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Abstract—It is a key issue to find out all longest common subsequences of multiple sequences over a set of finite alphabets, namely

MLCS problem, in computational biology, pattern recognition and information retrieval, to name a few. However, it is very challenging to

tackle the large-scale MLCS problem effectively and efficiently due to the high complexity of time and space. To this end, this paper will

therefore propose a Branch Elimination-based Space and Time efficient algorithm called BEST-MLCS, which includes the following

four key strategies: 1) Estimation scheme for the lower bound of the length of MLCS. 2) Estimation scheme for the upper bound of the

length of the paths through the current match point. 3) Branch elimination strategy by finding all useless match points and removing the

branches not on the longest paths. 4) A new Directed Acyclic Graph (DAG) construction method for constructing the smallest DAG

among the existing ones. As a result, the proposed algorithm BEST-MLCS can save a lot of space and time and can handle much

larger scale MLCS problems than the existing algorithms. Extensive experiments conducted on biological DNA sequences show that

the performance of the proposed algorithm BEST-MLCS outperforms three state-of-the-art algorithms in terms of run-time and

memory consumption.

Index Terms—Multiple longest common subsequences(MLCS), dominant point-based approach, useless match point detection, branch elim-

ination, smaller DAG

Ç

1 INTRODUCTION

SEARCHING Longest Common Subsequences (LCS) of Mul-
tiple (i.e., three or more) sequences (MLCS for short [1])

is a fundamental but challenging problem in many areas
such as file comparison [2], pattern recognition [3], [4], dis-
tance metric learning [5], [6], computational biology [7], [8]
and information retrieval [9], [10]. In the literature, Sankoff
[11] presented a dynamic programming (DP) method to
find out the LCS of two sequences (also simply called LCS
without further distinction). DP can handle the LCS prob-
lem in Oðn2Þ running time and memory space, respectively,
where n is the length of the sequences.

Basically, an MLCS problem is more challenging than an
LCS problem. Many methods designed for LCS problems

are not suitable for MLCS problems. In the past decades, a
number of studies have been focused on dealing with MLCS
problems within the DP framework (e.g., see [12], [13], [14],
[15], [16], [17]), but these DP-type algorithms are ineffective
and inefficient for MLCS problems, especially for large-scale
MLCS problems (i.e., a problem with the large number of
and long sequences). In fact, as the number and length of
sequences increase, the consumption of run-time and mem-
ory space will grow exponentially due to their high time and
space complexity ofOðndÞ [18], where d ðd � 2Þ is the number
of sequences and n is the length of sequences.

Alternatively, the dominant point-based approach, of
which the main idea was presented by Hakata and Imai [19],
[20], is a kind of more effective and efficient algorithms for
the MLCS problem. It is based on the observation that most
points in the dynamic table of DP-type algorithms are use-
less, and only the key points, i.e., the so-called dominant
points, need to be computed and stored [18]. Definitely, the
resulted search space of the dominant point-based approach
is much smaller than that of DP-type methods. It turns out
that a lot of run-time and memory space can be saved. In
addition, the dominant point-based approach transforms the
MLCS problem into the problem of finding the longest path
in a Directed Acyclic Graph (DAG). Subsequently, many
existing longest path algorithms for the DAG can be applied
to solve the MLCS. To further improve the performance of
the dominant point-based approach, a number of its variants
have been proposed, e.g., see literature [21], [22], [23], [24].
Especially, Chen et al. [22] proposed a fast dominant point-
based algorithm, denoted as FAST_LCS, in which a special
data structure called successor table is designed to speed up
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calculating the successors of the match point. Furthermore,
to speed up the construction of DAG, Wang et al. [24] pre-
sented a new algorithm called Quick-DP by a divide-and-
conquer technique. Quick-DP has a better performance than
FAST_LCS in terms of time complexity. Nevertheless, as the
number and the length of sequences increase, the DAG con-
structed by FAST_LCS andQuick-DPwill become larger and
larger. It turns out that FAST_LCS and Quick-DP often get
stuck before they finish the construction of DAG. This is
because the time complexity of the non-dominated sorting
technology employed by both algorithms is OðN2Þ, where
the number N of match points in the DAG is much larger
than n and d.

Recently, Li et al. [25] presented a novel algorithm called
Top_MLCS which designs a new method to construct DAG
and utilizes a forward-and-backward topological sorting
technology to find out the longest paths in the DAG. This
method shows a better performance on time consumption
due to the topological sorting technology. To further
improve it, Peng and Wang [26] proposed a Leveled-DAG
approach to reduce the size of DAG by removing outdated
nodes, Wei et al. [27] presented a path recorder method to
eliminate redundant and repeated nodes of DAG, and Liu
et al. [28] designed a character merging algorithm to shorten
the length of DNA sequences by merging consecutively
repeated characters for MLCS problems. All these algorithms
utilize topological sorting technology instead of non-domi-
nated sorting technology to construct DAG. The DAGs con-
structed by them are much smaller than those by dominant
point-based approaches including FAST_LCS and Quick-DP.
Hence, they have a better performance than FAST_LCS and
Quick-DP in terms of time and space consumption. Neverthe-
less, as the size of DAG increases, the topological sorting
based algorithms still consume a large amount of memory
space because they have to store the whole DAG including all
match points and directed edges (i.e., useless match points
and non-longest paths cannot be identified and removed in
time). Therefore, they cannot effectively solve the large-scale
MLCS problem due to thememory overflow.

In order to deal with large-scale MLCS problems, we will
propose a Branch Elimination-based Space and Time efficient
algorithm called BEST-MLCS, which can eliminate branches
that are not on the longest paths. As a result, we can construct
much smaller DAG than all existing algorithms, thereby han-
dling much larger scale MLCS problems. The main contribu-
tions of this paper are summarized as follows:

1) An estimation scheme for the lower bound Lmlcs of
the length of MLCS is designed.

2) An estimation scheme for the upper bound UðO;p;1Þ
of the length of paths from the starting match point
to the ending match point through the current match
point p is presented.

3) A branch elimination strategy for finding all useless
match points and removing the branches that are not
on the longest paths is proposed (Theorem 2).

Specifically, first, a useless match point detec-
tion scheme (Theorem 2) finds out useless match
points as follows. For the current match point p, if
UðO;p;1Þ < Lmlcs, p must not be on any longest path
corresponding to MLCS and is a useless match point.

Then, a branch elimination strategy is proposed,
which removes all paths (i.e., branches) from starting
match point O to the useless match point p. Note that
with the increase of the number and the length of
sequences, the number of useless match points and
the branches through these useless match points will
become very huge. The useless match point detection
scheme can identify these useless match points
promptly and the branch elimination strategy can
remove all branches fromO to them onDAG.

4) A new DAG construction method for constructing
the smallest DAG among the existing ones is pro-
posed. Given a starting match point, the new DAG is
built level by level without putting the useless match
points on DAG, meanwhile removing all existing
branches through useless match points. As a result,
the resulted DAG will be much smaller than the
existing ones (including the DAGs constructed by
the state-of-the-art MLCS algorithms), and its time
and memory space will be greatly saved.

The main difference between the proposed algorithm and
the state-of-the-art algorithms is that, BEST-MLCS designs a
novel branch elimination strategy based on the lower bound
and upper bound estimation to remove a lot of uselessmatch
points and non-longest paths from DAG, avoiding using
non-dominates sorting method and topological sorting
approach which are very time-consuming and need a huge
amount of memory space. Thus, the size of the constructed
DAG is very small, and BEST-MLCS can efficiently find the
longest paths corresponding to MLCSs from the DAG with
less consumption of run-time andmemory space.

The rest of this paper is organized as follows: Section 2
introduces the preliminary of the LCS and MLCS problems.
Section 3 reviews related works for the LCS andMLCS prob-
lems. Section 4 describes the proposed algorithm BEST-
MLCS in detail. Section 5 presents the experimental results to
compare the proposed algorithm with three state-of-the-art
algorithms. Finally, we draw a conclusion in Section 6.

