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Facial Expression Guided Diagnosis of Parkinson’s
Disease via High-Quality Data Augmentation
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Abstract—Parkinson’s disease (PD) is a neurodegenerative
disease which is prevalent among the elder population and
severely affects the life quality of patients and their families.
Therefore, it is important to conduct an early diagnosis for
potential patients with PD, so as to promote prompt treatment
and avoid the aggravation of the disease. Recently, the in-vitro
PD diagnosis based on facial expressions has received increasing
attention because of its distinguishability (i.e., PD patients always
possess the characteristics of “masked face”) and affordability.
However, the performance of the existing facial expression-based
PD diagnosis approaches is limited by: 1) the small-scale training
data on PD patients’ facial expressions, and 2) the weak prediction
model. To address these two problems, we propose a new facial
expression guided PD diagnosis method based on high-quality
training data augmentation and deep neural network prediction.
Specifically, the proposed method consists of three stages: Firstly,
we synthesize virtual facial expression images with 6 basic emotions
(i.e., anger, disgust, fear, happiness, sadness, and surprise) based on
multi-domain adversarial learning to approximate the premorbid
expressions of PD patients. Secondly, we introduce three facial
image quality assessment (FIQA) criteria to measure the quality
of these synthesized facial expression images and design a fusion
screening strategy that shortlists the high-quality ones to augment
the training data. Finally, we train a deep neural network
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prediction model based on the original and synthesized high-
quality facial expression images for PD diagnosis. To show real-
world impacts and evaluate the proposed method under different
facial expressions, we also create a (currently largest) multiple
facial expressions-based PD face dataset in collaboration with a
hospital. Extensive experiments are performed to demonstrate the
effectiveness of the multi-domain adversarial learning-based facial
expression synthesis and the fusion screening strategy, particularly
the superior performance of the proposed method for PD diagnosis.

Index Terms—Data augmentation, deep learning, multi-domain
adversarial learning, Parkinson’s disease diagnosis.

I. INTRODUCTION

PARKINSON’S disease (PD) is a neurodegenerative dis-
ease characterized by motor symptoms (e.g., rest tremor,

bradykinesia, and hypomimia) and non-motor symptoms like
hyposmia, cognitive impairment, and sleeping disorders, just to
name a few [1]. Also, it seriously and adversely influences the
life quality of PD patients and their families. According to the
statistics in [2], PD has already become the second most common
type of neurodegenerative diseases only after the Alzheimer’s
disease (AD). Moreover, the reports in [3] and [4] show that PD
affects more than 6 million individuals around the world, which
results in a 2.5-times increase in prevalence over the past 30
years. Although it is universally accepted that there is no elixir
for PD at the current stage, the early diagnosis and prompt treat-
ment of PD are essential to alleviate the symptoms and avoid
the progression of disease [5], [6], [7], [8].

Generally, PD diagnosis can be categorized into two types,
i.e., the in-vivo PD diagnosis and the in-vitro PD diagnosis.
The former is mainly carried out based on professional imag-
ing diagnostic devices such as positron emission tomography
(PET) [9]. Although this in-vivo diagnosis way can achieve
a high PD diagnosis accuracy, it still has two drawbacks:
1) Inconvenience—The professional in-vivo PD diagnostic de-
vices are always scarce in developing or poverty areas [10].
Also, it is inconvenient for the elderly in these areas to travel
a long distance to the hospitals in developed areas for an in-
vivo PD diagnosis, especially during the COVID-19 pandemic.
2) Expensive—The cost of the in-vivo PD diagnosis using PET
is usually expensive and may not be affordable for every family.
By contrast, the latter PD diagnosis has become popular recently,
as it only collects in-vitro biomarkers, e.g., speech signal [11],
[12], [13], [14], [15], [16], [17], gait signal [5], [18], [19], [20],
[21], [22], [23] or facial expression [24], [25], [26], [27], [28],
from PD patients, which is convenient and affordable.
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Fig. 1. A comparison between the masked faces of PD patients and the facial
expression images of normal persons under six basic emotions (i.e., anger, dis-
gust, fear, happiness, sadness, and surprise). To avoid disclosure of PD patients’
identity information, we cut out the eye regions of their facial expression images
in the illustration.

Among the above-mentioned three in-vitro biomarkers, fa-
cial expression is the most favorable one because it does not
require professional sensors like the gait signal. Besides, the
speech signal can be severely influenced by the inconsistency of
acoustic characteristics among different language speakers [15].
The rationality of using facial expression to diagnose PD lies in
the observation that PD patients always possess “masked face”
characteristics (or academically called hypomimia1) [26], [29].
A comparison between the masked faces of PD patients and the
facial expression images of normal persons under six basic emo-
tions (i.e., anger, disgust, fear, happiness, sadness, and surprise)
is illustrated in Fig. 1. It can be observed that the PD patients suf-
fer from obvious expression disorder and cannot express emo-
tions as naturally as normal persons. The inspiring observation
therefore motivates humans to conduct early PD diagnosis of
potential PD patients based on their facial expressions.

Despite some success achieved by the existing facial
expression-based PD diagnosis techniques [24], [25], [30], [31],
these techniques still suffer from three major limitations, with
each corresponding to one key challenge. Firstly, existing tech-
niques are designed for handling simplex facial expression, e.g.,
smiling, but cannot generalize to the other expressions, as there
is no multiple facial expressions-based PD face dataset available
for study nowadays. Secondly, the existing techniques often en-
counter over-fitting problem during training process due to the
small-scale PD training dataset. Lastly, the existing techniques
usually predict PD in a two-step procedure, i.e., feature extrac-
tion + classification, and are based on the weak conventional
handcrafted feature extraction models (e.g., local binary pattern
and gray-level co-occurrence matrix).

