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Abstract—In general, irrelevant features of high-dimensional data will degrade

the performance of an inference system, e.g., a clustering algorithm or a classifier.

In this paper, we therefore present a Local Kernel Regression (LKR) scoring

approach to evaluate the relevancy of features based on their capabilities of

keeping the local configuration in a small patch of data. Accordingly, a score index

featuring applicability to both of supervised learning and unsupervised learning is

developed to identify the relevant features within the framework of local kernel

regression. Experimental results show the efficacy of the proposed approach in

comparison with the existing methods.

Index Terms—Relevant features, feature selection, local kernel regression score,

high-dimensional data.
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1 INTRODUCTION

HIGH-DIMENSIONAL data consisting of a large number of features
(also called attributes in community) are common in the inference
problems of a variety of scientific areas, e.g., computer vision,
pattern recognition, gene expression array analysis, and so forth.
In general, some features may be noisy and irrelevant to the
inference. The inclusion of them in an inference system may not
only make the computational cost heavier, but also degrade the
inference accuracy to a certain degree because of the curse of
dimensionality. Undoubtedly, it is very crucial for an inference
system to identify the relevant features and reduce the dimen-
sionality of data then. Hereinafter, we concentrate on an inference
system that is a clustering algorithm or a classifier only, both of
which are learned to separate the data points into different
clusters/classes so that the data points in the same cluster/class
are similar under a metric, and those points in different clusters/
classes are not.

To identify the relevant features, there are three kinds of the
feature selection methods [1], namely, wrapper, embedded, and filter
approaches. The wrapper repeatedly wraps the candidate feature
subsets and utilizes the performance of the learning algorithm to
evaluate the quality of them. Similarly, the embedded approach
utilizes the intermediate outputs of the employed inference
algorithm to evaluate the candidate feature subset and often
requires a laborious iterative optimization process. Evidently, the
process of evaluating the candidate feature subset in the wrapper
and embedded methods is quite time-consuming. In contrast, the
filter methods usually select the features independent of the
succeeding inference phases. Hence, such a method is generally
more efficient for feature selection.

In the literature, the supervised filter approaches have been
extensively studied, e.g., �2-test, Fisher score, ReliefF [8], and so
forth, but the unsupervised counterparts become more challen-
ging because of no true class labels available in the feature

selection. To the best of our knowledge, unsupervised feature
selections have not been well studied yet in the past decades.
Until most recently, several unsupervised filter methods have
been proposed to select the relevant features based on the
intrinsic properties of the data. For instance, Wolf and Shashua
[12] proposed the Q-� algorithm, which builds on the spectral
properties of the graph Laplacian of data on the candidate
feature subset, and iteratively calculates the soft cluster indicator
matrix and the feature weights. Although an interesting property
of sparsity in feature weights naturally emerges, the computation
of iterative optimization will be quite laborious, particularly in
the presence of thousands of features. Under the circumstances,
He et al. [5] proposed a more computation-efficiency method,
namely Laplacian score, which also takes advantage of the graph
Laplacian, but selects the features by ranking their capabilities of
preserving the locality in the graph. Furthermore, Zhao and Liu
[16] developed a more general spectral feature selection frame-
work, which includes the Laplacian score as a special case.

Recently, the local regression technique that essentially mini-
mizes the regression error of the dependent variable in a local
space has been applied to a variety of learning problems. The
promising results in [13], [14], [15] have shown that the local
regression is effective in exploring the local structure of data. In
this paper, we therefore present a new feature selection method
named Local Kernel Regression (LKR) score, which is fundamentally
based on the kernel ridge regression and the neighborhood graph,
to select the relevant features from the high-dimensional data in
both unsupervised and supervised manner. In our method, it is
assumed that the feature value of each point from a small patch of
a graph should be well estimated by using the feature values of its
neighbors. The estimation error indicates the capability of a feature
to preserve the local similarities of the data points. We herein
adopt a local kernel regression model to make this estimation and
further show the relationship between the proposed LKR score and
the Laplacian one [5] from the perspective of local kernel
regression. Experimental results demonstrate the efficacy of the
proposed method.