2 PRELIMINARY

2.1 Basic Definitions

Definition 1. Let s ¼ c1c2 . . . cn be a sequence on a character set
S, where ci 2 S; 1 � i � n, jSj denotes the cardinality of S,
and jsj denotes the length of s, i.e., jsj ¼ n. If a sequence s0 ¼
ci1ci2 . . . cim satisfies 1 � i1 < i2 < � � � < im � n, s0 is called
a subsequence of s, denoted by s0 2 subseqðsÞ, where subseqðsÞ
is the set of all subsequences of s [22].

Actually, a subsequence can be obtained by removing zero or
more characters from the given sequence. For example, the
sequences GACT , GAA and AT are all subsequences of the
sequenceGAACT , i,e.,GACT;GAA; and AT 2 subseqðGAACT Þ.
Definition 2. Given d ðd � 2Þ sequences s1; s2; . . . ; sd on char-

acter set S, a sequence s0 is called an LCS if it satisfies the fol-
lowing conditions [22]:

1) For 8i; 1 � i � d, s0 2 subseqðsiÞ, i.e., s0 is a common
subsequence of all d sequences.

2) There is no other common subsequence s00 2 subseqðsiÞ
ði ¼ 1; 2; . . . ; dÞ longer than s0 (i.e., js00j > js0j).
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If d ¼ 2, the problem of finding LCS is usually called LCS prob-
lem; otherwise, if d >¼ 3, the problem is calledMLCS problem.

Obviously, an LCS problem is the simplest case of an
MLCS problem. Given d sequences, there may be more than
one LCSs or MLCSs. For example, for two sequences s1 ¼
GAAGCGTA and s2 ¼ AGTCTGAC, there are two LCSs:
AGCGA and AGCTA.

2.2 The DP Approach

Definition 3. For a sequence s ¼ c1c2 . . . cn, its subsequence
c1c2 . . . cj is called a prefix sequence of s and denoted by
s½1 . . . j� [22].

The DP approach is a traditional method for tackling LCS
and MLCS problems [29]. Given d sequences s1; s2; . . . ; sd
with the length of n, it will recursively build a d dimension
score table L with n� n� � � � � n ¼ nd elements, where the
element L½i1; i2; . . . ; id� denotes the length of MLCS of the
prefix sequences s1½1 . . . i1�, s2½1 . . . i2�, ..., sd½1 . . . id�, and can
be calculated by the following formula [26]:

L½i1; . . . ; id�

¼
0 if 9ij ¼ 0; ð1 � j � dÞ
L½i1�1; . . . ; id�1�þ1 if s1½i1� ¼ � � � ¼ sd½id�
maxð �LÞ otherwise

8><
>:

;
(1)

where �L= fL½i1; i2; . . . ; ðik � 1Þ; . . . ; id�jk ¼ 1; 2; . . . ; dg:
Once the score table L is built, the MLCS can be obtained by

traversing from the bottom right element L½n; n; . . . ; n� to the
top left element L½0; 0; . . . ; 0�. For instance, the score table L
built for the sequences s1 ¼ GAAGCGTA and s2 ¼
AGTCTGAC is shown in Fig. 1, and the LCS of these two
sequences are obtained by traversing fromL½8; 8� toL½0; 0�.

Given d sequences with the length of n, both time complex-
ity and space complexity of the DP approach are up to OðndÞ
[14]. As d and n increase, the space and time consumption of
these approaches will increase exponentially. That is, the scal-
ability of a DP approach is limited, which is therefore essen-
tially unsuitable for dealingwith large-scaleMLCS problems.

3 RELATED WORKS

3.1 Dominant Point-Based Approach

Before discussing dominant point-based approach in detail,
we first introduce some terminologies [25].

Definition 4. Given d sequences s1; s2; . . . ; sd on a character set
S, let si½pi� denote the pith character of sequence si from left. If
s1½p1� ¼ s2½p2� ¼ � � � ¼ sd½pd� ¼ s 2 S, the vector p ¼
ðp1; p2; . . . ; pdÞ is called a match point of these d sequences, and
s is called a common character of p, denoted by s ¼ cchðpÞ
[22]. The match point ðp1; p2; . . . ; pdÞ with its common charac-
ter s is represented as sðp1; p2; . . . ; pdÞ.
For example, given two sequences s1 ¼ GAAGCGTA and

s2 ¼ AGTCTGAC in Fig. 2, there are many match points
with the form sði; jÞ. The common character s 2 S linked
with dotted line corresponds to its position indexes i and j in
two sequences, i.e., s1½i� ¼ s2½j� ¼ s, like Að2; 1Þ, Að3; 1Þ and
Gð1; 2Þ. Since cchðð2; 1ÞÞ ¼ A, match point Að2; 1Þ is also
denoted by (2,1) for short. Similarly, Að3; 1Þ and Gð1; 2Þ can
be represented as (3,1) and (1,2), respectively.

Definition 5. Given two match points p ¼ ðp1; p2; . . . ; pdÞ and
q ¼ ðq1; q2; . . . ; qdÞ of d sequences, we call [22]

1) p ¼ q, if 8i; 1 � i � d; pi ¼ qi.
2) p dominates q (denoted by p 	 q), if 8i; 1 � i � d; pi �

qi and 9j; 1 � j � d; pj < qj.
3) p strongly dominates q (denoted by p 
 q), if 8i; 1 �

i � d; pi < qi.
4) q is called a successor of p with respect to s, if there is

no other match point r satisfying that p 
 r 	 q and
cchðrÞ ¼ cchðqÞ ¼ s, denoted by q ¼ succsðpÞ.

In general, a match point p has at most jSj successors.
That is, the set of all successors of p, denoted by succðpÞ ¼
fsuccsðpÞjs 2 Sg, contains at most jSj elements, e.g.,
succðAð2; 1ÞÞ ¼ fAð3; 7Þ; Cð5; 4Þ; Gð4; 2Þ; T ð7; 3Þg. If q is a
successor of p, i.e., q 2 succðpÞ, p is called a precursor of q.
For example, Að2; 1Þ is a precursor of Að3; 7Þ.
Definition 6. Given a set of match points P ¼ fP1; P2;

. . . ; Pmg, for a match point Pj 2 P , If :9Pi 	 Pj, 1 � i; j �
m; i 6¼ j, Pj is called a non-dominated point (dominant point
for short) on P [22]. All of dominant points on P form the dom-
inant set of P .

For the convenience of description, a special match point
ð0; 0; . . . ; 0Þ is defined as the starting match point and
denoted as O, and ð1;1; . . . ;1Þ denoted as 1 is defined
as the ending match point.

As the most effective and efficient method, the dominant
point-based approach mainly consists of the following steps
to find out all MLCSs of d sequences:

Step 1) Initialization: Set the initial level number k ¼ 0 and
Dk ¼ fOg.

Step 2) Compute the set of all successors of each match
point in Dk, i.e., succðDkÞ. All of these successors

Fig. 1. The score table L for two sequences s1 ¼ GAAGCGTA and s2 ¼
AGTCTGAC. The LCS can be found out from the score table L by tra-
versing from shadow number 5 to 1.

Fig. 2. An example about the match points of two sequences s1 ¼
GAAGCGTA and s2 ¼ AGTCTGAC, where each two dimensional point
sði; jÞ consisting of two numbers (columns) i and j linked by dotted lines
forms a match point, where i and j are the indexes of common character
s in s1 and s2, i.e., s1½i� ¼ s2½j� ¼ s.
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form Level-(k+1) of DAG, denoted by Lðkþ1Þ. Con-
nect each match point inDk to its each successor by
a directed edge.

Step 3) Find out the dominant setDðkþ1Þ of Lðkþ1Þ by non-
dominated sorting method [30]. The ðkþ 1Þth char-
acter of any MLCS will come from these common
characters of dominant points inDðkþ1Þ.

Here, we use the aforementioned example to
describe the process of dominant point-based
approach as shown in Fig. 3.