To address the above-mentioned three challenges, we first
create a multiple facial expressions-based PD face dataset in
collaboration with the affiliated hospital of Nanchang Univer-
sity for in-vitro PD diagnosis research. This dataset consists of
95 PD patients with each having seven basic types of facial ex-
pressions (i.e., neutral, anger, disgust, fear, happiness, sadness,
and surprise). Furthermore, we propose an effective in-vitro PD
diagnosis approach that is capable of handling multiple facial
expressions of potential PD patients, based on a novel train-
ing data augmentation strategy and an end-to-end deep neu-
ral network PD prediction model. As illustrated in Fig. 2, the

1This indicates the reduction or loss of spontaneous facial movements and
facial expressions in PD patients

proposed method consists of three stages: Firstly, we synthesize
multiple identity-preserved facial images of PD patients with
6 basic emotions (i.e., anger, disgust, fear, happiness, sadness,
and surprise) by utilizing the star generative adversarial net-
work (StarGAN) [32] based on multi-domain adversarial learn-
ing [33], [34], [35], in order to estimate the premorbid facial
expressions of these PD patients. Secondly, we introduce three
facial image quality assessment (FIQA) criteria to quantitatively
measure the quality of the synthesized facial expression images
and design a fusion screening strategy to shortlist high-quality
ones to augment the training data. Finally, we train an end-to-end
deep neural network prediction model based on the original and
high-quality synthesized facial expression images for PD diag-
nosis.

We summarize the contributions of this paper as follows:
� We create a PD facial expression dataset containing mul-

tiple facial expressions (i.e., neutral, anger, disgust, fear,
happiness, sadness, and surprise) of 95 PD patients, which
is currently the largest facial expression dataset for in-vitro
PD diagnosis research.

� We introduce three FIQA criteria to measure the quality of
the synthesized premorbid facial expression images of PD
patients and design a fusion screening strategy to shortlist
high-quality ones to augment the training data.

� We propose a new facial expression guided in-vitro PD
diagnosis method, which adopts an end-to-end deep neural
network prediction model trained on the augmented PD
training data for PD diagnosis.

� We conduct extensive experiments to demonstrate the ef-
fectiveness of the high-quality PD training data augmen-
tation strategy (i.e., StarGAN-based facial expression syn-
thesis + fusion screening strategy), and the superior per-
formance of the proposed method for PD diagnosis.

The rest of this paper is organized as follows. In Section II, we
make an overview of the related works on in-vitro PD diagnosis.
In Section III, the technical details of the proposed facial ex-
pression guided in-vitro PD diagnosis approach are elaborated.
In Section IV, extensive experiments are conducted to demon-
strate the effectiveness of the proposed method. In Section V,
we present the conclusions and future works.

II. RELATED WORKS

Compared to in-vivo PD diagnosis techniques which are
mainly based on expensive imaging diagnostic instruments, the
in-vitro diagnosis approaches require only the collection of the
in-vitro biomarkers from PD patients, which is more convenient
and cheaper. Generally, the most commonly used biomarkers for
PD are: speech signal [11], [12], [13], [14], [15], [16], [17], gait
signal [5], [18], [19], [20], [21], [36] and facial expression [24],
[25], [26], [27], [28]. In the following, we make an overview
of some representative in-vitro PD diagnosis approaches in the
literature.

A. In-Vitro PD Diagnosis Based on Speech Signal

Based on the observation that nearly 90% of the PD pa-
tients suffer from dysarthria and vocal impairment in the early
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Fig. 2. An overview of the flowchart of the proposed PD diagnosis method based on facial expressions.

stage [11], some attempts [11], [12], [13], [14], [15] have been
made to conduct PD diagnosis using the speech signals. In these
works, the robust voice features have been extracted and com-
bined with machine learning techniques to conduct the PD di-
agnosis. In [12], a method which combines minimum-average-
maximum-tree with singular value decomposition is proposed
for the extraction of voice features. After that, the popular
K-nearest neighbor classifier is utilized to classify PD patients
and normal persons. In [13], speech features are extracted via
principal component analysis (PCA) and fed into the random
forest classifier for classification. In [11], feature extraction is
realized using the tunable Q-factor wavelet transform, which
has higher frequency resolution than the classical transform and
thus can capture discriminative information. It is worth noting
that, although speech signals are easy to be collected, the lan-
guage bias would degrade the PD diagnosis performance [15].
Specifically, it is reported in [15] that native Mandarin speak-
ers with PD exhibit significant differences in acoustic features
from native English speakers with PD. Therefore, the relatively
low robustness and adaptability of the speech signals-based PD
diagnosis may not meet the actual diagnostic requirements.

B. In-Vitro PD Diagnosis Based on Gait Signal

Motor symptoms such as bradykinesia, rigidity, tremor, and
postural instability define the diagnosis of PD [37]. Motor im-
pairment leads to specific gait characteristics in PD, such as
shuffling gait, reduced step length, impaired gait initiation, and
reduced gait speed [38]. In practice, the statistics of the poten-
tial PD patients’ gait patterns (e.g., gait speed, swing time, step
length) can be collected using biosensors. For example, Barth
et al. [18] employed the mobile and lightweight sensors to record
the gait signals and used the Fourier transform to perform a fre-
quency based analysis. In [19], various multi-dimensional sen-
sors are inserted into shoe insoles of subjects to collect signals
and tensor decomposition is then applied on the multi-sensors
data to identify potential PD patients. In [20], temporal features
including the stance phase, swing phase, and stride time of the

gait signals are employed to distinguish between PD patients
and normal persons. In [21], correlation-based features are ex-
tracted from gait signals which are collected by a more sophis-
ticated sensor (i.e., the vertical ground reaction force sensor).
After that, the classical support vector machine (SVM) algo-
rithm is then employed for PD/non-PD classification based on
these features.