The remainder of the paper is organized as follows: Section 2
overviews the kernel ridge regression and the neighborhood graph,
respectively. Section 3 describes the proposed LKR score algorithm
for feature selection in detail. Section 4 shows the relationship
between the LKR score and the Laplacian one. The experimental
results are presented in Section 5. Finally, we draw a conclusion in
Section 6.

2 OVERVIEW OF THE KERNEL RIDGE REGRESSION AND

NEIGHBORHOOD GRAPH

We first introduce the notations used in this paper. Given an

input variable x ¼ ½xð1Þ; xð2Þ; . . . ; xðlÞ; . . . ; xðdÞ�T , where T is the

transpose operator of a matrix, each element xðlÞ of x is called a

feature. Suppose the N samples of x are x1;x2; . . . ;xN , and their

corresponding class labels are y1; y2; . . . ; yN . We let X ¼
fx1; . . . ;xNg be the set of N samples, and y ¼ ½y1; . . . ; yN �T . N i

denotes the set of neighboring points of xi, 1 � i � N , and ni ¼
jN ij is the number of neighboring points of xi. Furthermore,

f l ¼ ½f ð1Þl ; . . . ; f
ðNÞ
l �

T ¼ ½xðlÞ1 ; . . . ; x
ðlÞ
N �

T with l ¼ 1; 2; . . . ; d, is the

lth feature vector, i.e., the vector of the N samples of the

lth feature, where f
ðiÞ
l ¼ x

ðlÞ
i is the ith element of f l. We let

�LKRðf lÞ denote the LKR score of the lth feature vector f l.

2.1 Kernel Ridge Regression

Kernel ridge regression is a simple yet very effective tool for
building nonlinear regression model [9]. Given the training data
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fðxi; tiÞgNi¼1, where xi 2 X � IRd is an input sample data and ti � IR

is the real-valued target value of the corresponding output, its task
is to find a function to map X to IR under the measurement of least
square error. The predictive model of kernel ridge regression can
be expressed as

gðxÞ ¼
XN
i¼1

�iKðx;xiÞ; ð1Þ

where K : X � X ! IR is a kernel function and �is are the
estimation coefficients. �is can be solved by minimizing the
following objective function that consists of the fitness item and the
Tikhonov regularization item [11]:

kK��� tk2 þ ���TK��; ð2Þ

where �� ¼ ½�1; . . . ; �N �T 2 IRN , t ¼ ½t1; . . . ; tN �T ; � is a small posi-
tive regularization parameter, and K ¼ ½kij�N�N with kij ¼
Kðxi;xjÞ is the kernel matrix over all the training samples X . By
minimizing the objective function with respect to ��, the solution of
(2) is given by

�� ¼ ðKþ �IÞ�1t; ð3Þ

where I is an N �N unit matrix. As a result, the kernel ridge
regression model of (1) can be expressed as

gðxÞ ¼ kTx �� ¼ kTx ðKþ �IÞ�1t; ð4Þ

where kx ¼ ½Kðx;x1Þ; . . . ;Kðx;xNÞ�T 2 IRN .

2.2 The Unsupervised and Supervised Neighborhood
Graph

Given the data set X , let GðV;EÞ be the undirected graph
constructed from X , where the ith vertex vi of G corresponds to
xi 2 X , V is the set of vertices, and E is the set of edges. The G is
constructed as follows: If vi is the neighbor of vj, or vj is the
neighbor of vi (i 6¼ j), an edge is drawn between vertex i and
vertex j. For the unsupervised case, the neighborhood of vi can be
defined as its k nearest neighbors (excluding vi itself) of a data
according to a certain metric of distance, e.g., the euclidean
distance used in this paper. Let W be the symmetric N �N weight
matrix, where wij is the weight of the edge connecting vertex i and
vertex j. The weight wij can be calculated by

wij ¼
Kðxi;xjÞ; if xi 2 N j or xj 2 N i;
0; otherwise:

�
ð5Þ

As for the supervised case, the neighborhood can be defined as those
vertices that share the same class labels, and the weight wij is
calculated as

wij ¼
1

Nl
; if yi ¼ yj ¼ l;

0; otherwise;

(
ð6Þ

where Nl denotes the number of data points in Class l.
Furthermore, the degree matrix D of the graph G is defined as
Dij ¼

PN
m¼1 wim, if i ¼ j and 0 otherwise, where Dij is the

ði; jÞth element of D. According to the spectral graph theory [2],
the density around xi can be approximated by Dii. The more
points are close to xi, the larger Dii is.

3 THE LOCAL KERNEL REGRESSION SCORE FOR

FEATURE SELECTION

Since the within-cluster and within-class similarities are very useful

for the data discrimination, it is reasonable to select the features that

keep such similarities or configurations within a small patch on the

graph. We, therefore, measure the relevancy of features using this

criterion. Practically, a quantitative measurement for such criterion

can be realized by examining how well the feature value of each

point can be estimated based on its neighbors. In this paper, we

utilize a local kernel ridge regression to implement the estimation.

Given the training data xi and fðxj; f ðjÞl Þgxj2N i
, we would like to

train a kernel ridge regression model locally to approximate f
ðiÞ
l ,

where f
ðjÞ
l plays the role as the real-valued target output of xj for

learning this kernel machine. Based on (4), we use the following

equation to denote the local kernel ridge regression model at xi:

gN i
ðxiÞ ¼ kTN i

ðKN i
þ �IÞ�1f

ðN iÞ
l ; ð7Þ

where gN i
ð:Þ denotes the regression model learned with the

training data fðxj; f ðjÞl Þgxj2N i
;kN i

2 IRni denotes the vector of

Kðxi;xjÞs for all xj 2 N i, f
ðN iÞ
l 2 IRni denotes the vector of f

ðjÞ
l s

for all xj 2 N i, KN i
2 IRni�ni is the kernel matrix over xj 2 N i, i.e.,

KN i
¼ ½Kðxp;xqÞ�, for xp, xq 2 N i, and I is an ni � ni unit matrix.

We let

��TN i
¼ kTN i

ðKN i
þ �IÞ�1; ð8Þ

where ��N i
2 IRni is independent of f

ðN iÞ
l . Equation (7) can then be

rewritten in a linear form:

gN i
ðxiÞ ¼ ��TN i

f
ðN iÞ
l : ð9Þ

We now introduce a new vector ��i 2 IRN , whose jth
(j ¼ 1; 2; . . . ; N) element, denoted as �ij, is calculated as follows:

�ij ¼
the corresponding element of ��N i

in ð8Þ; if xj 2 N i;
0; otherwise:

�
ð10Þ

Note that f
ðN iÞ
l is a subvector of f l, we rewrite (9) in a full vector

form:

gðxiÞ ¼ ��Ti f l ¼
XN
j¼1

�ijf
ðjÞ
l : ð11Þ

Therefore, the local estimation error for the lth feature at xi is
computed as

Elocal

�
f
ðiÞ
l

�
¼
�
f
ðiÞ
l � gðxiÞ

�2 ¼ f
ðiÞ
l �

XN
j¼1

�ijf
ðjÞ
l

 !2

: ð12Þ

In general, the data density often varies over the whole data set.
That is, some points may reside in a dense region, while the others
may not. The importance of each point may not be the same. Under
the circumstances, we compute the overall estimation error over
the data manifold as a data-density weighted sum. That is,

Elocalðf lÞ /
XN
i¼1

f
ðiÞ
l �

XN
j¼1

�ijf
ðjÞ
l

 !2

Dii

¼
XN
i¼1

ffiffiffiffiffiffiffi
Dii

p
f
ðiÞ
l �

XN
j¼1

�ij

ffiffiffiffiffiffiffi
Dii

Djj

s ! ffiffiffiffiffiffiffi
Djj

p
f
ðjÞ
l

" #2

¼ fTl D
1
2ðI�BÞT ðI�BÞD1

2f l;

ð13Þ

where B ¼ ½�ij
ffiffiffiffiffi
Dii

Djj

q
�N�N is a sparse matrix. Apparently, we

should prefer the feature that makes the error value of (13) as

small as possible. However, it can be seen that the zero vector is

a trivial candidate that makes the error value of (13) the smallest.

