as long as the weight functions
gðjjx;��Þs are designed appropriately.

In the following, we will assume each of gðjjx;��Þs to be
nonnegative and study their design, through which an extended
EM (X-EM) algorithm is presented within the framework of MWL.
For simplicity, this paper concentrates on the GMM only, i.e,
pðxtj��jÞ ¼ Gðxtjmj;��jÞ for each j ¼ 1; 2; . . . ; k, where Gðxjmj;��jÞ
denotes the Gaussian probability density function of an observa-
tion x with the mean mj (also called seed point hereinafter) and
covariance matrix ��j.

3 WEIGHT DESIGN IN THE MWL LEARNING

Let pðxj��jÞ be a Gaussian density, denoted as Gðxjmj;��jÞ, and
��ðnÞ ¼ f�ðnÞj ;m

ðnÞ
j ;��

ðnÞ
j g

k
j¼1 be an estimate of ��� ¼ f��j ;m�j ;���jg

k�

j¼1

at the nth iterative step. If the weight functions gðjjx;��Þs are well
designed, it can be shown that the optimal solution ��ðnþ1Þ ¼
f�ðnþ1Þ

j ;m
ðnþ1Þ
j ;��

ðnþ1Þ
j gkj¼1 of (8) is given by

�
ðnþ1Þ
j ¼

N
ðnÞ
j

N
; m

ðnþ1Þ
j ¼ 1

N
ðnÞ
j

XN
t¼1

w
ðnÞ
j;t xt;

��
ðnþ1Þ
j ¼ 1

N
ðnÞ
j

XN
t¼1

w
ðnÞ
j;t ðxt �m

ðnÞ
j Þðxt �m

ðnÞ
j Þ

T ;

ð9Þ

where N
ðnÞ
j ¼

PN
t¼1 w

ðnÞ
j;t , and w

ðnÞ
j;t is short for gðjjxt;��ðnÞÞ.

To fix the problem of overestimating k�, the weight

function gðjjx;��Þ should be designed such that the k� k�
redundant �

ðnþ1Þ
j s are forced toward zero as n increases. By

the definition of �
ðnþ1Þ
j in (9), it is equivalent to force ðk� k�Þ

weights toward zero for each xt as n!1, while the sum of

the other k� weights tends to one because of the weight

condition in (6).
With the weight constraint in (7), a reasonable way to design

gðjjx;��Þs is that

gðjjxt;��Þ ¼ ctfðhðjjxt;��ÞÞ with hðjjxt;��Þ ¼
�jGðxtjmj;��jÞPk
i¼1 �iGðxtjmi;��iÞ

;

ð10Þ

where f is a nonnegative function defined in the interval ½0; 1�
such that fð0Þ ¼ 0, and ct ¼ 1=

Pk
j¼1 fðhðjjxt;��ÞÞ is a normal-

ization term such that
Pk

j¼1 gðjjxt;��Þ ¼ 1.
To push the value of redundant weights toward zero, f should

be chosen in such a way that gðjjxt;��Þ becomes much smaller as
hðjjxt;��Þ is small, while keeping gðjjxt;��Þ not to be decreased
when hðjjxt;��Þ is relatively large. That is, fðsÞ < s for small s and
fðsÞ > s for relatively large s.

Many functions can be used as a required f . We suggest using

fðs j �Þ ¼ s�

s� þ ð1� sÞ�
ð11Þ

defined in the unit interval ½0; 1� with a constant � � 1. This
function has some interesting properties. It can be seen that, as
� > 1, we have

0 < fðs j �Þ < s; for 0 < s < 1=2 and

s < fðs j �Þ < 1; for 1=2 < s < 1:

It means that f attracts s 6¼ 1=2 moving toward the two ends of the
interval ½0; 1�. The value of � determines the degree of the
attraction: the larger the � is, the stronger the attraction is.

We denote by gðjjxt;��; �Þ the weight function defined in (10)
with f in (11). The flexible choice of parameter � will lead to
different iteration schemes. Obviously, if � ¼ 1, we have fðs j �Þ ¼
s and, thus, gðjjxt;��; �Þ ¼ hðjjxt;��Þ. Furthermore, as � ! þ1,
this specific weight design leads the MWL learning to the existing
hard-cut EM [20] provided that the maximum value of hðjjxt;��Þs
is unique.

