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Automatic Video Object Segmentation Based on
Visual and Motion Saliency

Qinmu Peng, Member, IEEE, and Yiu-Ming Cheung , Fellow, IEEE

Abstract—We present an approach to extract the salient object
automatically in videos. Given an unannotated video sequence,
the proposed method first computes the visual saliency to identify
object-like regions in each frame based on the proposed weighted
multiple manifold ranking algorithm. We then compute motion
cues to estimate the motion saliency and localization prior. Finally,
adopting a new energy function, we estimate a superpixel-level
object labeling across all frames, where 1) the data term depends
on the visual saliency and localization prior, and 2) the smoothness
term depends on the constraints in time and space. Compared to
the existing counterparts, the proposed approach automatically
segments the persistent foreground object meanwhile preserving
the potential shape. Experiments show its promising results on
the challenging benchmark videos in comparison with the existing
counterparts.

Index Terms—Object segmentation, visual saliency, manifold
ranking, graph model.

I. INTRODUCTION

AUTOMATIC video object segmentation (AVOS) is to sep-
arate the foreground objects from the background in a

video automatically, which has a variety of potential applica-
tions, including video summarization [1], action recognition [2],
image retrieval [3], and so on. Nevertheless, AVOS is a non-
trivial task in computer vision and pattern recognition, although
human being can easily deal with this process by the complex
cognitive capabilities of human brains even though the object is
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presented in a complicated background or even has never been
seen before [4].

To accomplish the task of AVOS, a number of approaches
based on different theories and methodologies have been pro-
posed in the literature. In general, the AVOS approaches have
been developed along two lines, i.e. supervised and unsuper-
vised approaches. The former requires the interactive operation
with a user to annotate the object position in some frames. For
example, Bai et al. [5] have adopted a set of local classifiers,
each of which integrates multiple local image features such as
color, texture, shape and motion. Once the initial annotations
are created, they are then propagated to all other frames, and
the object cutout is completed with a video matting technique.
Similarly, Brian et al. [6] have proposed to utilize various visual
cues, and each of which is automatically weighted based on the
likely effectiveness. That method allows a user to segment one
frame and then propagates this information to the other frames.
Moreover, Tsai et al. [7] presented an off-line method for ob-
ject segmentation and tracking by utilizing multi-label Markov
random filed model, which incorporates both segmentation and
motion estimation. Besides, researchers have proposed to draw
a few strokes on arbitrary regions in the foreground and back-
ground for the purpose of simplifying manual annotation. For
example, Wang et al. [8] utilized a global color model based
on a user’s strokes, and incorporated a local color model for
backgrounds in addition to gradient values. Along this way, Bai
and Sapiro [9] have proposed the weighted geodesic distances to
describe the user-provided scribbles, and additional constraints
are added into the distance, which could efficiently handle oc-
clusions in a video sequence. Recently, Zhang et al. [10] have
proposed a semantic object segmentation framework using a
weakly supervised approach. The success of these works have
been reported in their application domains, but it might be diffi-
cult for users to manually annotate a large amount of video data
from the practical perspective.

By contrast, the latter unsupervised approaches do not require
the process of manual labeling and can automatically extract the
objects from the background. Along this line, classic background
substraction methods have been widely used for extraction of
moving objects in a video, which model the appearance of the
background at each pixel and regard pixels that change rapidly
as the foreground [11], [12]. Those methods usually assume that
a video is captured by a static camera, in which the background
changes slowly so that the model could correctly update the fore-
ground appearance. However, if the background is changeable,
modeling the background appearance then becomes a tricky
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Fig. 1. Several snapshots in different video sequences. Sub-figure (a)-(b) il-
lustrate non-rigid deformation; Sub-figure (c)-(d) demonstrate the motion blur
and low contrast between the foreground and background.

issue. For such cases, a typical approach is to learn a dynamic
background model, and thus the foreground objects are extracted
as outliers. For example, Zhong and Sclaroff [13] utilized a ro-
bust Kalman filter to update the dynamic autoregressive moving
average model iteratively, and to determine a mask image for the
foreground object. Recently, other methods have been explored
as well to depict the foreground object in video data. For exam-
ple, Papazoglou et al. [14] have utilized the motion boundary
and inside-outside maps based on the optical flow to segment
objects in videos. Furthermore, a few methods (e.g. [15]–[17])
incorporate image saliency for video object segmentation, and
several works segment moving objects by spatio-temporal seg-
ment proposals [18]–[21]. In addition, Ramakanth and Babu [22]
have utilized the formulation of seams for temporal label propa-
gation to segment the object in the video sequences. Chen et al.
[23] proposed a moving object segmentation method in video by
utilizing improved point trajectories. Recently, Tsai et al. [24]
have proposed a joint optimization of segmentation and optical
flow scheme which demonstrates its effectiveness in segmenting
objects in videos. Furthermore, Wang et al. [25] have presented
a pyramid histogram based confidence map and also combined
geodesic distance based dynamic models for the video object
segmentation.