Oð0; 0Þ is the starting match point and its all suc-
cessors form the match points in Level-1 of DAG,
i.e., match points in Level-1 are L1 ¼ fAð2; 1Þ;
Cð5; 4Þ; Gð1; 2Þ; T ð7; 3Þg. The dominant points in L1

(i.e., A(2,1) and G(1,2)) depicted with white back-
ground are then selected by non-dominated sorting
to form the dominant set D1, i.e., D1 ¼ fAð2; 1Þ;
Gð1; 2Þg. Note that the first character of MLCSs will
come from the common characters of dominant
points inD1 (i.e., A orG), but not from the common
characters of dominated match points in L1 (i.e.,
Cð5; 4Þ andðT ð7; 3ÞÞ) which are marked by grey
background in Fig. 3.

Step 4) Suppose we have gotten the dominant set Dðkþ1Þ.
Let k ¼ kþ 1. If some match point in Dk has
successor, go to Step 2), otherwise, each match
point in Dk has no successor, connect each match
point in Dk to 1. The construction of DAG is
completed.

Now we have got D1 in the aforementioned example.
Compute all successors of each match point inD1, and all of
these successors consist of L2 ¼ fAð3; 7Þ; Cð5; 4Þ; Gð4; 2Þ;
T ð7; 3Þ;Að2; 7Þ; Cð5; 4Þ; Gð4; 6Þ; T ð7; 3Þg. Find out the domi-
nant set of L2, i.e.,D2 ¼ fGð4; 2Þ; Að2; 7Þg. Note that the sec-
ond character of the MLCSs must come from the match
points in D2 instead of L2. Repeat Steps 2) to 4) until the
complete DAG is created by the dominant point-based
approach as shown in Fig. 3. The MLCSs correspond to
all longest paths from the starting point O to the ending
point 1. One can find all longest path/MLCS (i.e.,
AGCGA and AGCTA) by traversing back from 1 to O
of DAG.

However, the bottleneck of the dominant point-based
approach is that it has to construct a huge DAG first, while
computer will run out of memory before the construction of

DAG is completed. Specifically, the dominant point-based
approach has two major drawbacks:

1) There may be many repeated match points and dom-
inated points in each level (e.g., C(5,4) repeatedly
appears twice and six points fA(3,7), C(5,4), T(7,3), C
(5,4), G(4,6), T(7,3)g are dominated points in L2), and
a match point appearing in one level may appear
many times in the later levels (e.g., C(5,4) appears in
L1-L3) and only it in the latest level is useful. Thus,
the constructed DAG will be very huge so that the
computer has not enough memory to store DAG.

2) To find Dk, the non-dominated sorting method will
take a lot of computation. Its time complexity is
OðdN2Þ in level k, where N is the number of match
points in Lk and d is the number of sequences. Note
that N will be very large (at the worst case, N ¼ jSjk
increases exponentially with the increase of level k).
Hence, when the length n, the number d of sequences
and jSj are large, i.e., when the MLCS problem
becomes a large-scale problem, the non-dominated
sorting method will be very time consuming.

FAST_LCS [22] and Quick-DP [24] are two typical exam-
ples of this kind of algorithms.

3.2 Top_MLCS

In order to reduce the time and space consumption,
Top_MLCS, as one of the best existing state-of-the-art algo-
rithms, is designed [25], which consists of three main steps.

Step 1) In order to save the storage, Top_MLCS avoids the
repeated match points appearing in DAG. Before a match
point p is put on DAG, it is checked whether p has been on
DAG. If not, p will be put on DAG and draw an edge to p
from its precursor. Otherwise, additional pwill not be put on
DAG. It only needs to draw an edge to original p from its pre-
cursor. As a result, the constructed DAGwill not contain the
repeatedmatch points. That is, it is a non-redundant DAG.

Here, we use the aforementioned example to describe this
procedure as shown in Fig. 4. Initially, DAG contains only the
starting match point (0,0), and then put its successors (2,1),
(5,4), (7,3) and (1,2) on DAG directly because these successors
have not been on DAG. Draw a directed edge from (0,0) to
each of its successors. Search successors of each of these four
match points. For example, match point (2,1) has four succes-
sors (5,4), (7,3), (3,7) and (4,2), but (5,4) and (7,3) have existed

Fig. 3. The DAG constructed by the dominant point-based approach on
two sequences GAAGCGTA and AGTCTGAC, where the black and
gray nodes are duplicated and dominated match points, respectively.

Fig. 4. The construction of the non-redundant DAG for GAAGCGTA and
AGTCTGAC by using the topological sorting approach.
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on the DAG. Thus, there is no need to put them again, andwe
only need to draw directed edges from (2,1) to them and cre-
ate new successors (3,7) and (4,2). For other three match
points, we can continue to construct DAG in the similar way.
Repeat the procedure until DAG is constructed completely.
Obviously, DAG in Fig. 4 has much fewer match points than
the one in Fig. 3, butDAG in Fig. 4 destroys the levels ofmatch
points. It is not easy to find MLCS. To redefine the levels of
points, Top_MLCS uses a forward topological sorting scheme.

Step 2) Define the level of each match point of DAG (see
Fig. 4) by a forward topological sorting scheme as follows.
Set the level of the starting match point (0,0) as 0 in Fig. 4.
Suppose we have defined level k (currently level-0). Remove
all directed edges from match points in level-k. Identify the
math points with indegree 0 and define their level as ðkþ 1Þ
(currently the level of (1,2) and (2,1) is defined as kþ 1 ¼ 1)
and add a directed edge to each match point in level ðkþ 1Þ
from its precursor in level k (i.e., from (0,0) to (1,2) and (2,1),
respectively). Repeat this process until the levels of all match
points are defined as shown in Fig. 5.

Step 3) Get the final DAG by a backward topological sort-
ing scheme as follows. From the ending point1, find its pre-
cursor(s) (i.e., (8,7) in Fig. 5). For each precursor, successively
find its precursor(s) backward until the starting match point
O is reached. If a match point ((7,3) or (5,8) in Fig. 6) cannot
be reached by the backward topological sorting from (1;1),
it and all paths through it will be removed. The final DAG is
shown in Fig. 6. All MLCSs will be contained in this DAG
and can be obtained from paths fromO to1.

Although Top_MLCS greatly improves the performance
of the existing dominant point-based approaches, it still has
the following two main problems:

1) It first needs to construct and stores a large DAG (see
Fig. 4), which will consume a huge computer mem-
ory for the large-scale MLCS problem. Usually, the
computer has not enough memory to store it. Thus
its scalability is limited.

2) The forward/backward topological sorting opera-
tion will consume a lot of computation for the large-
scale problem.

4 THE PROPOSED BEST-MLCS

4.1 The Main Framework of BEST-MLCS

As mentioned before, the existing approaches fail to deal
with large-scale MLCS problems due to huge time and
space consumption [27]. The fundamental reason is that, as
the number and length of sequences increase, the size of
DAG to be built becomes larger and larger. It turns out that

the computational time and storage space exceed the maxi-
mum limits. To overcome these shortcomings, during the
construction of DAG, the proposed BEST-MLCS promptly
identifies the useless match points and non-longest paths,
then removes them in time to reduce the size of the DAG.

To be specific, before obtaining the final MLCS of sequen-
ces, BEST-MLCS first quickly estimates a lower bound Lmlcs

of the length of the true MLCS. Then, BEST-MLCS estimates
an upper bound UðO;p;1Þ of the length of any path from the
starting match point O to the ending match point1 through
a match point p before match point p is added to the DAG. If
UðO;p;1Þ < Lmlcs, we can judge that any path through p is not
the longest path. Thus, p is a useless match point, and all
paths passing through it are non-longest paths in the DAG.
Based on this observation, all useless match points and non-
longest paths can be removed promptly, a much smaller
DAG than the existing ones will be constructed.

In summary, the proposed algorithm BEST-MLCS con-
tains four key strategies: 1) Lower bound estimation. Estimate
a lower bound Lmlcs of the length of MLCS; 2) Upper bound
estimation. Estimate an upper bound UðO;p;1Þ of the length of
path from O to1 through a current match point p; 3) Branch
elimination. Determine whether the current match point p is
a useless match point before it is put on DAG. Any useless
match point p is not put on DAG and all branches through p
are removed from DAG; 4)Smaller DAG construction. Con-
struct a much smaller DAG than the existing ones. The
details of these key strategies are introduced as follows.