4 THE X-EM ALGORITHM

As k > k�, we have noticed that the EM almost always makes the
seed points of those k� k� redundant model components close to
the other seed points and compete with them. As a result, there are
seldom seed points to be stabilized at the desired values. To avoid
this awkward situation, we therefore introduce a new modifying
term in updating the value of each seed point, say mj, so that it is
moved opposite to each of the other mis. We let the modifying
term with respect to mi be �iGðmjjmi;��iÞðmi �mjÞ, where we
assume that the distribution of mj conditioned on each other seed
point, say mi, is Gðmjjmi;��iÞ, i.e, the Gaussian distribution with
the mean mi and covariance matrix ��i. Eventually, taking into
account all modifying terms on mj, we then have

m̂j ¼mj �
Xk
i¼1

�iGðmjjmi;��iÞðmi �mjÞ: ð12Þ

This modification has three interesting properties as follows:

Property 1. If a seed mi is far from mj or �i is small, mi will have a
slight contribution to updating mj because

lim
kmj�mik!þ1

Gðmjjmi;��iÞðmi �mjÞ ¼ 0:
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Property 2. If mi and mj both closely locate at the dense region of the

same Gaussian density and have a relative long distance to other mis,

we have

m̂i �mi � �jGðmijmj;��jÞðmj �miÞ;
m̂j �mj � �iGðmjjmi;��iÞðmi �mjÞ;

and

km̂i � m̂jk �
�
1þ �iGðmjjmi;��iÞ þ �jGðmijmj;��jÞ

�
�

kmi �mjk > kmi �mjk:

That is, the distance of m̂j to m̂i is greater than the distance of

mj to mi.

Property 3. If �jGðmijmj;��jÞ 	 �iGðmjjmi;��iÞ, mi will be pushed

away from mj, whereas mj is almost unchanged because

km̂i �mik � �jGðmijmj;��jÞ > �iGðmjjmi;��iÞ � km̂j �mjk:

Following Property 2 and Property 3, it can be seen that two or

more seeds will not be stabilized at the same dense region of a

Gaussian density any more. That is, such a modification can speed

up the process of automatic model selection via maximizing (5).

Further, even if k ¼ k�, this seed driving mechanism can let the

seed points move faster to get into their desired positions

compared to the EM, i.e., it can speed up the learning of model

parameters as well.
As soon as all the seeds are updated, we modify the covariance

matrices by

�̂�j ¼
PN

t¼1 hj;tðxt � m̂jÞðxt � m̂jÞTPN
t¼1 hj;t

with hj;t ¼ hðjjxt;��Þ:

Furthermore, the weight function (6) is changed to

gðjjxt;��; �Þ ¼ ctfðhðjjxt; �̂�Þj�Þwith

hðjjxt; �̂�Þ ¼
�jGðxtjm̂j; �̂�jÞPk
i¼1 �iGðxtjm̂i; �̂�iÞ

;

where ct ¼ 1=
Pk

j¼1 fðhðjjxt; �̂�Þj�Þ. Subsequently, we give out the

details of X-EM as follows:
Step 1: At the nth iterative step, we modify the seeds and

covariance matrices by:

�
ðnÞ
j;i ¼ �

ðnÞ
i G m

ðnÞ
j jm

ðnÞ
i ;��

ðnÞ
i

� �
;

m̂
ðnÞ
j ¼m

ðnÞ
j �

Xk
i¼1

�
ðnÞ
j;i m

ðnÞ
i �m

ðnÞ
j

� �
;

h
ðnÞ
j;t ¼

�
ðnÞ
j G xtjmðnÞj ;��

ðnÞ
j

� �
Pk

i¼1 �
ðnÞ
i G xtjmðnÞi ;��

ðnÞ
i

� � ;

�̂�
ðnÞ
j ¼

PN
t¼1 h

ðnÞ
j;t xt � m̂

ðnÞ
j

� �
xt � m̂

ðnÞ
j

� �T
PN

t¼1 h
ðnÞ
j;t

:

Step 2: We construct the weights by

w
ðnÞ
j;t ¼

r
ðnÞ
j;tPk

i¼1 r
ðnÞ
i;t

;