Nevertheless, the general problem of the video object seg-
mentation is still a very challenging task, especially for the un-
constrained videos, in which the background may have complex
transformation without a single scene, and the illumination may
change. Moreover, the moving objects undergo non-rigid defor-
mation, and suffer from motion blur or demonstrate the similar
appearance to the parts of the background. Fig. 1 shows several
snapshots for such examples. Under the circumstances, most of
the existing methods cannot work well on such unconstrained
video (e.g. [13], [26], [27]). Our goal is to extract the fore-
ground object automatically from such video sequences without

any user annotation. With the development of the human visual
attention models (e.g. [28], [29]), saliency-based object detec-
tion (e.g. [30]–[38]) is one of the most promising approaches to
AVOS because it is able to obtain desirable prior information for
inferring the region of the foreground object in the videos. Incor-
porating the image or video saliency to estimate the candidate
foreground object is expected to be more effective. However,
estimation of the target object in the video and providing con-
sistent and reliable priors for higher level object segmentation
task is still a challenging problem. As far as we know, few works
only, e.g. [39] [40], have been specifically designed for video
saliency thus far. These methods usually adopt a combination
of the existing image saliency models with motion cues, but the
performance of these methods is insufficient to guide the accu-
rate object segmentation in the video.

In this paper, we will develop a salient object detection
approach featuring higher-detection performance and less de-
manding assumption. The method computes the visual saliency
in each frame using a weighted multiple manifold ranking al-
gorithm. It then computes motion cues to estimate the motion
saliency and localization prior. By adopting a new energy func-
tion, the data term depends on the visual saliency and localiza-
tion priors, and the smoothness term depends on the constraint
in time and space. Compared to the existing counterparts, the
proposed approach automatically segments the persistent fore-
ground object meanwhile preserving the potential shape. We
apply this method to challenging benchmark videos, and show
competent or even better performance than the existing coun-
terparts. In summary, the main contributions of this paper are
two-fold:

1) The proposed method is a weighted multiple manifold
ranking algorithm for the saliency detection, which gives
higher saliency detection performance.

2) We adopt a new energy function to estimate a superpixel-
level object labeling across all frames, which preserves
clear appearance and shape for the salient objects in the
images.

The remainder of this paper is organized as follows: Section II
provides the overview of manifold ranking model, and the graph-
based segmentation. The details of the proposed video object
segmentation method is presented in Section III. In Section IV,
we will evaluate the performance of the proposed approach in
comparison with the existing counterparts. Finally, we draw a
conclusion in Section V.

II. OVERVIEW OF MANIFOLD RANKING AND GRAPH-BASED

SEGMENTATION

This section will make an overview of the manifold ranking
model and the graph-based segmentation.

Manifold Ranking: Manifold ranking is to measure relevance
between the query and the remaining data, which is typically
represented by a weighted graph. The queries are assigned a
positive value and the remaining nodes are ranked with respect
to the queries. He et al. [41] were the first attempt to apply
manifold ranking to the image retrieval and obtained promis-
ing result. In manifold ranking, an image is mapped into a
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Fig. 2. The procedure of the proposed method.

graph with n nodes. Each node corresponds to the image lo-
cation, i.e. image superpixel [42], and the edge link, denoted
as wij , represents the similarity between the node pair (i, j).
W = [wij ]n×n is called the edge affinity matrix, and the de-
gree matrix is D = diag{d11, . . . , dnn}, where dii =

∑
j wij .

Manifold ranking is to compute the rank value fi for each node
in the graph with respect to a query yi. In the following, we
denote f = [f1, . . . , fn]

T . The optimal ranking of queries is to
minimize the following energy function:

∑

ij

wij

(
fi√
dii

− fj√
djj

)2

+ μ
∑

i

(fi − yi)
2 (1)

where μ balances the smoothness constraint (i.e. the first term)
and the fitting constraint (i.e. the second term). The first term en-
sures that the nearby nodes are assigned similar ranking scores,
while the second term ensures that the predicted rank matches
the query. The optimal solution is given in [43], i.e.

f ∗ = (I− αÇ)−1yi (2)

where I is an identity matrix, Ç = D−1/2WD−1/2 is the nor-
malized Laplacian of the graph andα = 1/(1 + μ). This method
has been successfully utilized for image saliency detection in
[44].