Furthermore, the feature vector, whose elements are nonzero

constants, does not carry much information as well. Hence, a

wide scattered band of the features is desirable in order to have
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enough representative power [5]. In general, it can be detected by

investigating whether the feature has a large variance along the

data manifold, and the density weighted variance is estimated as

in [5]:

V arMðf lÞ /
XN
i¼1

�
f
ðiÞ
l � �Mðf lÞ

�2
Dii

¼ ½f l � �Mðf lÞe�TD½f l � �Mðf lÞe�
¼ f̂Tl Df̂ l;

ð14Þ

w h e r e e ¼ ½1; . . . ; 1�T 2 IRN; f̂ l ¼ f l � �Mðf lÞe; �Mðf lÞ i s t h e
weighted mean of the lth feature calculated by

�Mðf lÞ ¼
XN
i¼1

DiiPN
j¼1 Djj

f
ðiÞ
l

¼
PN

i¼1 Diif
ðiÞ
lPN

j¼1 Djj

¼ fTl De

eTDe
:

ð15Þ

Eventually, we formulate the local kernel regression score as an
integration of the two requirements (i.e., (13) and (14)) for a
feature:

�LKRðf lÞ ¼
Elocalðf lÞ
V arMðf lÞ

¼ fTl D
1
2ðI�BÞT ðI�BÞD1

2f l

f̂Tl Df̂ l
:

ð16Þ

We will seek the feature that makes the within-neighborhood
estimation error as small as possible, meanwhile its variance cross
all data points is as large as possible. In practice, we rank the
features1 in the ascending order of �LKRð:Þ and choose the
foremost features in the rank list as the relevant ones. The main
steps of the proposed local kernel regression scoring algorithm are
summarized in Algorithm 1.

Algorithm 1. The LKR score for feature selection.

The complexity of Step 1 and Step 2 is both OðN2dÞ. For
Step 3, it is OðNk3Þ and the complexity for Step 4 is OðNkdÞ,

where we denote k as the number of nearest neighbors (as for
unsupervised LKR score) or the size of the largest class (as for
supervised LKR score). For the unsupervised case, we often
specify a considerable small size of neighborhood (k� N; d).
Hence, the overall complexity is OðN2dÞ, which is the same as
the Laplacian score. Consequently, the overall complexity of
supervised LKR score is OðmaxðNk3; N2dÞÞ.

4 RELATIONSHIP BETWEEN THE LKR SCORE AND

LAPLACIAN SCORE

The recently proposed Laplacian score [5] is an effective feature
selection method, which is to seek the features that are able to
preserve the locality. In essence, it prefers the features that
minimize the following formula [5]:

X
ij

�
f
ðiÞ
l � f

ðjÞ
l

�2
wij; ð17Þ

where wij is the similarity between xi and xj (the Gaussian kernel
function is adopted for wij in [5]). It can be seen that a larger value
of ðf ðiÞl � f

ðjÞ
l Þ

2 will lead to a larger value of the objective function
in (17) if wij is large, thus indicating f l is an undesirable feature. By
setting the derivative of (17) with respect to f