Despite that gait signal is a robust biomarker for the in-vitro
diagnosis of PD, the wearable sensors are diverse and expensive.
Moreover, wearing a lot of sensors may cause inconvenience and
discomfort in the elderly.

C. In-Vitro PD Diagnosis Based on Facial Expression

The rationality of the facial expression-based PD diagnosis
lies in the observation that PD patients always possess the char-
acteristics of “masked face” [26], [29]. In [26], it is found that the
distances of facial movements of PD patients are much smaller
than those of normal people after quantitatively analyzing the
geometric features extracted from expression video. Moreover,
it is reported in [39] that PD patients usually have a lower expres-
sivity in exhibiting some facial action units (e.g., brow lowerer,
nose wrinkler, upper lip raiser).

Recently, some in-vitro PD diagnosis methods based on fa-
cial expressions have been developed. In [28], a PD diagno-
sis method is proposed by recording specific facial expressions
of patients using video. Both geometric feature based on cor-
ner angles of landmarks and texture feature based on gray-level
co-occurrence matrix (GLCM) are fed into the SVM classifier
to conduct classification [28]. In [24], the variances of facial
features in selfie photos within a time period are utilized to au-
tomatically assess the severity of PD. In [25], Jin et al. collect
videos of PD patients with smiling expressions and conduct fea-
ture extraction according to the expression amplitude and degree
of tremor for PD diagnosis. In [27], Rajnoha et al. use one static
face image per subject for training the decision tree classifier,
which obtains a poor PD diagnosis accuracy of 67.33%. It is ob-
vious that the performance of the above PD diagnosis methods
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Fig. 3. An illustration of the working mechanism of the generator and dis-
criminator in StarGAN network.

is far from satisfactory. The reasons can be twofold: 1) the train-
ing data of the facial expressions of PD patients is small which
would easily cause the over-fitting problem; 2) the prediction
models based on conventional machine learning methods are
weak and cannot extract high semantic features for classifica-
tion. To address the above issues, we create a facial expression
image dataset containing both the neutral and all 6 basic emo-
tional images of 95 PD patients, and it is currently the largest
facial expression dataset of PD patients to the best of our knowl-
edge. Furthermore, we propose a new facial expression guided
in-vitro PD diagnosis method by further augmenting the train-
ing data and adopting the powerful deep neural network as the
prediction model.

III. THE PROPOSED METHOD

The proposed facial expression guided in-vitro PD diagnosis
method consists of three stages, as illustrated in Fig. 2. Firstly, we
adopt the powerful StarGAN to synthesize the premorbid normal
facial expression images of the PD patients. Then, we introduce
three FIQA criteria to measure the quality of these synthesized
facial expression images and design a fusion screening strategy
that shortlists the high-quality ones to augment the training data.
Finally, we train a ResNet-based deep neural network based on
the mixture of the original and synthesized high-quality face im-
ages for PD prediction. The technical details of the three stages
are elaborated in Sections III-A, III-B, and III-C, respectively.

A. Facial Expression Synthesis Via StarGAN

Adversarial learning can be utilized to synthesize virtual im-
ages based on a two-player game between the generator and
discriminator [40]. In this stage, we adopt a multi-domain adver-
sarial learning-based StarGAN [32] to perform multiple facial
expression synthesis considering that StarGAN is good at resolv-
ing the multi-domain image-to-image translation problem [41],
[42], [43]. In image-to-image translation field, the term domain
is denoted as a set of images sharing the same attribute value,
and the term attribute is denoted as a meaningful feature inherent
in an image such as gender, age, or facial expression. The work-
ing mechanism of the generator and discriminator in StarGAN
is illustrated in Fig. 3. Note that, the generator in StarGAN is
composed by a series of convolutional layers and residual blocks,
and the discriminator in StarGAN is similar to that of [44] which
classifies each local patch of the input image as real or fake.

StarGAN Training: During the training phase in the stage,
three well-designed losses, i.e., adversarial loss, classification
loss, and reconstruction loss, are combined to optimize the Star-
GAN model. The details of the above three losses are presented
thereinafter.

1) Adversarial Loss: To stabilize the training process and
meanwhile promote the quality of synthesized images, the adver-
sarial loss [45] is introduced into the StarGAN model as follows:

Ladv = Ex [Dsrc(x)]− Ex,c [Dsrc (G(x, c))]

−λgpEx̂

[
(‖�x̂Dsrc (x̂)‖2 − 1)2

]
, (1)

where D denotes the discriminator of StarGAN and G is the
generator; x and c represent the real image and the target domain
label, respectively; x̂ is sampled uniformly within a pair of real
and synthesized images;Dsrc(x) is referred to as the probability
distribution over source images; and λgp represents the hyper-
parameter of the gradient penalty.

2) Classification Loss: In addition to determining whether an
image is real or synthesized, the discriminator of the StarGAN
also aims to predict the domain label of the image, analogous to
ACGAN model [46]. The classification loss of the StarGAN is
presented as follows:

Lcls = Ex∗,c∗ [−logDcls (c
∗ | x∗)] , (2)

where Dcls(c
∗ | x∗) corresponds to the probability distribution

over domain labels computed by D; x∗ represents either the real
image or the synthesized image; and c∗ denotes the correspond-
ing domain label.

3) Reconstruction Loss: In order to guarantee that generated
images preserve the identity of their input images while changing
the domain-related part of the inputs, StarGAN applies a cycle
consistency loss [47] to the generator G, defined as

Lrec = Ex,c,c′ [‖x−G (G(x, c), c′)‖1] , (3)

where c′ denotes the original domain label and ‖ · ‖1 represents
the conventional L1-norm.