ĥ
ðnÞ
j;t ¼

�
ðnÞ
j Gðxtjm̂ðnÞj ; �̂�

ðnÞ
j ÞPk

i¼1 �
ðnÞ
i Gðxtjm̂ðnÞi ; �̂�

ðnÞ
i Þ

;

r
ðnÞ
j;t ¼

ðĥðnÞj;t Þ
�

ðĥðnÞj;t Þ
� þ ð1� ĥðnÞj;t Þ

�
:

Step 3: Let N
ðnÞ
j ¼

PN
t¼1 w

ðnÞ
j;t , we update

�
ðnþ1Þ
j ¼

N
ðnÞ
j

N
; m

ðnþ1Þ
j ¼ 1

N
ðnÞ
j

XN
t¼1

w
ðnÞ
j;t xt;

��
ðnþ1Þ
j ¼ 1

N
ðnÞ
j

XN
t¼1

w
ðnÞ
j;t xt �m

ðnÞ
j

� �
xt �m

ðnÞ
j

� �T
:

The above three steps are iteratively implemented until the
parameters �j, mj, and ��j converge. It can be seen that as soon
as one mi moves away from the dense region of a Gaussian
density, the value of Gðxtjm̂i; �̂̂�iÞ will be reduced at the most
time, and, thus, �i will be decreased sharply. It finally leads to
a relatively small �i. Consequently, we have: 1) if k > k�, the
k� k� redundant �i’s will be reduced to small and 2) two or
more converged seed points cannot stabilize at the same
Gaussian density. To demonstrate this scenario, we show an
example by using a mixture of three Gaussians. We set k ¼
4 > k� ¼ 3 and the parameters of the first two density
components are initialized at the true values, i.e.,

f�ð0Þi ;m
ð0Þ
i ;��

ð0Þ
i g ¼ f��i ;m�i ;���i g; i ¼ 1; 2:

The last true seed point m�3 is copied with a small perturbation to
form the other two initial guesses:

m
ð0Þ
3 ¼m�3 þ 0:001r1; m

ð0Þ
4 ¼m�3 þ 0:001r2;

with

�
ð0Þ
3 ¼

�1

�1 þ �2
��3; �

ð0Þ
4 ¼

�2

�1 þ �2
��3;

and ½�1; �2�T ¼ ½0:5; 0:5�T þ 0:001r3, where r1, r2, and r3 are the
vectors whose components are randomly chosen from a Gaussian
distribution in the interval ½�1; 1�. We set ��

ð0Þ
3 ¼ ��

ð0Þ
4 ¼ ���3. Fig. 1

shows a snapshot of four learned seed points and the correspond-
ing �is as the iteration number is 1, 6, 11, and 15, respectively,
where the elliptical curves are the shapes of the covariance
matrices. It can be seen from Fig. 1d that the redundant seed point,
say mi, has been moved to the outside of the Gaussian dense
region, and the corresponding �i is 0:0059991 that is very close to
zero. That is, the redundant ith component has been faded out
from a mixture.

5 NUMERICAL SIMULATIONS

5.1 Experiment 1
This experiment is to show the model selection capability of the
X-EM and its robust performance of estimating the model
parameters as k > k�. We generated N ¼ 1; 000 data points from
a mixture of three Gaussians whose parameters were:

m�1 ¼
1:0

0:5

� 	
; ���1 ¼

0:15 0:05

0:05 0:20

� 	
; ��1 ¼ 0:45;

m�2 ¼
�1:0

2:5

� 	
; ���2 ¼

0:25 0

0 0:24

� 	
; ��2 ¼ 0:35;

m�3 ¼
2:0

3:0

� 	
; ���3 ¼

0:15 �0:1

�0:1 0:15

� 	
; ��3 ¼ 0:2:

We set k ¼ 7 that is greater than the true number of Gaussians. The
initial �

ð0Þ
i , i ¼ 1; . . . ; k were taken to be equal, i.e., �

ð0Þ
i ¼ 1

k ,
i ¼ 1; . . . ; k, and each initial seed point m

ð0Þ
i was set at the mean of

the all sample points. The seven covariances ��
ð0Þ
i s were produced

randomly as follows (in MATLAB form):