4.1.1 Quick Estimation of Lower Bound Lmlcs

Before the MLCS (or the longest path in DAG) is obtained,
we do not know the true length of MLCS, but we can get a
lower bound Lmlcs of it by finding an approximate MLCS.
Then the length of this approximate MLCS is a lower bound
of the length of the true MLCS. The longer the approximate
MLCS, the better it approaches to the true MLCS. Our pur-
pose is to find an approximate MLCS as long as possible,
and the approximate MLCS should be searched quickly.
Based on these considerations and inspired by [31] and [32],
a fast heuristic method for estimating the lower bound Lmlcs

is designed. The main steps are given below.
For a d-dimensional match point p ¼ ðp1; p2; . . . ; pdÞ,

denote sumðpÞ ¼Pd
i¼1 pi. Please note that, if a successor q of

p has the smallest value of sumðÞ, q must be a non-dominate
point among all successors of p. A path from O through p to
q can be longer than a path from O through p to any other
successor. Thus a path through p and q is more possible to
be better than a path through p and other successor. Based
on this idea, when finding an approximate MLCS, we can
only select a few successors (e.g., u successors) with the first
u smallest values of sumðÞ as the candidates of next point
after point p. In this way, we only consider u successors as
the candidates of the next point on each level and can

Fig. 5. The obtained DAG after the forward topological sorting operation
is executed.

Fig. 6. The final longest paths corresponding to MLCSs are obtained
after the backward parallel topological sorting operation.
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quickly find an approximate MLCS and its length Lmlcs.
Details are as follows.

Let u be a small positive integer (for example, set u ¼ 2)
and E be a set of u selected match points with the first u
smallest values of sumðÞ.
1) Initialization: Set O ¼ ð0; 0; . . . ; 0Þ as a selected match

point, i.e.,E ¼ fOg, and set Lmlcs ¼ 0.
2) Update Lmlcs: Search all successors of each match

point in E, and select u successors with the first u

smallest values of sumðÞ among all successors (if
there are only b successors with b < u, then let
u ¼ b). Update E by removing its all current ele-
ments and putting the u selected successors into it,
and let Lmlcs  Lmlcs þ 1.

3) If E is empty, return Lmlcs; otherwise, goto step 2).
Here, we use the aforementioned example to illustrate

the process in Fig. 7. Initially, Lmlcs ¼ 0, and E ¼ fOg. O has
successors (2,1), (1,2), (5,4) and (7,3). Among these succes-
sors, match points (2,1) and (1,2) have the smallest sumðÞ
value 3. Thus, we update E by E ¼ fð2; 1Þ; ð1; 2Þg and set
Lmlcs ¼ Lmlcs þ 1 ¼ 1. The successors (5,4) and (7,3) are not
selected into E as shown in Fig. 7. For each match point in
E, calculate their successors, and there are 6 successors in
total, where two successors (4,2) and (2,7) with the first two
smallest sumðÞ values are selected (note that the smallest
sumðÞ value match point is (4,2), and the second smallest
sumðÞ value match point has two: (2,7) and (5,4) with the
same sumðÞ value. In this case, we only need to randomly
select one from (2,7) and (5,4), supposing (2,7) is selected)
and update E by E ¼ fð4; 2Þ; ð2; 7Þg and update Lmlcs by
Lmlcs ¼ 2. Similarly, when Lmlcs ¼ 3, the corresponding E ¼
fð5; 4Þ; ð7; 3Þg. When Lmlcs ¼ 4, the corresponding E ¼
fð6; 6Þ; ð7; 5Þg. Finally, we can get Lmlcs ¼ 5 and the corre-
sponding E ¼ fð8; 7Þg.

During the process of estimating Lmlcs, only two small
sets (E and its updated set) need to be maintained each
time. Hence, the lower bound Lmlcs can be estimated very
fast with little memory consumption. Also, it is worth not-
ing that Lmlcs is often close to the length of the longest path.
Thus, Lmlcs is usually a good lower bound of the length of
the true MLCS.

4.1.2 Efficient Estimation of Upper Bound UðO;p;1Þ
Suppose that p is a current point on DAG and we want to
know the lengths of all paths through p from O to the end-
ing match point. But it is impossible to know the lengths of
these paths before we complete the construction of these
paths. However, if we can estimate an upper bound UðO;p;1Þ
of the lengths of these paths, and know this upper bound is
smaller than the lower bound Lmlcs of the length of true
MLCS (i.e., UðO;p;1Þ < Lmlcs), we can judge that these paths
through p are not the longest paths and can be excluded

from DAG. In this way, the DAG constructed will be much
smaller than the existing ones.

Note that the current match point p has been constructed
on DAG, the length of the longest path from O to p can be
computed. In fact, it is the level of p (denoted by levðpÞ) on
DAG and an efficient method to compute levðpÞ will be
given in Section 4.1.4.

Also note that the true length distðpÞ of the longest path
from the current match point p to the ending match point1
is not known. A feasible way is to estimate an upper bound
Uðp;1Þ of distðpÞ. Then UðO;p;1Þ ¼ levðpÞ þ Uðp;1Þ is an upper
bound of the length of any path through p. In the following,
we will design a specific method to quickly estimate Uðp;1Þ
and make it as close as possible to the true value distðpÞ
(i.e., make it as small as possible).

For a sequence s ¼ c1c2. . .cn on a character set S, the
times of appearance of the character s 2 S after the position
i in s can be easily computed and is denoted by numsðs; iÞ.
For instance, given a sequence s ¼ GAAGCGTA, the charac-
ter A appears three times after the position 1 in s, thus
numsðA; 1Þ ¼ 3, while the character G appears two times
after the position 3 in s, so numsðG; 3Þ ¼ 2.

Given d sequences s1; s2; . . . ; sd on a character set S and a
match point p ¼ ðp1; p2; . . . ; pdÞ of them, we have the follow-
ing result:

Theorem 1. For any longest path from match point p ¼
ðp1; p2; . . . ; pdÞ to the ending match point1, and for any s 2 S,
the times of appearance of s in this longest path is not greater
thanminfnums1ðs; p1Þ; nums2ðs; p2Þ; . . . ; numsdðs; pdÞg. Hence

Uðp;1Þ ¼
X
s2S

minfnums1ðs; p1Þ; nums2ðs; p2Þ; . . . ;

numsdðs; pdÞg;
(2)

is an upper bound of the length of any longest path from match
point p ¼ ðp1; p2; . . . ; pdÞ to the ending match point1

UðO;p;1Þ ¼ levðpÞ þ Uðp;1Þ; (3)

is an upper bound of the length of the longest path from O to1
through p.

Proof. Denote

vðsÞ ¼ minfnums1ðs; p1Þ; nums2ðs; p2Þ; . . . ; numsdðs; pdÞg:

Obviously numsiðs; piÞ � vðsÞ for any pi. This means that
s appears at least vðsÞ times in each sequence si after
position pi and only appears vðsÞ times in some sequence
(s). Thus s can appear at most vðsÞ times on any longest
path from match point p ¼ ðp1; p2; . . . ; pdÞ to the ending
match point1. Therefore, vðsÞ is an upper bound of the
times of appearance of s in the longest paths, and the
sum of these vðsÞ

Uðp;1Þ ¼
X
s2S

vðsÞ; (4)

is an upper bound of the length of the longest path from
p to 1. Note that Uðp;1Þ is also an upper bound of the
true number of match points on the longest paths from p
to the ending match point1.

Fig. 7. The process of estimating a lower bound Lmlcs of the length of the
longest paths in DAG.
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For the match point p, the length of the path from the
starting match point O to p is known, i.e., levðpÞ. Thus, an
upper bound of the length of the path from O to 1
through p is estimated by

UðO;p;1Þ ¼ levðpÞ þ Uðp;1Þ: (5)
tu

For example, for two sequences s1 ¼ GAAGCGTA and
s2 ¼ AGTCTGAC, and for a match point p ¼ ð1; 2Þ (see
Fig. 2), an upper bound Uðp;1Þ of the length of the longest
path from p to1 can be calculated according to Formula (2)

Uðp;1Þ ¼ minfnums1ðA; 1Þ; nums2ðA; 2Þg
þminfnums1ðC; 1Þ; nums2ðC; 2Þg
þminfnums1ðG; 1Þ; nums2ðG; 2Þg
þminfnums1ðT; 1Þ; nums2ðT; 2Þg
¼ minf3; 1g þminf1; 2g þminf2; 1g þminf1; 2g
¼ 4:

In fact, the length of the longest paths from p ¼ ð1; 2Þ to
the ending match point is actually 4. Thus, Uðp;1Þ is an
appropriate upper bound of the length of the longest path
from p to1.