Graph-based Segmentation: The image segmentation prob-
lem can be posed as a binary labeling problem. Suppose that the
given image is modeled as a graph, and each node corresponds
to the image location (image pixel or image patch, etc.), as men-
tioned above. The labeling problem is to assign a label li for
each node i ∈ V . That is, li = 1 denotes the foreground, while
li = 0 means the background, and V is the set of all nodes. The
solution L = {li} can be formulated by the following function:

M(L) =
∑

i∈V
M1(li) +

∑

i,j∈N
M2(li, lj) (3)

where N is the set of neighboring pixel pairs, M1(li) is the
data term, encoding the cost when the label of node i is li, and
M2(li, lj) is the smoothness term, denoting the cost of labeling

pixel pairs. This graph-based function can be solved efficiently
via the graph cut [45], [46]. In this paper, we integrate the prior
saliency information into it, and build the constraint model to
boost the performance of the object segmentation in video.

III. THE PROPOSED METHOD

To segment object automatically in video, we will describe
the object via intra-frame and inter-frame analysis, respectively,
in the video. The visual saliency computing is to find the salient
object in the intra-frame, and the motion cues computing is able
to localize the object in the inter-frames. Accordingly, it has
three main steps: (1) visual saliency computing (Section III-
A), (2) motion cues computing (Section III-B), and (3) video
object segmentation (Section III-C). The procedure of the pro-
posed method is illustrated in Fig. 2. Step 1 utilizes the proposed
weighted multiple manifold ranking model to compute the vi-
sual saliency for each frame which provides valuable appearance
prior for the likely foreground regions. Step 2 computes the mo-
tion cues as localization prior based on detection of the motion
saliency and boundary-driven motion. Eventually, we define a
new energy function for our task of video object segmentation
based on the graph model in Step 3. Finally, the segmentation
result is obtained after post-processing. In the following sub-
sections, we will show the details of each step stated above.

A. Visual Saliency Computing

In [44], a ranking method that exploits the manifold structure
data based on color feature for saliency detection is proposed.
However, it is insufficient to distinguish a foreground object in
video by a single feature. To circumvent this problem, we pro-
pose a weighted multiple manifold ranking method which can
effectively combine different features to yield boosted perfor-
mance for the visual saliency detection. The cost function O(f)
considers M manifolds each constructed by the different fea-
ture. The ranking score f can be obtained by minimizing the
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cost function, i.e.

O(f) =

M∑

k=1

⎛

⎝ιk
∑

i,j

wk
ij

⎛

⎝ fi√
dkii

− fj√
dkjj

⎞

⎠

2⎞

⎠

+ μ
∑

i

(fi − yi)
2. (4)

The first term ensures that nearby points are with similar ranking
scores, while the second term ensures that the ranking score
should fit the initial label value yi. ιk is the weight of the kth
feature, and μ is the trade-off for the two terms. The minimum
solution is computed by setting the derivative of the cost function
to be zero. The ranking function is:

f =

(
M∑

k=1

ιk(I− αCk)

)−1

yi, (5)

where I is an identity matrix, Ck = Dk−1/2
WkDk−1/2

is the
normalized Laplacian matrix, and α = 1/(1 + μ). Also, we
rewrite it as:

f =

(
M∑

k=1

ιk(Dk − αWk)

)−1

yi, (6)

where Wk = [wk
ij ]n×n, and wk

ij indicates the edge strength for
each pair of nodes based on the kth feature, α is set at 0.99
to control the balance of two items in manifold ranking cost
function, and μ is set at 0.01.