½Qj; Rj� ¼ qrð1� 2 � randð2ÞÞ;
�j ¼ Q � diagðrandð2; 1Þ þ 0:1Þ �Q0;
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Fig. 2 plots the curves of the learned �
ðnÞ
j s. It shows that four out

of seven �js are quickly reduced toward zeros while the other three

ones are convergent approximately to the true ones. Furthermore,

Fig. 3 shows the positions of the learned seed points and the shapes

of the covariance matrices corresponding to these three �js. It can be

seen that they are tightly close to the true ones. This implies that the

X-EM has the robust performance of estimating the model

parameters even though k > k� and, in particular, it can auto-

matically determine the number of components by fading the

redundant components out from the density mixture.
In this experiment, we set � at 2. Actually, we have noticed that

the iteration number needed for the parameter convergence has a

close relation with � as shown in Fig. 4. By rule of thumb, we

empirically found that an appropriate choice of � is either � ¼ 2 or

� ¼ 3. In the following, we will therefore set � at 2.

5.2 Experiment 2
To experimentally demonstrate the convergence speed of the

model parameters learned by the X-EM in comparison to the EM,

we generated N ¼ 1; 000 data points from a mixture of three

Gaussians, whose parameters were:

m�1 ¼
1:0

0:5

� 	
; ���1 ¼

1:5 0:5

0:5 0:25

� 	
; ��1 ¼ 0:20;

m�2 ¼
�0:5� 2t

2:5� 0:5t

� 	
; ���2 ¼

0:25 0

0 0:24

� 	
; ��2 ¼ 0:35;

m�3 ¼
1:5þ 2t

3:0þ 0:5t

� 	
; ���3 ¼

0:15 �0:1

�0:1 0:15

� 	
; ��3 ¼ 0:45;

where a preassigned parameter t controls the distance between m�2
and m�3. For instance, if t ¼ �0:5, we have m�2 ¼m�3. In general, the
seed points m�2 and m�3 will gradually separate each other as t
increases, while the shortest distance between m�i and m�1, i ¼ 2; 3
is no less than 1ffiffiffiffi

17
p . We used six different values of t: t ¼

0; 0:1; 0:2; 0:3; 0:4; 0:5 to generate six input data sets. In each data
set, we set k ¼ 3, and initialized �js, mjs and ��js in the same way
as Experiment 1. We ran the X-EM and EM under the same
experimental setting, including the same stopping criterion:

k½mðnþ1Þ
1 ;m

ðnþ1Þ
2 ;m

ðnþ1Þ
3 � � ½mðnÞ1 ;m

ðnÞ
2 ;m

ðnÞ
3 �k2 < �;

where � is a preassigned threshold value. Table 1 lists the values of
iteration numbers that are needed for the X-EM and EM to achieve
the accuracy with � ¼ 10�6. It can be seen that the X-EM can
significantly save the iteration times around 58:7 percent on average
in comparison to the EM.

5.3 Experiment 3
To further investigate the sensitivity of the new algorithm to the
parameter initialization, we ran the algorithm for 100 trials, in each
of which the data were randomly generated from the common
mixture of three Gaussians with the model parameters:

m�1 ¼
1:0

0:5

� 	
; ���1 ¼

1:5 0:5

0:5 0:25

� 	
; ��1 ¼ 0:45;

m�2 ¼
�0:5

2:5

� 	
; ���2 ¼

0:25 0

0 0:24

� 	
; ��2 ¼ 0:2;

m�3 ¼
1:5

3:0

� 	
; ���3 ¼

0:15 �0:1

�0:1 0:15

� 	
; ��3 ¼ 0:35:

Similar to Experiment 1, we randomly initialized the covariances
for each trial, and used the same stopping criterion as Experi-
ment 2, i.e.,
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Fig. 1. The learned seed points and corresponding �is and covariances by the X-EM with (a) 1, (b) 6, (c) 11, and (d) 15 iterations. The shapes of covariance matrices are

plotted with the elliptical curves. The numbers marked near the curves are the values of corresponding �js.

Fig. 2. The curves of all �
ðnÞ
j s learned by the X-EM with � ¼ 2.

Fig. 3. The learned seed points (marked by 
) of the three largest �js and the

shape curves of the corresponding covariance matrices by the X-EM with � ¼ 2.