4.1.3 Branch Elimination by Finding Useless Match

Points

Theorem 2. For any match point p ¼ ðp1; p2; . . . ; pdÞ, If
UðO;p;1Þ < Lmlcs; (6)

p is a useless match point and should not be included in DAG.
Furthermore, all paths (branches) constructed from O to p
should be eliminated.

Proof. If UðO;p;1Þ < Lmlcs, we can ensure that all paths
though p are not the longest path. Thus, p must be a use-
less match point and should not be included in DAG.
Therefore, all paths constructed from O to p should be
eliminated. The proof is completed. tu

Let us use the aforementioned example in Fig. 7 to illus-
trate the scheme of determining useless match points in
details. The estimated lower bound of the length of the
MLCS is known, i.e., Lmlcs ¼ 5, as shown in Fig. 7. Uðp;1Þ
can be computed according to Formula (2), and levðpÞ can
be obtained during the construction of DAG as shown in
Fig. 8.

Initially, levðOÞ of the starting match point O is defined as
0. O has four successors: (1,2), (2,1), (5,4) and (7,3). For its
each successor p, set levðpÞ ¼ 1, i.e., set levðð2; 1ÞÞ ¼
levðð5; 4ÞÞ ¼ levðð1; 2ÞÞ ¼ levðð7; 3ÞÞ ¼ 1, because the length
of the longest paths from the starting match point to each of
the successors is 1. From Fig. 8, it can be seen that match
points (5,4) and (7,3) can be easily determined to be useless
match points because they satisfy

UðO;p;1Þ ¼ levðpÞ þ Uðp;1Þ < Lmlcs ¼ 5;

and all paths (branches) from O to (5,4) and (7,3) will not be
contained on DAG.

4.1.4 Construct Smaller DAG

Based on the above branch elimination scheme, we con-
struct the smaller DAG level by level. First, level zero L0

consists of only the starting match point O, and then level 1
to level jMLCSj, denoted by L1, L2, . . . , LjMLCSj, respec-
tively, are sequentially constructed, where jMLCSj repre-
sents the length of the final MLCS. To save the time and
space, we only construct and store one level each time.

After Lk is constructed (currently, L0 is constructed),
Lkþ1 can be constructed by the following steps:

1) Select any match point p 2 Lk, search its successor
set succðpÞ.

2) For each successor q 2 succðpÞ, check whether q has
already existed in DAG. If not, set the level of q (i.e.,
the length of the current longest path from O to q) as
levðqÞ ¼ kþ 1, go to step 3). Otherwise, compute the
level levðqÞ of q in two cases:
� If levðqÞ < kþ 1, it indicates that the existing

longest path(s) from O to q is (are) shorter than
the new longest path from O to q through p.
Update levðqÞ ¼ kþ 1 and shift q from LlevðqÞ to
Lkþ1. Remove all existing paths through q. Go to
step 4).

� If levðqÞ ¼ kþ 1, it indicates that the path from O
to q through p is also a new longest path from O
to q, keep levðqÞ unchanged. Go to step 4).

3) Identify whether q is a useless match point according
to Theorem 2. If yes, do not put q in DAG, go to setp
5). Otherwise, put q into Lkþ1.

4) Add a directed edge from p to q in DAG.
5) If successors of all match points in Lk have been

checked, the construction of Lkþ1 is finished. Other-
wise, go to step 1).

By using the above procedure, we can construct a smaller
DAG than the existing ones. For easily understanding the
process, we use the aforementioned example to construct
DAG in detail.

Initially, level zero L0 ¼ fð0; 0Þg of DAG is constructed
with levðOÞ ¼ 0. The estimated lower bounder Lmlcs is
obtained by Lmlcs ¼ 5 as shown in Fig. 7. Successors of (0,0)
are (2,1), (5,4), (1,2) and (7,3). As (5,4) and (7,3) are useless
match points, they are not put on DAG. Instead, put (2,1)
and (1,2) into L1 directly, set their levðÞ ¼ 1, as shown in
Fig. 9a.

Construct L2: Calculate successors of each match point in
L1. (2,1) has successors (3,7), (5,4), (4,2) and (7,3), and (1,2)
has successors (5,4), (7,3), (2,7) and (4,6). It can be seen that
only (4,2) and (5,4) are not useless match points. Thus, only

Fig. 8. An example to identify useless match points. The value levðÞ is
marked at the bottom left of the match point, and the value Uðp;1Þ is
marked at the top right of the match point. Useless match points T(7,3)
and C(5,4) are marked with dotted lines and not contained on DAG.
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these two match points are put in L2 of DAG and set their
level as levðÞ ¼ 2, as shown in Fig. 9b.

Construct L3: L2 contains two match points (4,2) and
(5,4). (4,2) has successors (8,7), (6,4), (6,6) and (5,4), as shown
in Fig. 10a. It can be seen that only (5,4) is not a useless
match point. Thus, (5,4) is put in L3 on DAG and set
levðð5; 4ÞÞ ¼ 3. As (5,4) has existed in L2, and the previous
longest paths from O to (5,4), which are marked with the
dotted edges in Fig. 10a, are shorter than the current one,
delete all previous path from O to (5,4), the pruned DAG is
obtained as shown in Fig. 10b.

Repeat the above steps until no new level set can be cre-
ated. Then, the final DAG is obtained, as shown in Fig. 10c.
Each path from O to 1 is corresponding to an MLCS, and
vice versa.

Also note that in each time of the construction of DAG,
BEST-MLCS only stores the part of DAG in two successive
levels, e.g., Lk and Lkþ1 instead of the whole DAG from L0

to Lkþ1 (only two successive levels in each sub-figure of
Figs. 9 and 10). Thus, the space and time consumption by
BEST-MLCS is much smaller than that by the existing ones.

4.2 Fast Implementation of the Proposed Algorithm

4.2.1 Key Data Structures

In order to fast construct DAG by using as small time and
space as possible, several data structures are adopted for
the proposed algorithm.

Successor Table Tachnique. Successor Table Technique [22] is
employed. Chen[22] has proved that the time complexity of
calculating all successors of the given match point p is
OðdjSjÞ. The DAG can be constructed fast by using Successor
Tables. Note that Successor Tables can be built before the pro-
posed algorithm is performed and thus they have little effect
onmemory and time consumedduring constructingDAG.

Hash Technique. In order to avoid adding duplicated match
points into the DAG, it is necessary to quickly check whether
a match point has already existed in DAG. In other words,
before a match point is going to be added in DAG, the usual
way is to compare it with every match point on DAG. If this
operation is performed frequently, many comparisons
between two d-dimensional vectors will be made and will
cost a lot of time. To circumvent this problem, we put all
match points that have been on the DAG into a hash table
denoted by H, in which different match points usually have
different hash values. Before adding a match point into the
DAG, we first check whether it has been in H. If yes, it indi-
cates that the match point has been on the DAG. It is well
known that the hash tableH can always use a constant time to
get the result (identify whether a match point exists in it by

comparing the hash values) regardless of the number of
match points it contains, which can greatly speed up the iden-
tification process. The empirical studies also show that the
time spent on the identification process is hardly affected by
the increasing number of comparedmatch points.

Compute Uðp;1Þ Quickly by Distance Tables. For any given
match point p, to compute an upper bound of the path from
p to 1, i.e., Uðp;1Þ, as quickly as possible and by using the
computation as less as possible, we design a new data struc-
ture called Distance Table as follows.

Note that the Distance Tables are designed before the
algorithm is performed, so that we can get Uðp;1Þ for any p
before the algorithm begins.