Based on (1)-(3), the total loss of the StarGAN model is sum-
marized as follows:

Lstargan = Ladv + λclsLcls + λrecLrec, (4)

where λcls and λrec are two hyper-parameters weighting the
classification and reconstruction loss, respectively.

StarGAN Testing: In the testing phase, the neutral facial
expression image of one PD patient is fed into the generator
to synthesize multiple identity-preserved facial expression im-
ages depicting 6 basic emotions including anger, disgust, fear,
happiness, sadness, and surprise. This synthesis procedure is
formulated in (5) as follows:

IexprPD = G
(
IneutralPD , cexpr

)
, (5)

where G is the trained generator, IneutralPD indicates the neutral
facial expression image of the PD patient, cexpr denotes the
target expression label, and IexprPD denotes the corresponding
synthesized facial image with the target expression.
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Fig. 4. An illustration of the FIQA on facial symmetry. The example face
image is from the public RaFD [48] dataset.

B. FIQA Criteria and Fusion Screening Strategy

After obtaining the synthesized facial expression images of
the PD patients, we aim to judge which images are of high quality
and then screen them out to facilitate the next stage of training. To
this end, we introduce three FIQA criteria, i.e., facial symmetry,
image sharpness, and FaceQnet, to measure the image quality,
and develop a simple but effective fusion screening strategy by
weighting the above three criteria. Specifically, the details of
the three FIQA criteria and the fusion screening strategy are
described in the following.

1) Facial Symmetry: The face misalignment and tilted posture
would easily cause performance degradation in facial expression
recognition [49]. In the case, we thus adopt the facial symmetry
criterion to measure the quality of the synthesized image. Fig. 4
gives an intuitive illustration of how facial symmetry is mea-
sured. First, the coordinates of facial landmarks are acquired by
facial landmark detection. The line connecting the landmarks
“nose_bridge1” and “nose_middle_contour” is taken as the
midline of the face, dividing it into the left region and the right
region. For each key point selected from the left region (e.g., L1

in Fig. 4), its corresponding symmetric point is projected into
the right region (see P ′

1 in Fig. 4). Subsequently, the distance
between the landmarks in the right region (i.e., P1 in Fig. 4)
and those symmetric points P ′

1 is used to measure the facial
symmetry, which is calculated as

QSSymm(I) = 1−Norm

(
N∑
i=1

d (Pi, P
′
i)

)
, (6)

where I denotes the input query image, Pi denotes the ith land-
mark chosen in the right region and P ′

i denotes the symmetric
point of its corresponding landmark from the left region. d(·)
represents the distance between two points. N corresponds to
the number of landmark pairs in the whole face region for qual-
ity assessment. Norm(·) indicates the normalization operation
that keeps the score in the range of [0, 1], which is calculated as
Norm(S) = S−min(S)

max(S)−min(S) . Note that the larger the value of
QSSymm is, the better facial symmetry the query image has.

2) Image Sharpness: Blur occurs ubiquitously in both real
images and synthesized ones, adversely influencing the perfor-
mance of face recognition. Hence, sharpness is one of the most
crucial factors of image quality. In this study, the conventional

Brenner function [50] is adopted to assess the sharpness of gen-
erated facial expression images due to its merits of low compu-
tational cost and high efficiency. Subsequently, we measure the
image sharpness by using the Brenner algorithm to accumulate
the squares of difference of horizontally neighboring pixels as
follows:

QSSharp(I) = Norm

(∑
x

∑
y

[I (x+ 2, y)− I(x, y)]2
)
,

(7)
where I(x, y) represents the grayscale value of point (x, y) of
an M-by-N image. The quality scores are also normalized to [0,
1]. The larger the value of QSSharp is, the higher sharpness (or
less blur) the query image possesses.

3) FaceQnet: FaceQnet [51] is a popular learning-based net-
work because of its unbiased quality label and elaborately-
designed architecture. The overall architecture of the FaceQnet
is illustrated in Fig. 5. In this case, we adopt the FaceQnet to
measure the quality of a query synthesized image through the
following two steps:

Groundtruth quality score generation: In the first, we gen-
erate the scores for the groundtruth images for reference. For
each subject, the image with the highest International Civil
Aviation Organisation (ICAO) compliance score obtained by
the BioLab framework [52] is selected as the gallery image
(i.e. assumed high quality), and others are probe images. Then,
128-dimensional feature vectors are extracted from these probe
images and their corresponding gallery images by the popu-
lar FaceNet model [53]. Subsequently, the groundtruth quality
scores can be obtained by computing the similarity between the
gallery image and other samples of the same identity, which is
presented as follows:

QSFaceQnet(I) = Norm (D (VI , VG)) , (8)

whereQS(I) represents the quality score of a query image I , VI

and VG denote the feature vectors of this image and the gallery
image of the same identity, respectively.D(x, y) denotes the Eu-
clidean distance between the vectors x and y. For QSFaceQnet,
the value close to 1 represents high quality while the one close
to 0 represents low quality.

Query quality score prediction: Subsequently, we train a
convolutional neural network (CNN)-based model to predict
the quality score of a query synthesized image. The pre-trained
ResNet-50 in [54] is adopted as the backbone and the classifica-
tion layer of it is replaced with two fully connected (FC) layers.
Specifically, the former FC layer reduces the dimension of the
feature vector from 2048 to 32, followed by a rectified linear
unit (i.e. ReLU) activation function, and the latter acts as an out-
put layer of size 1. We fine tune the parameters of the two FC
layers based on the groundtruth data while freezing the parame-
ters in the previous layers. The final architecture of FaceQnet is
shown in Fig. 5. With the trained end-to-end FaceQnet model,
we could acquire a score between 0 and 1 of an input query
image for quality assessment.