ðiÞ
l to 0, it can be found

that minimizing
P

ijðf
ðiÞ
l � f

ðjÞ
l Þ

2wij requires the elements of f l,
satisfying the following harmonic property:

f
ðiÞ
l ¼

P
xj2N i

wijf
ðjÞ
lP

xj2N i
wij

: ð18Þ

Thereby, the Laplacian score ranks the feature value at each point
based on the estimation error using the nearest-neighbor regres-
sion (equivalent to the classical Nadaraya-Waston algorithm [6]),
i.e., a weighted average of the values of its neighbors, and the
weight of each neighbor is proportional to the proximity. That is,
both the LKR score and the Laplacian score can be interpreted
from the perspective of local regression and they both select the
features capable of keeping the local information. Nevertheless,
one key difference between them is that the LKR score explicitly
estimates the feature value at each point by its neighbors using the
kernel ridge regression approach, while the Laplacian score
implicitly performs the estimation by the nearest-neighbor regres-
sion method. Furthermore, by investigating on the regression
coefficients in (11) and (18), it can be found that the nearest-
neighbor regression considers only the distance between xi and its
neighbors xj 2 N i, and ignores the distance between the neigh-
bors. Subsequently, xi may be close to points that are far from each
other, resulting in a weighted average of feature values from two
distant but likely unrelated points. In contrast, kernel ridge
regression considers the distance between the pairs of points in
the neighbors to decide how heavily to weigh the influence of
relevant neighboring points, which is embodied in the computa-
tion for the regression coefficients in (8). Hence, the kernel ridge
regression is expected to be better for revealing the local relation-
ship of data in comparison with the nearest-neighbor regression.

5 EXPERIMENTAL RESULTS

Six benchmark data sets were used to investigate the perfor-
mance of the LKR score to select informative features either for
clustering or classification. The characteristics of these six data
sets are summarized in Table 1. We compared the unsupervised
LKR score with the Laplacian score to select features for
clustering on the first four data sets in Table 1. For identifying
features for classification on the last two data sets in Table 1, the
supervised LKR score was compared with the popular supervised
filter methods: Fisher score and ReliefF [8]. In all the experiments
we have tried in Sections 5.1 and 5.2, the popular Gaussian
kernel, Kðx1;x2Þ ¼ expð�kx1 � x2k2=hÞ, was utilized for both the
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LKR score and the Laplacian score with the same kernel
parameter h. Also, the ridge parameter � was set at 0.1. We
shall empirically study the sensitivity of choosing � and h, as
well as the neighborhood size, in Section 5.3.

5.1 Feature Selection for Clustering

The pendigit, wdbc, and sonar data sets are from the UCI
repository [7]. The USPS49 data set2 contains the gray-scale images
of digits “4” and “9” from the USPS ZIP code handwritten digits
database [4], in which each image is represented by a 256-
dimensional vector. No preprocessing was performed except on
the wdbc data set, for which each feature was normalized to zero
mean and unit variance so as to make the scales of different
features roughly equal a priori. The performance of k-means
clustering, with top-ranked features for each data set obtained by
the unsupervised LKR score and the Laplacian score respectively,
was utilized to assess the efficacy of the two approaches. For both
methods, a neighborhood graph was built with the neighborhood
size of 10 and the parameter of the Gaussian kernel h ¼ 100. For

the k-means clustering, the number of clusters was set at the
number of classes C in each data set. We started from 10 different
random initializations and chose the solution with the lowest
objective function value of the k-means. The clustering accuracy
index (ACC) [5] was then computed with this solution. The results
over different number of selected features are summarized in
Fig. 1, where the mean and the standard deviation of ACC are
obtained over 20 repeats of the above process.

From Fig. 1, it can be seen that the clustering performance
varies with the number of features. The best performance is often
obtained with less features than with all the features. This indicates
that feature selection is capable of improving the clustering
performance. Furthermore, the LKR score outperforms the
Laplacian score when a small number of features are selected.
This implies that the relevant features are authentically ranked
foremost in the LKR score ranking list. Therefore, it uses less
features than the Laplacian score while achieving the same
accuracy (see Fig. 1). As the number of selected features
approaches to the original full dimensionality of each data set,
their performance naturally becomes comparable.