For d sequences with length of n, let DTk denote the Dis-
tance Table for the kth ð1 � k � dÞ sequence sk ¼ c1c2. . .cn.
It is a jSj � ðnþ 1Þ matrix and its ði; jÞ element can be
defined by the following formula:

DTk½i; j� ¼ jfm j cm ¼ si; m > j; 0 � j � n;

1 � i � jSj; si 2 Sgj; (7)

where si is the i
th character in S, andDTk½i; j� represents the

number of characters cm after position j in sk.
Once Distance Tables are defined, for any match point

p ¼ ðp1; p2; . . . ; pdÞ, we can quickly compute the Uðp;1Þ
according to the following formula:

Uðp;1Þ ¼
X

1�i�jSj
minfDT1½i; p1�; DT2½i; p2�;

. . . ; DTd½i; pd�g:
(8)

For example, given two sequences s1 ¼ GAAGCGTA and
s2 ¼ AGTCTGAC, Fig. 11 gives the Distance Tables of these
two sequences according to Eq. (7).

For match point (5,4), by Eq. (8), one has Uðð5;4Þ;1Þ ¼ min
fDT1½1; 5�; DT2½1; 4�g þminfDT1½2; 5�; DT2½2; 4�g þminfDT1

½3; 5�; DT2½3; 4�g þminfDT1½4; 5�;DT2½4; 4�g ¼ minf1; 1g þmin
f0; 1g þminf1; 1g þminf1; 1g ¼ 3.

Fig. 9. The process of constructing the smaller DAG, where useless
match points are not put on DAG.

Fig. 10. The process of constructing the smaller DAG, where useless
match points are not put on DAG. When the construction of the smaller
DAG is finished, all MLCSs are gotten by finding all paths from O to1.
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By using distance tables, we can compute Uðp;1Þ of any
match point quickly. The computation complexity is Oðd �
jSjÞ for each match point.

Algorithm 1. Pseudo-Codes of Algorithm BEST-MLCS

Input:d given sequences.
Output:The MLCSs of d sequences.
Pre-processing (1-4):
1: Build successor tables STið1 � i � dÞ and distance tables

DTið1 � i � dÞ on d sequences.
2: Define the initial and end match points O ¼ ð0; 0; . . . ; 0Þ and
1 ¼ ð1;1; . . . ;1Þ.

3: Compute the estimated lower bound of the length of the
longest paths Lmlcs.

4: Lk  fOg, O:lev 0, k 0,H  fOg; //H indicates the
hash table

5: while Lk 6¼ ; do
6: for p 2 Lk && p:lev ¼¼ k do
7: compute p’s successors succðpÞ;
8: for q 2 succðpÞ do
9: if q 2 H then
10: take q fromH;
11: if q:lev < kþ 1 then
12: remove all previous paths passing through q;
13: q:lev kþ 1;
14: else if q:leve ¼¼ kþ 1 then
15: q:precs q:precs [ fpg;
16: continue;
17: end if
18: else
19: q:lev kþ 1; // if q =2 H
20: end if
21: compute Uðq;1Þ according to Eq. (8);
22: if q:levþ Uðq;1Þ < Lmlcs then
23: remove q;
24: else
25: H  H [ fqg;
26: Lkþ1  Lkþ1 [ fqg; //add q to the Lkþ1

27: q:prec fpg;
28: end if
29: end for
30: end for
31: k kþ 1;
32: end while
33: the smaller DAG is constructed and the longest paths can be

found; Accordingly, the correspondingMLCSs are obtained.
34: returnMLCSs;

4.2.2 The Pseudo-Code of the Proposed Algorithm

In order to describe the new algorithm in detail, a pseudo-
codes of algorithm BEST-MLCS is given in Algorithm 1.

At the beginning, the preparation and initialization are
shown in line1 � line4, where Successor Tables STi

(1 � i � d) and Distance Tables DTi (1 � i � d) are built.
The estimated lower bound Lmlcs is calculated. line5 �
line32 are the key steps of the proposed algorithm, which
shows how a smaller DAG is constructed level by level.
Finally, the longest paths corresponding to MLCSs can be
obtained from the smaller DAG and all MLCSs will be
returned in line33 � line34.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify the good performance of the proposed
algorithm BEST-MLCS on large-scale MLCS problems (to be
specific, in this paper, the large-scale MLCS problem refers
to that the number of DNA sequences is greater than 10000
and the length is not less than 100), we compare it with three
state-of-the-art algorithms FAST_LCS[22], Quick-DP[24] and
Top_MLCS[25] by experiments. All the compared algo-
rithms are implemented in Java and run on a Dell T7920
workstation equipped with an Intel(R) Xeon(R) Gold 6138
CPU (2.00GHz) and 704GB of memory. The experiments are
conducted on the widely used real DNA sequences in the
bio-informatics domain1 and the random synthetic DNA
sequences with the alphabet {A; C; G; T }. We conduct the
following four types of experiments:

1) Fix the number of sequences to 40000 and change the
length of the sequences from 60 to 165 in order to com-
pare the performance of the 4 compared algorithms
on problemswith a large number of sequences. In this
type of experiments, we conduct experiments on
total 22 test instances and make the following two
comparisons:
� Comparison of time and space consumption of 4

compared algorithms. The results are given in
Table 1, Figs. 12 and 13.

� Comparison of sizes of DAG (number of match
points in DAG) constructed by 4 compared algo-
rithms. The results are given in Table 2 and
Fig. 14.

2) Change the number of sequences from 70000 to
1000000 and fix the length of sequences to 110 in order
to compare the performance of 4 compared algo-
rithms on problems whose number of sequences is
very large and changes. In this type of experiments,
we conduct experiments on total 24 test instances and
make the comparison of time and space consumption
of 4 compared algorithms. The results are given in
Table 3.

3) Comparison of the longest length of sequences which
4 compared algorithms can deal with when the num-
ber of sequences changes from 70000 to 1000000. The
results are given in Table 4, Figs. 15 and 16.

4) Robustness of estimating the lower bound Lmlcs of
the length of MLCS with the change of parameter u,

Fig. 11. The distance tables of the given sequences s1 ¼ GAAGCGTA
and s2 ¼ AGTCTGAC, which are built according to Eq. (7).

1. http://www.ncbi.nlm.nih.gov/nuccore/110645304?report=fasta
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and the consumed time of the estimation for prob-
lems with 40000 sequences and the length from 60 to
165. In this type of experiments, we conduct experi-
ments on total 22 test instances. The results are given
in Table 5 and Fig. 17.

In these Tables, jMLCSj represents the length of MLCSs
obtained, ’-’ indicates that the algorithm cannot find out the
final results in a pre-assigned execution time, which is set to
2 hours in the experiments, and ’+’ indicates that the algo-
rithm cannot be executed successfully due to memory
overflow.

For the first type of experiments, from Table 1 and Fig. 12,
it can be seen that, for the same test problem, FAST_LCS,
Quick-DP and Top_MLCS always require more time to find
MLCS than BEST-MLCS. For example, when the length of
sequences is 110, FAST_LCS, Quick-DP and Top_MLCS con-
sume 1130.58, 490.95 and 16.73 seconds, respectively, while
BEST-MLCS only consumes within 7.94 seconds, which is
only 0:7%, 1:6% and 47:5% of time used by three compared

algorithms, respectively. Among four algorithms, FAST_LCS
and Quick-DP perform the worst on time consumption, i.e.,
they usually need much more time than the other two algo-
rithms. The reason is that both of them adopt a non-domi-
nated sorting technology to identify the dominated points on
every level. With the increase of the number of level, the
number of points will increase exponentially. Thus, the time
consumed will grow exponentially, which results in that
they cannot find out the final results in the pre-assigned time
limit (say 2 hours) and memory limit (say 50G) when the
length of sequences is greater than 110 or the length of
MLCSs is greater than 14. Also, Top_MLCS performs better
than FAST_LCS and Quick-DP on time consumption. The
reason is that it employs a topological sorting technology
rather than non-dominated sorting technology, thus a lot of
computing time can be saved. However, Top_MLCS has to
build a big DAG first and then utilises two topological sort-
ing operations (i.e., forward and backward topological sort-
ing) to get a smaller DAG. These operations also consume a