4) Fusion Screening Strategy: Based on the above-mentioned
three FIQA criteria, we develop a simple but effective fusion
screening strategy to shortlist the high-quality facial expression
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Fig. 5. An illustration of the overall architecture of the FaceQnet.

images by considering both the analytics-based FIQA criteria
(i.e., facial symmetry and image sharpness) and the learning-
based FIQA criterion (i.e., FaceQnet). Specifically, we first as-
sign weights to the scores output from the above three FIQA
criteria and then sum them up. Formally, this weighted fusion
score is calculated as follows:

QSFusion = Norm(c1QSSymm + c2QSSharp

+ c3QSFaceQnet), (9)

where QSSymm, QSSharp and QSFaceQnet are three different
quality scores associated with the facial symmetry, the image
sharpness, and the FaceQnet, respectively. c1, c2 and c3 are three
weighting coefficients. The value of QSFusion is also normal-
ized to [0, 1].

After obtaining the weighted fusion score of each synthesized
facial expression image, we then sort all of them in the reverse
order according to their scores and then shortlist the high-quality
ones by defining a reasonable screening threshold.

C. PD Prediction Model Based on ResNet-18

In this stage, we adopt the ResNet-18 network [54] as the
backbone of the PD prediction model, whose architecture is il-
lustrated in Fig. 6. Technically, the network consists of 8 residual
blocks. Within each block, a convolution operation with a ker-
nel size of 3 is applied, followed by batch normalization (i.e.,
BN) [55] and ReLU activation. For each hidden layer, the out-
put are pulled back by BN to the standard normal distribution
with a mean of 0 and variance of 1. In this way, the input value
of the nonlinear transformation function represented by ReLU
can be restricted into a sensitive area, and the gradient vanish-
ing problem can be effectively alleviated. Moreover, shortcut
connections skipping two layers are additionally constructed in

the network to avoid performance degradation brought by more
layers. At the end of the network, the classification layer of the
original ResNet-18 is substituted with two FC layers: the former
is to reduce the dimension of the feature embedding from 512
to 256, and the latter receives the 256-dimensional feature and
outputs a 2-dimensional feature vector.

In training of the PD prediction model, the original facial ex-
pression images and the high-quality synthesized (premorbid)
facial expression images of the training PD patients are fed into
the network, while the output is a vector of two elements indi-
cating the probabilities of being PD/non-PD.

IV. EXPERIMENTAL RESULTS

In Section IV-A, we first introduce our created PD facial ex-
pression dataset of PD patients and another four public facial
expression datasets of normal persons. We then introduce the
implementation details and parameter settings of our proposed
method in Section IV-B. Subsequently, we conduct the follow-
ing experiments to demonstrate the effectiveness of the proposed
method.

1) In Section IV-C, we evaluate the synthesized facial ex-
pression images of PD patients by StarGAN.

2) In Section IV-D, we evaluate the introduced three FIQA
criteria, i.e., facial symmetry, image sharpness, and Face-
Qnet, and the designed fusion screening strategy for short-
listing high-quality synthesized images.

3) In Section IV-E, we evaluate the performance of our pro-
posed method for PD diagnosis and compare with the
state-of-the-art counterparts.

4) In Section IV-F, we perform an ablation study to investi-
gate the roles of the facial expression image synthesis by
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Fig. 6. An illustration of the PD prediction model based on ResNet-18.

StarGAN and the fusion screening strategy on the perfor-
mance of the proposed method.

A. Datasets Descriptions

In this subsection, we first introduce our created PD facial
expression (PDFE) dataset of PD patients, and then describe the
other four public facial expression datasets of normal persons,
i.e., CK+, RaFD, Oulu-CASIA and Tsinghua-FED.

1) The PDFE dataset: This dataset is collected by our group
from an on-going population-based PD study, which has been
carried out at the affiliated hospital of the Nanchang University.
This dataset contains 95 PD patients (including 55 male and
40 female), in which the average age of these patients is 62.7
with a standard error of ± 9.9. For each patient, there are seven
images captured by a CANON EOS 5D Mark III DSLR camera
equipped with the EF 24-70 mm f/2.8 L II USM lens, which
represent the neutral expression and another 6 types of basic
facial expressions (i.e., anger, disgust, fear, happiness, sadness,

and surprise). To the best of our knowledge, this PDFE dataset
is currently the largest PD facial expression dataset for PD di-
agnosis. It is worth noting that, the data collection and use have
obtained the informed consent of all involved PD patients. In
order to avoid disclosure of these PD patients’ identity infor-
mation, the eye regions are removed from both the original and
synthesized facial expression images of the PD patients in the
following illustration figures.

2) The CK+ dataset: The CK+ dataset [56] is an extended
version of the original Cohn-Kanade dataset. It contains 593
image sequences from 123 identities. Each image sequence starts
from a neutral face and ends with a peak facial expression. In
the experiments, the neutral image in the first frame and the
images with expressions in the last three frames from 309 image
sequences are used.

3) The RaFD dataset: The Radboud Faces Database
(RaFD) [48] is a face dataset consisting of 67 identities in which
facial expressions, gaze direction, and head orientation vary in a
complete factorial design. For each identity, there are 8 expres-
sions (i.e. contemptuous beyond the scope of neutral and 6 basic
expressions), 3 gaze directions and 5 different head orientation
angles. In the experiments, the neutral images and 6 basic fa-
cial expression images in the setting of frontal orientation and
straight gaze direction are utilized.