5.2 Feature Selection for Classification

The PIEC27 data set [10] contains 68 human subjects of the
frontal poses (C27) but under different illumination conditions,
with each subject having 21 faces. We used the cropped images3

of 32� 32 pixels. The pixel values were scaled to ½0; 1�, and each
image was represented by a 1,024-dimensional vector. The UMist
face data set4 [3] was also scaled and represented in vector space.
For the two data sets, two-thirds of the whole samples in each
class were randomly selected to form the training set, and the
remaining ones were the test set. We utilized the supervised LKR
score, fisher score (equivalent to the supervised extension of the
Laplacian score as shown in [5]), and the ReliefF [8] to select the
features on the training set, and the 1-nearest neighbor (1NN)
classification accuracy on the test set using the selected features
was used to evaluate the quality of selected features by the three
methods. The Gaussian kernel parameter h was still set at 100 for
the supervised LKR score. The random split was repeated 20 times.
Fig. 2 shows the mean and the standard deviation of the
classification accuracy versus the different numbers of selected
features. It can be seen that the LKR score can significantly
improve the performance of Fisher score and ReliefF on the
PIEC27 data set when less than 40 features were selected. The
LKR score outperforms the other two in terms of the average
classification accuracy on the UMist data set. A plausible reason
is that, while the Fisher score and the ReliefF only utilize the
linear information of data for ranking, the supervised LKR score is
able to extract the nonlinear relationship within data set due to
the use of nonlinear Gaussian kernel.
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TABLE 1
Characteristics of the Data Sets Used in Experiments

Fig. 1. Clustering accuracy versus different number of top-ranked features

obtained via the unsupervised LKR score and the Laplacian score, respectively.

(a) pendigit, (b) sonar, (c) wdbc, and (d) USPS49.

Fig. 2. Classification accuracy versus different number of top-ranked features

obtained via the supervised LKR score, Fisher score, and ReliefF, respectively.

(a) PIEC27 and (b) UMist.

2. http://www-stat-class.stanford.edu/�tibs/ElemStatLearn/data.html.
3. http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html.
4. http://images.ee.umist.ac.uk/danny/database.html.
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5.3 Studies of the Sensitivity of Parameters

For the unsupervised LKR score, there are three parameters: the size
of neighborhood k, the ridge regression constant �, and the
Gaussian kernel parameter h. For the supervised LKR score, there
are two parameters: � and h. In order to study their impacts on the
performance of proposed method, we fixed the number of selected
features (pendigit: 6 features; sonar: 17 features; wdbc: 15 features;
USPS49: 100 features; PIEC27: 15 features; UMist: 25 features) and
investigated the performance of LKR score as a function of each
parameter. When assessing any one of the parameters, the
remaining parameters were kept unchanged. Figs. 3 and 4 show
the average performance indices over 20 trials for each value of
these parameters in the unsupervised and supervised learning
environments, respectively.

As for the size of neighborhood, it can be seen from Fig. 3a that
the performance of LKR score is almost stable within the range
f5; 6; . . . ; 15g for all the data sets. Further, from Figs. 3b, 3c, 4a, and
4b, we have found that the LKR score is generally not very sensitive
to the regularization parameter � and the Gaussian kernel
parameter h on most data sets, when they are neither too small
(� < 10�2; h < 101) nor too large (� > 100; h > 104). By a rule of
thumb, � around 10�1 and h around 102 are often an appropriate
choice to produce the satisfactory results.

6 CONCLUSION

In this paper, we have proposed the LKR score to select the

features based on the local kernel regression and the neighborhood

graph. This score ranks the features based on their capabilities of

keeping the local similarities in a small patch of the high-

dimensional data. Essentially, this score is applicable to both of

supervised learning and unsupervised learning by adopting

different definitions of the neighborhood. Experimental results

have shown the efficacy of the proposed approach in comparison

with the existing methods.
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Fig. 3. The impacts of parameters on the performance of the unsupervised LKR score. (a) Size of neighborhood, (b) regularization parameter, and (c) Gaussian kernel

parameter.

Fig. 4. The impacts of parameters on the performance of the supervised LKR
score. (a) Regularization parameter and (b) Gaussian kernel parameter.
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