TABLE 1
The Time and Memory Consumption of 4 Compared Algorithms on 22 Test Instances

With 40000 Sequences of the Length Varying From 60 to 165

Lengths of
sequences

jMLCSj Time(seconds) Memory(Metabytes)

FAST_LCS Quick-DP Top_MLCS BEST-MLCS FAST_LCS Quick-DP Top_MLCS BEST-MLCS

60 4 0.22 0.22 0.22 0.09 49.2 46.9 54.7 123.8
65 4 0.25 0.24 0.24 0.11 51.2 50.7 55.0 136.4
70 5 0.34 0.28 0.31 0.26 61.3 59.7 58.6 136.3
75 6 0.49 0.33 0.59 0.27 76.8 72.2 58.2 148.4
80 7 0.80 0.46 0.63 0.41 109.0 93.0 96.7 157.1
85 8 1.87 0.65 0.85 0.45 138.8 129.2 83.0 168.1
90 9 3.72 2.55 1.36 0.99 169.8 201.4 127.4 181.1
95 10 15.51 7.12 2.24 1.39 255.8 268.3 174.0 192.1
100 11 43.75 25.82 4.24 2.95 267.2 426.4 295.8 254.9
105 12 216.11 86.18 7.86 6.41 612.7 762.4 497.4 278.0
110 14 1130.58 490.95 16.73 7.94 1328.1 1667.0 1392.1 241.0
115 14 4408.69 2107.50 45.02 38.38 2773.0 3620.2 2533.2 401.6
120 15 - - 62.61 15.49 - - 4682.7 403.2
125 16 - - 118.12 35.19 - - 7930.5 422.1
130 16 - - 227.62 31.96 - - 13282.0 441.3
135 18 - - 521.04 229.73 - - 27249.9 1648.7
140 19 - - + 492.20 - - + 2954.1
145 20 - - + 595.12 - - + 3561.1
150 21 - - + 2472.51 - - + 16271.4
155 22 - - + 6234.20 - - + 43973.2
160 22 - - + 3048.15 - - + 31178.7
165 23 - - + 4760.16 - - + 32142.3

Fig. 12. The run-time (seconds) consumed by 4 compared algorithms
on 22 test instances with 40000 sequences of the length varying
from 60 to 165.

Fig. 13. The memory (MB) consumed by 4 compared algorithms on
22 test instances with 40000 sequences of the length varying from
60 to 165.
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lot of computing time.While BEST-MLCS directly constructs
the smaller DAG. Thus, Top_MLCS always requires more
time than BEST-MLCS. When the length of sequences varies
from 60 to 130, the computing time taken by Top_MLCS is
about 2.34 times that of BEST-MLCS on average. When the
length of sequences is larger than 135, Top_MLCS uses much
more time than BEST-MLCS and it cannot find MLCS. When
the length of sequences is larger than 115, FAST_LCS and
Quick-DP cannot findMLCS.

For the memory consumption, it can be seen from Table 1
and Fig. 13 that, although Top_MLCS, FAST_LCS and Quick-
DP consume little memory than BEST-MLCS when the
length of sequences is not greater than 95 (this is because
BEST-MLCS has to require additional memory to estimate
the lower bound Lmlcs), memory space consumed by
Top_MLCS, FAST_LCS and Quick-DP grows rapidly even
exponentially as the length of sequences increases. Obvi-
ously, Top_MLCS performs better than FAST_LCS and
Quick-DP. FAST_LCS and Quick-DP always fail to find
MLCS for problems with length larger than 115 due to the

timeout, and Top_MLCS always fails to find MLCS for prob-
lemswith the length larger than 135 due tomemory overflow
(i.e., there is not enough memory to store the DAG). For
larger-scale problems with 40000 sequences and the
sequence length being larger than 95, BEST-MLCS performs
better than three compared algorithms on memory con-
sumption. Also, it can be seen from Fig. 13 that the curve of
memory consumption by BEST-MLCS grows much slower
than that by three compared algorithms. Thus, the proposed
algorithm BEST-MLCS greatly outperforms three compared
algorithms FAST_LCS, Quick-DP and Top_MLCS on time
andmemory consumption when handling large-scale MLCS
problems.

Note that, in general, as the length of sequences increases,
the run-time and memory space consumed by algorithm
BEST-MLCS will grow. However, much more run-time and
memory space are consumed when the length is 155 instead
of 160 or 165 (see Table 1 or Figs. 12 and 13). This is because
the Lower Bound Lmlcs estimated by our estimation scheme
on the problem of the 40000 sequences with length of 155 is
less precise than those on the problems of 40000 sequences
with lengths 160 and 165, respectively, resulting in that more
useless match points cannot be found for the problem with
length 155 than those for the problems with lengths 160 and
165, respectively. Thus the size of DAG for the problem with
length 155 is larger than those for the problems with lengths
160 and 165, respectively. Therefore, BEST-MLCS spent more

TABLE 2
The Number of Match Points on Each Level of DAG Constructed

by FAST_LCS, Quick-DP, Top_MLCS and BEST-MLCS for
Problem With 40000 DNA Sequences and Length 110

Level
number

Number of match points

FAST_LCS Quick-DP Top_MLCS BEST-MLCS

0 1 1 1 1
1 3 3 3 3
2 9 9 9 9
3 23 23 23 17
4 52 52 51 31
5 111 111 109 50
6 230 230 229 61
7 457 457 452 83
8 823 823 778 102
9 1254 1254 1092 124
10 1535 1535 1176 124
11 1426 1426 866 118
12 917 917 344 103
13 346 346 48 48
14 48 48 1 2
15 1 1 1 1

Fig. 14. The number of match points on each level of DAG constructed
by FAST_LCS, Quick-DP, Top_MLCS and BEST-MLCS for problem
with 40000 DNA sequences and length 110.

TABLE 3
Time and Space Consumption of FAST_LCS, Quick-DP, Top_MLCS and BEST-MLCS on Problems

With 70000 to 1000000 Sequences and the Length of Sequences Fixed to 110

Number of
sequences

jMLCSj Time(seconds) Memory(Metabytes)

FAST_LCS Quick-DP Top_MLCS BEST-MLCS FAST_LCS Quick-DP Top_MLCS BEST-MLCS

70000 20 - - 4841.10 2393.38 - - 209074.4 5120.9
90000 20 - - 6235.69 2816.85 - - 252804.9 7126.4
100000 19 - - 5910.01 2257.07 - - 219772.6 7212.1
200000 18 - - + 5061.26 - - + 14125.5
300000 18 - - + 5545.13 - - + 16597.1
400000 18 - - + 7793.38 - - + 25172.7
500000 18 - - + 8032.28 - - + 27282.2
600000 17 - - + 8723.03 - - + 24306.3
700000 17 - - + 8214.76 - - + 21836.6
800000 17 - - + 7486.52 - - + 22455.7
900000 17 - - + 9733.57 - - + 30868.5
1000000 17 - - + 5767.76 - - + 17069.3
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run-time andmemory space for the problemwith length 155.
But any way, BEST-MLCS performs better than three com-
pared algorithms.

The key reason why BEST-MLCS can perform better than
three compared algorithms with less time and memory con-
sumption and can deal with the large-scale MLCS problems is
that BEST-MLCS constructs much smaller DAG than three
compared algorithms. In fact, Table 2 and Fig. 14 show the
number of match points in every level of DAG constructed by
FAST_LCS, Quick-DP, Top_MLCS and BEST-MLCS for prob-
lems with 40000 sequences and length 110. It can be seen from
these results that the size of DAG constructed by BEST-MLCS
is much smaller than that by three compared algorithms. For
example, at level-10, the number of match points created by
BEST-MLCS is 124, while those by FAST_LCS, Quick-DP,
Top_MLCS are 1535, 1535 and 1176, respectively. Please note
that, since the dominant set found by Quick-DP is the same as
that by FAST_LCS (the proof is given in [24]), the number of
nodes on each level of DAG constructed by FAST_LCS is the
same as that byQuick-DP as shown in Table 2 and Fig. 14.