Fig. 4. The relation curve between iteration number needed for parameter

convergence and �.



k½mðnþ1Þ
1 ; ;m

ðnþ1Þ
k � � ½mðnÞ1 ; ;m

ðnÞ
k �k2 < 10�6:

After the 100 trials, the minimum, mean, and maximum number of
iterations needed are listed below, respectively:

nmin ¼ 25; nmean ¼ 61; nmax ¼ 326:

Fig. 5 plots the date set we used and the three absolute errors
for the learned parameters to the true ones, which are:

�� ¼ k½�	1
; �	2

; �	3
� � ½��1; ��2; ��3�k2;

�m ¼ k½m	1
;m	2

;m	3
� � ½m�1;m�2;m�3�k2;

��� ¼ k½��	1
;��	2

;��	3
� � ½���1;���2;���3�k2;

where 	1; 	2; 	3 are three suitable indices corresponding to the
three largest components of �js. Since there is a slight difference
between the true model parameters and the sample ones, the errors
��; �m; ��� cannot reach zero and have a lower bound as shown in
Fig. 5. Nevertheless, it can be seen that these errors are small in the
most cases. That is, the X-EM is insensitive to the parameter
initialization to a certain degree.

5.4 Experiment 4
We also investigated the performance of X-EM on the input data
with different overlapping levels. To save space, we ran three trials
only as shown in the first row of Fig. 6. The second row shows the
corresponding convergent curves of �js. It can be seen that the X-
EM can successfully work at all cases we have tried so far.

5.5 Experiment 5

In the previous experiments, we have demonstrated the out-
standing performance of X-EM using synthetic data. In this

experiment, we will further apply it to analyze the real-world
microarray data—the yeast cell cycle data published by Cho et al.
[21]. The data set we used (which can be downloaded from:
http://www.cs.washington.edu/homes/kayee/model) consists of
384 genes, whose expression levels peak at different time points
corresponding to the five phases of cell cycles (the five-phases
criterion). Hence, it is expected that each of 384 genes can be
assigned to one of the five clusters [21], [22]. In the literature,
Yeung et al. [22] has successfully performed the microarray data
analysis on this data set using a finite density mixture model, in
which the BIC is utilized for model selection and the EM is applied
for the parameter estimation. We call this method EM algorithm +
BIC (Method II) for short, and compare it with the X-EM algorithm
(called Method I hereinafter) as well as the other two existing
methods: the supervised clustering method (Method III) [23] and
the support vector machines (SVM) algorithm (Method IV) [24].

Suppose the true number of model components is unknown,
we arbitrarily set the number of the seed points at 8 in the running
of the X-EM. To measure the performance of these four methods,
we utilized four indices: false positive (FP), false negative (FN),
true positive (TP), and true negative (TN). The total error rate was
defined as FP + FN [23]. Table 2 summarizes the results of these
four methods, where the results of Method II-IV are obtained from
[23]. In addition, Table 3 summarizes the total error rates of the
four methods. It can be seen that the X-EM algorithm outperforms
the other three methods. Further, Fig. 7 shows the five groups
formed by the X-EM algorithm, in which it is indeed that the genes
with the similar patterns have been classified as a group together.

6 CONCLUDING REMARKS

In this paper, we have further studied the weight design within the
framework of MWL, through which the X-EM algorithm has been
developed. In the X-EM, we always keep the number k of model
components unchanged and greater than or equal to the true k�.
Compared to the EM, this new algorithm not only learns the model
parameter faster, but is also able to perform model selection by
automatically fading the redundant components from a mixture.
The numerical simulations on synthetic and real-life data have
shown the efficacy of this algorithm. In the future, we will further
investigate and analyze the convergence properties of the X-EM.
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Fig. 5. A sample of the data set and absolute errors for 100 tests.

Fig. 6. The learning curves of �js via the X-EM on three trials with the different overlapping levels.

TABLE 1
The Iteration Number of the Parameter Learning via the

X-EM and EM, Respectively
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TABLE 2
Performance of the Four Methods on Yeast Cell Cycle Microarray Data

TABLE 3
Comparison of the Total Error Rates of the Four Methods on Yeast Cell

Cycle Microarray Data

Fig. 7. The genes classified to the five classes by the X-EM algorithm.
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