We first consider the color feature because it is one of the
most important cues in the human vision system. We compute
the average superpixel color and represent the color features
using different color space representations, i.e. RGB, CIELab
and HSV. Next, we utilize the global contrast and local contrast
as color features. The global contrast of the ith superpixel is
given by

DGi = ΣN
j=1d(ci, cj), (7)

where d(ci, cj) denotes the Euclidean distance between the ith
and jth superpixel’s average color ci and cj . The local contrast
of color features is defined as

DLi = ΣN
j=1λijd(ci, cj), (8)

where λij = exp(− 1
δ2c
‖pi − pj‖), pi and pj are the pixel posi-

tions and δc is empirically set at 0.3 thereinafter. Additionally,
we utilize the histogram feature, denoted as

HDi =

N∑

j=1

q∑

k=1

[
(hik − hjk)

2

(hik + hjk)

]

, (9)

where q is the number of histogram bins and we set q at 8. N
is the number of superpixels. Finally, we adopt the histogram of
gradient (HOG) [47] to describe the image features. It can be
noted that the weight of the kth feature (ιk) is set by its individual
saliency detection performance using a small dataset.

The rank value in Eq.(6) indicates the relevance of a node
to the background, and its complement is the saliency measure.

Fig. 3. The result of saliency detection, where the first column is the input
image and the second column corresponds to its visual saliency.

Fig. 4. A snapshot of the results of motion saliency detection, where (a) the
input frame, (b) its optical flow computed in the video sequences, and (c) detected
motion saliency using the color feature.

The visual saliency using the normalized f̄ (i.e. ranging between
0 and 1) is given as:

S(i) = 1− f̄(i), (10)

where i indexes a superpixel node on graph. For instance,

w1
ij = e−

‖ci−cj ‖
δ2 can be defined as the edge strength using the

superpixel’s RGB color feature. An example of the saliency de-
tection is illustrated in Fig. 3.

B. Motion Cues Computing

1) Motion Saliency Detection: We compute the optical flow
for the video sequences using the state-of-the-art algorithm [48],
which allows large displacements between frames and has ef-
ficient implementation (see Fig. 4(b)). In the optical flow field,
the hue of a pixel indicates its direction and the color saturation
corresponds to its velocity.

From the optical flow field, we can observe that the moving
region usually has obvious color feature that makes it stand out
from the background. Based on this property, we propose to
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estimate the motion saliency score for each pixel in terms of
the associated optical flow information. Based on the proposed
algorithm in Eq.(6) and Eq.(10), we apply the color feature to
calculate the motion saliency in the optical flow field. Hence,
Eq.(6) can be simplified as

f = (D− αW)−1yi. (11)

After getting the ranking score f , we can utilize Eq.(10) to com-
pute the motion saliency for each pixel at each frame. A snapshot
of the results of the motion saliency detection is shown in Fig. 4.

2) Boundary-driven Motion Detection: The above motion
saliency can work well when either foreground or background
exhibits dominant motion. However, in the real-world environ-
ment, objects in video sequences may demonstrate various mo-
tion states such as rotational motion, minor motion, or even static
in some frames. To cope with these issues, we consider utilizing
two different factors, i.e., motion boundary and static boundary,
which are complementary and capable of providing strong cue
for object parts of disparate appearance.

The first factor about the motion boundary is estimated by
considering both the gradient and angle of a pixel using its opti-
cal flow information. Generally, the motion boundaries coincide
with the object boundaries. Let�bi be the optical flow at pixel i.
The strength of the motion boundary is defined as:

Bi =
‖��bi‖

exp(−∑ |δθi,j |) (12)

where the numerator is the magnitude of the gradient of the
optical flow for the pixel i, and the denominator denotes the ag-
gregated angle difference between the pixel j and its neighbours
with δθi,j indicating the angle difference of pixel i and j, and
j is the neighborhood of i. The intuitive idea behind Eq.(12) is
that a motion boundary pixel is prone to have much larger mag-
nitude of gradient and different moving direction compared to
its neighbours.

The second factor is to compute the static boundary for the
potential objects in video sequences. Different from the tradi-
tional edge detection approaches, we derive the static boundary
from the contours of superpixels with the help of the saliency
in Eq.(10). The region (i.e. the group of superpixels) covering
the thresholded saliency is selected, then the external boundary
of these superpixels is detected as the static boundary for the
foreground object.

Once the above two factors are computed, it can be regarded
as boundary-driven cue to indicate the moving object. Then,
we need to estimate which pixels are inside the object based
on the point-polygon problem [49]. The idea is that any ray
starting from a point inside the polygon will intersect the polygon
boundary an odd number of times. We utilize the inside-outside
algorithm [14] which provides an efficient implementation for
this problem. An example of the localization prior for the motion
region is illustrated in Fig. 5.