4) The Oulu-CASIA dataset: The Oulu-CASIA dataset [57]
consists of 6 basic facial expressions from 80 identities between
23 and 58 years old. All expression images are captured using
a visible light (VIS) camera and a near-infrared (NIR) camera
under three different illumination conditions, i.e., strong, weak
and dark. For each emotion, the facial expression images form
a sequence which records the changing process of emotion in-
tensity from plain to peak. In the experiments, we use the subset
from VIS domain under strong condition for evaluation, where
the first image of each sequence is treated as the neutral image,
while the last three images with the highest emotion intensity as
the facial expression images.

5) The Tsinghua-FED dataset: The Tsinghua facial expres-
sion database (Tsinghua-FED) [58] comprises facial expression
images of 110 Chinese young and older adults displaying eight
facial emotional expressions (neutral, happiness, anger, disgust,
surprise, fear, content, and sadness). In the experiments, the neu-
tral images and 6 basic facial expression images from the 110
identities are used.

For each dataset, a series of data preprocessing steps are car-
ried out as follows: firstly, we detect the facial landmarks and
face region via the face detection API of the popular Face++
software;2 Then, we perform an affine transformation for each
image based on two detected facial landmarks (i.e., the center
of left eye, the center of right eye); finally, we crop out the face
region for each image and then resize it to 128×128 resolution.

B. Implementation Details and Parameter Settings

At Stage 1, we train the StarGAN model based on the neutral
face images and the other 6 face images with facial expressions

2Face++: [Online]. Available: https://www.faceplusplus.com/
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from the above-mentioned 4 public datasets including CK+,
RaFD, Oulu-CASIA and Tsinghua-FED. The hyper-parameters
λcls and λrec in (4) are set at 1 and 10 respectively, in accor-
dance with [32]. The StarGAN model is trained within 200000
iterations using Adam [59] with β1 = 0.5 and β2 = 0.999 (β1

and β2 are exponential decay rates for the moment estimates
in the Adam optimizer). Note that, the initial learning rate is
set at 0.0001 for the first 100000 iterations and then linearly
decays to 0 over the rest iterations. The weight update is per-
formed once on the generator after 5 times on the discriminator.
At Stage 2, the pretrained FaceQnet model [51] is employed to
measure the quality of the synthesized facial expression images.
The number of landmark pairs for evaluating the facial sym-
metry is set at 3. Regarding the three hyper-parameters in (9),
i.e., c1, c2, and c3, we follow the works in [60], [61], [62], [63]
and tune the values of the three hyper-parameters via the grid
search strategy. Specifically, we perform cross-validation on the
training set and conduct a grid search for the best combination
of hyper-parameters, by varying c1, c2, c3 from 1 to 5. Empiri-
cally, we observe that our method achieves the best performance
when c1, c2, and c3 are set at 2, 1, and 3, respectively, and fix
the values in all the testing experiments. At Stage 3, we adopt
the ResNet-18 pretrained on MS-Celeb-1M [64] as the back-
bone for feature extraction followed by a fine tune step for PD
diagnosis. The proposed model is implemented using PyTorch
and the source codes are released3 All experiments are carried
out on a workstation (CPU: Intel Xeon i7-7700 k, 32 G RAM,
GPU: Nvidia GTX TITAN V 12 G RAM).

C. Evaluation on Facial Expression Synthesis

In this subsection, we evaluate the synthesized facial ex-
pression images by StarGAN in terms of neutral and six emo-
tions of anger, disgust, fear, happiness, sadness, and surprise.
Furthermore, the synthesized results of another popular adver-
sarial learning-based CycleGAN [47], which is designed for
image-to-image translation, are also reported for reference.

The synthesized facial expression results of StarGAN and
CycleGAN are illustrated in Fig. 7. It can be observed that,
StarGAN successfully synthesizes realistic-looking identity-
preserved facial expression images of the four randomly selected
PD patients. Compared to the original facial expression images
that always cannot match with the correct emotions, the synthe-
sized facial expression images by StarGAN depict the six ba-
sic emotions (i.e., anger, disgust, fear, happiness, sadness, and
surprise) correctly in most cases, which are believed to approx-
imate the premorbid normal facial expression images of these
PD patients. In addition, CycleGAN performs worse than Star-
GAN in terms of facial expression synthesis. For example, the
synthesized “surprise” facial expression image by CycleGAN
is vague and distorted. The inspiring results in Fig. 7 verify
the effectiveness of StarGAN in multi-domain facial expression
synthesis.

3[Online]. Available: https://github.com/CherryChou98/FE-Guided-PD-
Diagnosis.

D. Evaluation on FIQA Criteria and Fusion Screening
Strategy

This subsection evaluates the introduced three FIQA criteria,
i.e., facial symmetry, image sharpness, and FaceQnet, and the
designed fusion screening strategy. In Fig. 8, we illustrate 6 ex-
amples of the synthesized facial expression images annotated
by the quality scores using the three FIQA criteria and their
weighted fusion (see Eq. (9)). From Fig. 8, it can be seen that:
1) For each single FIQA criterion, as the score increases, the
quality of the synthesized image also improves in terms of this
criterion (e.g., from asymmetric to symmetric in the facial sym-
metry criterion or from blurry to clear in the image sharpness
criterion); 2) The synthesized facial expression image scored
high (or low) in one FIQA criterion may obtain low (or high)
score in the other. For example, the synthesized facial expression
image in red box achieves a high score of 0.8861 in the facial
symmetry criterion but only obtains a low score of 0.1024 in the
image sharpness criterion; and the synthesized image in green
box obtains a low score of 0.0693 in the facial symmetry crite-
rion but acquires the score of 0.6419 in the FaceQnet criterion.
The results indicate that the score based on single FIQA criterion
may not correctly reflect the true quality of the synthesized im-
age sometimes; 3) By fusing the three FIQA scores and assign-
ing appropriate weights, the sorting of the synthesized images
becomes more reasonable by reference to multiple FIQA crite-
ria. For example, the synthesized asymmetric&blurry image in
yellow box obtains a very low score of 0.0405, while the two
synthesized symmetric&clear images in purple box are graded
high scores of 0.8611 and 0.9347, respectively. Furthermore, we
calculate the distribution percentage of all the synthesized facial
expression images in Table I, according to the above four scoring
patterns. It can be observed from Table I that the distributions
of the synthesized facial images under the facial symmetry and
FaceQnet scoring patterns are biased. By contrast, the distribu-
tion of the synthesized facial images under our weighted fusion
scoring pattern is balanced and close to the normal distribution.
The promising results in Fig. 8 and Table I justify the rationality
and effectiveness of the weighted fusion scoring pattern in the
fusion screening strategy.