To further compare the performance of 4 algorithms, the
second type of experiments is conducted on 12 problems
with the number of sequences varying from 70000 to
1000000 and the length fixed to 110. Table 3 shows the
experimental results on the condition that the maximum
memory space is set to 256 Gigabyte and the maximum run-
time is set to 3 hours. Neither FAST_LCS nor Quick-DP can

find MLCSs for these problems. Also, Top_MLCS can only
obtain MLCSs on the problems with the number of sequen-
ces varying from 70000 to 100000. Once the number of
sequences is greater than 100000, Top_MLCS always fails
because the memory consumed by it is very huge and often
exceeds the maximum limit. By contrast, BEST-MLCS can
find MLCSs on all problems we have tried so far. The time
and memory consumed by BEST-MLCS are relatively not
large compared to the scale of the problems.

For the third type of experiments, when the memory
limit is set to 100 Gigabytes and the run-time limit is set to
10 hours, the longest lengths of 70000 to 1000000 sequences
which can be handled by four compared algorithms are
given in Table 4 and Fig. 15. For less than 200000 sequen-
ces, FAST_LCS and Quick-DP can only handle the prob-
lems with the length no more than 95, and Top_MLCS
can handle the problems with the length no more than 105.
By contrast, BEST-MLCS can handle the problems with
the length up to 125. For 300000 to 500000 sequences,
FAST_LCS and Quick-DP can only handle the problems
with the length no more than 95, and Top_MLCS can han-
dle the problems with the length no more than 100, but
BEST-MLCS can handle the problems with the length up
to 120. For 600000 to 1000000 sequences, FAST_LCS, Quick-
DP and Top_MLCS can only handle the problems with the
length no more than 95, but BEST-MLCS can handle the
problems with the length up to 115.

TABLE 4
The Length of Sequences Which 4 Algorithms can Handle Within 10 Hours and 100G Memory for Problems

With 70000 to 1000000 Sequences, and the Length of MLCS Obtained

Number of
sequences

Length of sequences Length of MLCSs

FAST_LCS Quick-DP Top_MLCS BEST-MLCS FAST_LCS Quick-DP Top_MLCS BEST-MLCS

70000 90 95 105 120 15 16 19 22
90000 90 90 105 125 14 14 18 23
100000 95 95 105 125 15 15 18 23
200000 90 95 105 120 14 15 17 21
300000 95 95 100 115 14 14 16 19
400000 90 95 100 120 13 14 15 20
500000 95 95 100 120 14 14 15 20
600000 95 95 95 120 14 14 14 20
700000 95 95 95 115 13 13 13 18
800000 95 95 95 115 13 13 13 17
900000 95 95 95 115 13 13 13 18
1000000 95 95 95 115 13 13 13 18

Fig. 15. The length of sequences which 4 algorithms can handle within
10 hours and 100G memory for problems with 70000 to 1000000
sequences.

Fig. 16. The length of MLCSs obtained by 4 algorithms within 10 hours
and 100G memory for problems with 70000 to 1000000 sequences.
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Furthermore, the maximum lengths of MLCSs obtained
by four compared algorithms are given in Table 4 and
Fig. 16. From the experimental results, it can be seen that
BEST-MLCS can always find much longer MLCS than
FAST_LCS, Quick-DP and Top_MLCS. For example, for
problem with 1000000 sequences, the length of sequence
BEST-MLCS can handle is 115 and the length of MLCS is 18,
while the maximum length of sequences the compared algo-
rithms can handle is only 95 and the length of MLCS is only
13. In fact, to the best of our knowledge, the scale of the
problems handled by BEST-MLCS is the largest and the
results obtained by BEST-MLCS are the best so far.

In the proposed algorithm, there is one parameter u in
estimating the lower bound Lmlcs of the length of MLCS. For
the fourth type of experiments, to test the robustness of the
estimation method, we investigate the effect of u on Lmlcs by
varying the values of u through the experiments. Also, we
study the time consumed by taking the different values of u.
The results are given in Table 5 and Fig. 17.

The more precise the estimated lower bound Lmlcs, the
much more useless match points can be identified and can
be excluded from DAG, and thus the more smaller DAG
constructed will be. The experiments are conducted on
problems with 40000 sequences and the length varying
from 60 to 165. From experimental results, it can be seen
that for each test problem with the fixed length among total
22 test problems, the values of Lmlcs are almost unchanged
(or at most little changed) with the change of the values of u.
This indicates the effect of u on Lmlcs is small and the estima-
tion method of Lmlcs is robust.

However, as u increases, the time consumed by the esti-
mation method will increase. Thus, it is better to choose a
small value of u. On the other hand, note that generally, the
larger the value of u, the more precise the estimated lower
bound. This implies that we should take a large value of u. To
balance the time consumed and the precision of the lower
bound estimation and note the robustness of the estimation
method, it is better to take amoderate value of u. In all experi-
ments aforementioned, we take the value of u to be 256.

6 CONCLUSION

This paper has proposed a novel BEST-MLCS algorithm to
tackle the large-scale MLCS problems effectively and effi-
ciently, which has the following four key components: 1) a
method to precisely estimate the lower bound of the length
of MLCS; 2) a scheme to estimate the upper bound of the
longest path through the current match point; 3) a branch
elimination strategy by identifying the useless match points;
4) a method to construct the smallest DAG (i.e., DAG con-
structed by the proposed algorithm is much smaller than
that constructed by the existing state-of-the-art algorithms).

The proposed algorithm BEST-MLCS outperforms the
existing state-of-the-art FAST_LCS,Quick-DP and Top_MLCS,

TABLE 5
Robustness of Estimated Lower Bound Lmlcs With the Change of u and the Consumed Time

for 40000 Sequences With Length From 60 to 165

Length of
sequences

jMLCSj Lmlcs Consumed Time (Milliseconds)

u=32 u=64 u=128 u=256 u=512 u=1024 u=32 u=64 u=128 u=256 u=512 u=1024

60 4 4 4 4 4 4 4 13 12 15 12 13 12
65 4 4 4 4 4 4 4 16 17 17 16 15 17
70 5 5 5 5 5 5 5 30 30 30 30 30 30
75 6 6 6 6 6 6 6 53 52 52 52 53 54
80 7 7 7 7 7 7 7 95 90 93 93 90 96
85 8 8 8 8 8 8 8 130 134 138 139 139 145
90 9 9 9 9 9 9 9 200 290 335 320 338 354
95 10 10 10 10 10 10 10 258 365 557 588 588 610
100 11 11 11 11 11 11 11 323 511 837 1254 1259 1319
105 12 11 11 11 11 12 12 377 618 1062 1656 2516 2538
110 14 13 13 13 13 13 14 435 730 1282 2155 3402 5758
115 14 13 13 13 13 14 14 504 892 1619 2825 4630 7571
120 15 14 14 14 15 15 15 599 1061 1954 3624 5969 9601
125 16 13 14 14 15 15 15 662 1217 2264 4359 7515 13159
130 16 15 16 16 16 16 16 736 1401 2663 5344 9473 16677
135 18 16 17 17 17 17 17 845 1582 3039 5885 10851 20444
140 19 18 18 18 18 18 18 964 1812 3437 7088 12446 24438
145 20 16 16 19 19 19 19 983 1758 3471 6852 12634 24528
150 21 19 19 19 19 19 20 1135 2125 4061 8471 15865 29851
155 22 19 19 19 19 19 20 1207 2238 4404 9479 17156 33252
160 22 19 20 20 21 21 21 1240 2306 4450 9278 17424 34360
165 23 19 19 19 21 21 21 1337 2475 4826 12065 20108 42033

Fig. 17. The comparisons about the consumed time required by the fast
heuristic method to estimate the lower bound value on 40000 DNA
sequences with length varying from 60 to 165 when the parameter u has
different values. The data are taken from Table 5.
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and can tackle the large-scale MLCS problems. The experi-
mental results on 68 test problems have shown that the time
consumption and space consumption of the proposed algo-
rithm are much smaller than those of FAST_LCS, Quick-DP
and Top_MLCS, especially for large-scaleMLCSproblems.
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