C. Video Object Segmentation

After obtaining the visual saliency and motion cues in a video,
the results are further refined by the graph-based method which

Fig. 5. The result of boundary-driven motion. (a) Input one frame. (b) Su-
perpixels in the frame. (c) Static boundary of the likely foreground regions.
(d) Optical flow of computed in the video sequences. (e) Motion boundary of
the likely foreground regions. (f) Localization prior for the motion region.

formulates image segmentation as a pixel labeling problem.
Each frame is divided to superpixels [42]. Each superpixel de-
noted as oti can take a label lti ∈ {0, 1} indicating the background
or foreground in the tth frame at the ith superpixel. It can be re-
garded as a node in the graph, thus we define the energy function
for the labeling L = {lti}i,t of all superpixels at each frame in
video, i.e.,

M(L) =
∑

i∈V
M1(l

t
i) +

∑

i,j∈N
M2(l

t
i , l

t
j), (13)

where V is the set of all pixels in the video, N consists of the
neighboring superpixels, and i, j index the superpixels.

The data term M1 defines the cost of labeling superpixel i
with label li at each frame. We utilize the Gaussian Mixture
Model (GMM) based on the visual saliency to evaluate how
likely a superpixel belongs to foreground or background. The
data term is defined as:

M1(l
t
i) = −log(U1

i (l
t
i) + γ · U2

i (l
t
i)), (14)

whereU1
i (l

t
i) is the pixel-likelihoods computed from each GMM

of visual saliency. It means that a pixel that has similar vi-
sual saliency to the foreground (or background) will have high
cost if labeled as the opposite value. At each frame t, we es-
timate a foreground GMM model from all superpixels with
high visual saliency value (e.g. say over 0.7) in the video,
weighted by how close in time they are to t. Then, U1

i is com-
puted by the estimated GMM model. U2

i (l
t
i) is the localiza-

tion prior derived from the motion cues, which provides a re-
liable information for the likely foreground objects in a frame,
and U2

i = fmotion + φ(Bm ∩ Bs), where fmotion is the motion
saliency, Bm and Bs are motion boundary and static bound-
ary, respectively. φ(·) is a transformation generating the inside-
outside map from boundary [14]. The parameter γ is a balancing
constant. Similar to [14], we update U1

i (l
t
i) and U2

i (l
t
i) in the

video sequences.
The smooth term M2 consists of two parts which encour-

age label smoothness in time and space, respectively. They are
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Fig. 6. A snapshot of the final segmentation result after post-processing.

given as:

At
i,j(l

t
i , l

t
j) = δ(lti �= ltj)e

−βD1(o
t
i,o

t
j)−D2(o

t
i,o

t
j) (15)

Ht
i,j(l

t
i , l

t+1
j ) = δ(lti �= ltj)e

−βD1(o
t
i,o

t+1
j )−D2(o

t
i,o

t+1
j ) (16)

where δ(·) is the indicator taking values 0 or 1, D1(·) is the
color difference in RGB space, D2(·) is the Euclidean distance
two superpixels, and β is set as the averaged superpixels color
difference of all pairs of neighboring superpixels.

Once we obtain the data term and smooth term for the la-
beling problem, we minimize Eq.(13) with the iterative graph
cut [45], [46], [50], and use the resulting label (i.e. foreground
or background) as the object segmentation at each frame, the
foreground label is used to update the GMM model for image
saliency in U1

i and motion saliency in U2
i . It runs several times

until no foreground rebels change.
After obtaining the segmentation results, we can implement

the post-processing to refine the object shape by utilizing the
composition information of the image regions. Specifically, we
run the forward step on all the video sequences, starting from the
first frame towards the last one. We compare the object appear-
ance in consecutive frames using patch-match algorithm [51]
for quickly computing approximate nearest-neighbor fields be-
tween the pairs of image regions. Additionally, we utilize a mask
transfer method [52] to automatically employ an adaptive stride
size for mask transfer and interpolation estimating the lost parts
for the object (mostly in case of occlusion), thus making the
shape of object in the video sequences become more consis-
tent. A snapshot of the final segmentation result is illustrated
in Fig. 6.

To demonstrate the implementation for the salient object seg-
mentation in the video, we summarize the whole procedure in
Algorithm 1 AVOS as follows:

In the AVOS, Step 1 and Step 2 estimate the saliency-based
multiple weighted manifold ranking and motion saliency, re-
spectively. Step 3 adopts the graph model to label the foreground
object and the background to obtain the salient object segmen-
tation. The last step, i.e. Step 4, is a post-processing procedure
to refine the final segmentation. The complexity of each step in
AVOS algorithm isO(n2),O(n),O(n2) andO(n), respectively.