E. Evaluation on PD Diagnosis Accuracy

After acquiring the high-quality synthesized facial expression
images using the fusion screening strategy, we then mix them
with the original facial expression images of PD patients to train
the PD prediction model. In this subsection, we evaluate the
PD diagnosis accuracy of the trained prediction model of our
method in the testing set. Specifically, the evaluation protocol
and the results are described in the following.

The evaluated PDFE dataset is divided evenly into 5 folds.
We select 4 folds (76 subjects) for training while the rest 1 fold
(19 subjects) for testing. Furthermore, we select the facial ex-
pression images of 47 aged subjects (above 60 years old) from
the Tsinghua-FED dataset to supplement the test set. In train-
ing, the original facial expression images of the PD patients are
labeled with “PD,” while these high-quality synthesized facial
expression images which estimate the premorbid status of the
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Fig. 7. The synthesized facial expression images by StarGAN and CycleGAN from four randomly selected PD patients. The figures from the top to bottom
blocks are the original facial expression images of four PD patients, and the synthesized images by StarGAN and CycleGAN which approximate the premorbid
facial expression images of the above four PD patients.

PD patients are labeled with “non-PD”. In testing, the total 66
subjects are used for PD diagnosis. We run the experiment 5
times and report the average PD diagnosis accuracy. For clarity,
we provide an illustration of the evaluation protocol in Fig. 9.

In Table II, we present the PD diagnosis accuracies and the
training time of our proposed method under different screening
ratios (i.e., 0%, 10%, 25%, 40%, 55%, 70%, 85%, and 100%)
in the fusion screening strategy. In addition, we adopt the Cy-
cleGAN using the same fusion screening strategy (denoted as

CycleGAN-Fusion) as a baseline for comparison. From Table II,
we have the following four key observations: 1) The diagnosis
performance of our method is greatly improved from 54.63%
to 93.57% as the screening ratio increases from 0% to 10%
(i.e., only screening 10% synthesized images). This indicates
the importance of the training data augmentation by introducing
the high-quality “non-PD” synthesized facial expression images
into the original PD dataset. 2) Our proposed method achieves
the highest diagnosis accuracy of 95.43% when the screening
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Fig. 8. Illustration of six examples of synthesized facial expression images and the corresponding quality scores using three FIQA criteria (i.e., facial symmetry,
image sharpness, and FaceQnet) and their weighted fusion.

TABLE I
THE DISTRIBUTION PERCENTAGE (%) OF ALL THE SYNTHESIZED FACIAL EXPRESSION IMAGES UNDER FOUR SCORING PATTERNS

Fig. 9. An illustration of the evaluation protocol for PD diagnosis.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on November 08,2023 at 09:50:53 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: FACIAL EXPRESSION GUIDED DIAGNOSIS OF PARKINSON’S DISEASE VIA HIGH-QUALITY DATA AUGMENTATION 7047

TABLE II
PD DIAGNOSIS ACCURACIES (%) / TRAINING TIME COSTS (S) OF OUR

PROPOSED METHOD UNDER DIFFERENT SCREENING RATIOS. 0% (OR 100%)
INDICATES THAT NO SYNTHESIZED IMAGES (OR ALL SYNTHESIZED IMAGES)

ARE SCREENED OUT

TABLE III
COMPARISON BETWEEN OUR METHOD AND THE OTHER PD DIAGNOSIS

METHODS W.R.T. PD DIAGNOSIS ACCURACY (%)

ratio reaches 25%, and then suffers from performance degrada-
tion as the ratio rises. 3) The performance of CycleGAN-Fusion
are far inferior to that of our method, again demonstrating the
rationality of choosing StarGAN for multi-domain facial ex-
pression image synthesis. 4) The training time of the proposed
method tends to increase linearly as the screening ratio increases,
and consumes only 480.6 seconds (ratio = 100%) even all syn-
thesized facial expression images are screened for training.

Furthermore, we compare our proposed method with a rep-
resentative facial expression-based PD diagnosis method [28]
based on conventional machine learning techniques of GLCM
and SVM (GLCM+SVM), and five state-of-the-art deep learn-
ing models, i.e., DeiT [65], ConvNeXt [66], EfficientNetV2 [67],
FaceQNet [51], and InceptionResnetV1 [68]. Note that, DeiT,
ConvNeXt, and EfficientNetV2 are pretrained on the Ima-
geNet dataset [69], FaceQNet is pretrained on the VGGFace2
dataset [70], and InceptionResnetV1 is pretrained on the
CASIA-Webface dataset [71]. All of the above five deep learn-
ing models are fine tuned using the original facial expression
images from the PDFE dataset and the facial expression images
of normal persons from three public datasets, i.e., Oulu-CASIA,
RaFD and CK+. The testing procedure follows the evaluation
protocol mentioned above (refer to Fig. 9). The diagnosis accu-
racies of our method and the other compared methods are listed
in Table III. From Table III, it can be observed that,
� Our method achieves a high PD diagnosis accuracy of

95.43% which is much better than that of the other six com-
pared methods. The superiority of our method attributes
to two aspects: 1) the effective training data augmenta-
tion scheme (i.e., StarGAN-based facial expression syn-
thesis + fusion screening strategy) provides high-quality

TABLE IV
PD DIAGNOSIS ACCURACIES (%) OF TWO VARIANTS OF OUR METHOD BY

REMOVING THE FACIAL EXPRESSION SYNTHESIS AND THE FUSION SCREENING

STRATEGY, RESPECTIVELY

synthesized facial expression images of PD patients to fa-
cilitate the training process; 2) the deep neural network PD
prediction model extracts high-semantic features to boost
PD/non-PD classification.

� The conventional machine learning-based GLCM+SVM
performs worse than the five deep learning methods, and is
far inferior to our method in terms of PD diagnosis accu-
racy, which demonstrates the good representation learning
capability of deep neural networks.

� FaceQNet and InceptionResnetV1 pretrained on profes-
sional face datasets could achieves better PD diagnosis
performance than ConvNeXt-Tiny, EfficientNetV2, and
DeiT-small pretrained on the ImageNet dataset.

F. Ablation Study

In this subsection, we perform an ablation study to explore
the roles of the two modules, i.e., facial expression synthesis by
StarGAN and the fusion screening strategy, on the PD diagnosis
performance of our proposed method. Accordingly, we first con-
struct two variants of our method denoted as “Ours w/o facial
expression synthesis” and “Ours w/o fusion screening strategy”
by removing the two modules, respectively. For “Ours w/o fa-
cial expression synthesis,” there exist three different training
settings: 1) training our model only using the PDFE dataset of
PD patients, 2) training our model only using the public facial
expression datasets of normal persons, i.e., Oulu-CASIA, RaFD,
and CK+, and 3) training our model using the mixture of PDFE,
Oulu-CASIA, RaFD and CK+ datasets. From Table IV, It can
be observed that,
� “Ours w/o facial expression synthesis (setting 1)” and

“Ours w/o facial expression synthesis (setting 2)” perform
poor in PD diagnosis, because their training datasets only
include a single category label (either PD or non-PD).

� “Ours w/o facial expression synthesis (setting 3)” obtains
a higher PD diagnosis accuracy than that of “Ours w/o
facial expression synthesis (setting 1)” and “Ours w/o facial
expression synthesis (setting 2),” which indicates that the
mixture of the PDFE dataset of PD patient and the three
public facial expression datasets of normal persons can
facilitate the training of the PD/non-PD classifier in PD
diagnosis model.

� The PD diagnosis performance of our method (with facial
expression synthesis) is far superior to that of “Ours w/o fa-
cial expression synthesis (setting 3),” which indicates that
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Fig. 10. PD diagnosis accuracies (%) of three variants of our method, which
only use the facial symmetry, image sharpness, and FaceQnet for screening
high-quality synthesized facial expression images, respectively.

the introduction of the synthesized premorbid facial ex-
pression images of PD patients can further promote the
training of the diagnosis model.

� The performance of “Ours w/o fusion screening strategy”
is not competitive with that of our method (with fusion
screening strategy), which shows that the fusion screening
strategy also contributes to the PD diagnosis performance
by filtering out some low-quality synthesized facial expres-
sion images.

Furthermore, we also report the diagnosis accuracies of three
variants of our method by only using the facial symmetry, image
sharpness, or FaceQnet for screening high-quality synthesized
facial expression images, respectively. As shown in Fig. 10, the
three variants achieve their best performance under different
screening ratios, and all of them perform worse than our method
(i.e., with fusion screening strategy) in almost all cases. This
again verifies the superiority of the weighted fusion scoring pat-
tern in the fusion screening strategy over the other scoring pat-
terns based on single criterion such as facial symmetry, image
sharpness or FaceQnet.

V. CONCLUSION AND FUTURE WORKS

This paper has proposed a new facial expression guided
in-vitro PD diagnosis method. It addresses the two problems
(i.e., limited training data and weak prediction model) in tra-
ditional in-vitro PD diagnosis methods based on facial expres-
sions by introducing an effective data augmentation scheme (i.e.,
StarGAN-based facial expression synthesis + fusion screening
strategy) and a powerful deep neural network PD prediction
model. Empirical studies have demonstrated the superior per-
formance of the proposed method for PD diagnosis. It is worth
noting that this paper has created a PDFE dataset containing both
the neutral image and 6 basic facial expression images of 95 PD
patients, which is currently the largest facial expression dataset
of PD patients for in-vitro PD diagnosis and will be released
soon in the future.

It is worth mentioning that, PD patients may not have com-
pletely lost their ability to express emotions in the early stage of
the disease, and they may be able to express certain expressions

correctly. Under the circumstances, using a single facial image of
a PD patient to perform diagnosis may carry the risk of misjudg-
ment. To enhance robustness, we plan to extend our proposed
approach to a comprehensive diagnosis based on the patient’s
six basic facial expression image combinations (i.e., anger +
disgust+fear + happiness+sadness + surprise). Besides, we
will make an effort to combine the other in-vitro diagnosis tech-
niques based on speech or gait signals with our proposed method
based on facial expressions, so as to increase the error tolerance
in PD diagnosis. We will leave the interesting study as the future
research work. Furthermore, we will continue to collect more fa-
cial expression images of new PD patients to enlarge our created
PDFE dataset.
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