Algorithm 1: AVOS.
Input: Given the video sequences.
1: Calculate different salient features using Eq. (7-9) and

combine them using Eq. (6); Estimate visual saliency in
each frame using Eq. (10).

2: Compute the motion cues in the adjacent frames using
motion saliency Eq. (11) and boundary-driven cue.

3: Segment the object using an iterative graph cut Eq. (13).
4: Refine the final segmentation through post-processing

procedure.
Output: Object segmentation in each frame.

IV. EXPERIMENTAL EVALUATION

A. Experimental Settings

In this section, we first compare our derived saliency to those
produced by the other saliency detection methods. We utilize the
Precision, Recall andF-measure as evaluation criteria to com-
pare the performance with the existing counterparts. Precision
is the ratio of correctly detected saliency region to the detected
saliency region, while Recall is the ratio of correctly detected
saliency region to the ground truth salient region. They are cal-
culated as follows:

precision =
ΣiGiBi

ΣiBi

recall =
ΣiGiBi

ΣGi
, (17)

where Gi and Bi are the value of the pixel i in the ground
truth image G (i.e. the ground truth annotation of the image
saliency), and binarized saliency image B (i.e. the bina-
rized image of the detected saliency using adaptive thresh-
old method), respectively. Additionally, F-measure is the over-
all performance measurement, which is computed as the
weighted mean between the precision and recall values. It is
given as:

F − measure =
(1 + ρ)× precision× recall

ρ× precision+ recall
, (18)

where ρ is a positive parameter to balance precision over
recall. A larger ρ will emphasize the precise detection of
salient objects. In this paper, we set ρ = 0.3 to emphasize the
precision.

Then, we evaluate the performance of the proposed AVOS
on two video segmentation datasets: SegTrack dataset [7] and
SegTrack v2 [53]. The performance of the video segmentation
is measured by the mean intersection-over-union (mIoU) of the
estimated segmentation and the ground truth across videos, i.e.,

mIoU = mean(
L ∩GT

L ∪GT
) (19)

where L is the labeling result of the proposed method and GT
is the ground-truth labeling in each frame in videos. In addition,
the mean absolute error (MAE) is used as a complementary
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Fig. 7. The results produced by the different methods, where (a) input images, (b) AS [56], (c) CS [58], (d) GS [57], (e) MR [44], (f) SO [55], (g) MBS [59],
(h) the proposed method, and (i) ground truth.

measure. MAE is defined as the average per-pixel difference
between the extracted object map and the ground truth.

In the experiments, we use [42] to generate approximately 200
superpixels for each frame. To compute U1

i (l
t
i) in Eq.(14), we

utilize 8 component GMMs, and γ in Eq.(14) is set at 0.75 by a
rule of thumb. The proposed algorithm is implemented in MAT-
LAB, with C/C++ implementations for critical functions. All
the experiments are executed on an Intel i7, 3.4 GHz processor
with 8 GB RAM.

B. Comparison Among Saliency Detection Algorithms

The proposed method can not only detect saliency in images,
but also extract the salient objects in videos. We first perform the
experiment on the MSRA-1000 dataset, which consists of 1,000
images with accurate human-labelled masks for salient objects
[54]. The proposed method is compared with five state-of-the-
art saliency detection methods: Zhu et al. (SO) [55], Yang et al.
(MR) [44], Jiang et al. (AS) [56], Wei et al. (GS) [57], Goferman
et al. (CS) [58] and Zhang et al. (MBS) [59]. The SO method uti-
lizes an optimization framework to combine multiple low level
cues to generate the saliency map, and the GS method adopts the
boundary priors. The MR method is more related to ours, but it
computes the saliency based on color feature only. Furthermore,
the AS method detects the salient objects on multiple scales
of the context. The CS method is a classical approach that uti-
lizes the local and global factors and associated them with the
high-level visual patterns to obtain image saliency. Differing
from the works mentioned above, the proposed method effi-
ciently and effectively incorporates various salient features with

the different weights to generate the image saliency based on
the manifold ranking.

Fig. 7 shows a snapshot of the image visual saliency us-
ing the different methods, where brighter pixels indicate higher
saliency probabilities. It can be seen that the proposed method
was capable of extracting visual salient regions, even for images
with complicated background (e.g. bird). Overall, the estimated
saliency by the proposed method provides more clear shape
and appearance information which is beneficial for inferring the
region of foreground object in the video sequences. Thus, it
would bring less incorrect prior to the segmentation procedures.
Later, we will verify that the use of our derived visual saliency
along with motion cues would produce promising segmentation
results.

The resulting Precision, Recall and F-measure are shown in
Fig. 8, which provides a reliable comparison of how well vari-
ous visual saliency highlight salient regions in the images. The
proposed saliency method achieves the best performance up to a
precision rate above 90%, which indicates our saliency maps are
more precise and responsive to the foreground object in images.

C. Salient Object Segmentation

The proposed method is able to produce object segmenta-
tion results for video sequences in a fully unsupervised way. We
compare the proposed method with the existing four compet-
ing ones, which are the most closely related works published
in recent years. That is, we first consider the approach of pro-
posed in [21], which aims at discovering the key segments across
video frames as foreground objects using multiple appearance
and motion cues. Then, we compare the most recently proposed
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TABLE I
COMPARISON RESULTS BETWEEN THE PROPOSED METHOD AND THE FOUR COMPETING ALGORITHMS ON TWO DATASETS IN TERMS OF MIOU

Fig. 8. The performance of seven methods measured by Precision, Recall and
F-measure.

method which jointly optimizes optical flow and video segmen-
tation [24] and one appearance model [25]. Finally, we compare
the proposed method to three saliency-based approaches in [16],
[15] and [34], respectively.

In this section, we first evaluated the proposed method on a
small dataset, named Segtrack [7], which consists of six videos
(birdfall, cheetah, girl, parachute, monkeydog, penguin) and
the segmentation ground-truth for each video is available. The
videos offer various challenges such as large camera motion
(girl), large shape deformation (monkeydog) and low-contrast
between the background and foreground (cheetah). Following
[21], we discarded the penguin video because only a single pen-
guin is labeled as the foreground amidst a group of penguins.

The comparison results between the proposed method and the
above four competing ones are shown in Table I. It can be seen
that the performance of the proposed method is comparable on
most of the video sequences. The proposed method can handle
videos captured by freely moving camera (e.g. girl), or with
shape deformation motion (e.g. monkeydog), and videos with
low contrast (e.g. cheetah). It outperforms the other methods
because it is able to obtain better boundary for video object.

As for the NLC method [16], its random-walk transition ma-
trix is robust against fast motion and achieved promising re-
sults. The method [24] also had competent performance. It builds
a multi-level spatial-temporal graphical model with the use of
optical flow and supervoxels, and jointly optimizes the model.
Thus, both the segmentation and optical flow results can be im-
proved by iteratively updating both models. Nevertheless, if the

object mask for all frames is not accurate, the objects cannot be
segmented correctly in the whole frames. Hence, the estimation
of object mask in their method needs to be improved.

Furthermore, it is observed that the method of [21] tends to
estimate the objectness for ranking their image segmentation
results. This approach had high mis-segmentation rates for the
sequence cheetah because it detected the background region as
the foreground. In [15], it focuses on the estimation of spatiotem-
poral saliency and global appearance for the foreground object,
and the results can be improved by comprehensive utilization of
visual features, e.g. textures and shapes. The paper [25] needs
the labeling work before the object segmentation, but the result
is also favorable.

Fig. 9 shows a snapshot of video frames. Our method accu-
rately segments the foreground object in these videos. In general,
compared with the results from [15], [16], [21], [24], [25], [34],
the proposed method performs well on this dataset. It is able to
extract the foreground object effectively regardless of its various
motion, and the segmented object demonstrates good boundary
and appearance.

In the experiments, it is found that the motion cues play an
important role in detecting of foreground objects in a video, es-
pecially when the visual saliency in the frame is not obvious.
This is true for the birdfall sequences, in which the foreground
object has prominent motion patterns compared to its surround-
ing while the saliency difference is insufficient. Fortunately, the
motion cues of the bird in the video provide strong prior for
its identifying. In the girl sequences, the visual saliency is clear
and provides the appearance of the girl, but the motion cues may
result in some obscure shape for the girl due to the inaccurate
optical flow. However, by combining the visual saliency with
motion cues, the proposed model can produce the satisfying re-
sult. Based on the prior analysis, we can have a conjecture that
neither of these cues alone does not suffice to generate good seg-
mentation results. Although the motion cues are able to give ef-
fective guidance for inferring the foreground object in the video,
it is unwise to excessively dependent on them. We should utilize
various features in spatial and temporal space, which usually
provide more promising results.

We further carried out experiments on SegTrack v2 [53] and
DAVIS [60] which are two more larger video segmentation
dataset with full pixel-level annotations at each frame within
each video. We compared our method with [15], [16], [21], [24],
[25], [34] as well. The mIoU rates and MAE for different meth-
ods are shown in Table II.

The results in [15], [21] are not good because the foreground
objects in some sequences have low contrast with the back-
ground or variable shape. The models are unable to obtain correct
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Fig. 9. A snapshot of segmented objects using the different methods on video frames in SegTrack dataset. (a) Input video frames, (b) KEY [21], (c) NLC [16],
(d) SAL [15], (e) OF [24], (f) CVS [34], (g) SVC [25], and (h) our method.

TABLE II
COMPARISON RESULTS OF THE PROPOSED METHOD AND THE FOUR

COMPETING ONES ON SEGTRACK V2 DATASET IN TERMS OF MIOU AND MAE

segments which are crucial for reliable estimation (e.g. the ap-
pearance estimation). The work [16] achieves the promising re-
sults, but it may fail in discovering the foreground objects when
handling object that has similar appearance with background.
The recent approach [24] obtains impressive segmentation re-
sults on these datasets. It works well under the condition of

good optical flow estimation. Nevertheless, it is usually unable
to segment the objects in case of the drift motion (e.g. ‘drift-turn’
video). In contrast, the proposed method can tolerate this by in-
corporating the visual saliency that does improve the quality of
foreground object estimation.

We show the segmentation results obtained from the different
approaches in Fig. 10. Furthermore, we demonstrate more ex-
amples to extract the different objects in varied scenes in Fig. 11.
It should be noted that the proposed method would fail to work
when part of the foreground object is more salient because the
estimation of the visual saliency may be incorrect, as shown in
Fig. 12.

D. Discussion

The visual saliency and the motion are two key factors that
contribute to a good segmentation of the objects in the video. It
is observed that the saliency tends to treat foreground as a whole,
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Fig. 10. A snapshot of the segmented objects using the different methods on video frames in SegTrack v2 and DAVIS datasets. (a) Input video frames, (b) KEY
[21], (c) NLC [16], (d) SAL [15], (e) OF [24], (f) CVS [34], (g) SVC [25], and (h) our method.

Fig. 11. A snapshot of the segmented objects on video frames

and provides preliminary prior information for the object, such
as shape and appearance. Thus, it will be very useful for unsuper-
vised methods to detect the foreground object properly. When
facing the challenging foreground and background, it might re-
quire one to observe both visual and motion cues together. In
such cases, improved segmentation result is expected by utiliz-
ing the trajectory information of the extracted visual saliency and
motion cues to determine the true foreground object. Compared
with the methods [15], [16], the proposed method can generate

Fig. 12. One failure case with the proposed method, where the left column
is the segmented object (marked in orange) and the right column is the ground
truth.

much better boundary for the object, and the estimation of mo-
tion cues is more robust as well. This superiority is important
for the object segmentation in various scenes in videos (e.g. in
DAVIS dataset).

As for the computation time of the proposed method in com-
parison with the counterparts, Table III shows the average run-
ning time of the different methods running at a machine with an
Intel Dual Core i7-3770 3.40 GHz CPU. It can be seen that the
proposed method is still acceptable and would be further accel-
erated if GPU technique is used, which is, however, beyond the
scope of this paper. We will therefore leave this issue elsewhere
in our future studies.
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TABLE III
AVERAGE RUNNING TIME OF THE PROPOSED APPROACH AND ITS COUNTERPARTS (SECONDS PER IMAGES)

V. CONCLUSION

In this paper, we have presented a new approach to automatic
video object segmentation based on visual and motion saliency.
Given a video sequence, the proposed method first computes
the visual saliency to identify object-like regions in each frame
by the proposed weighted multiple manifold ranking algorithm
which combines different features to distinguish the foreground
object from the background. We then compute motion cues to
estimate the motion saliency and localization prior. Finally, to
extract the salient object across all frames, we have designed
a new energy function consisting of two terms. The first one
is the data term depending on the visual saliency and localiza-
tion priors, while the second term is the smoothness term de-
pending on the time-space constraint. The experimental results
have shown the effectiveness and robustness of the proposed
method on benchmark datasets in comparison with the existing
counterparts.
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