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Abstract— Recent weakly supervised semantic segmentation
methods generate pseudolabels to recover the lost position
information in weak labels for training the segmentation net-
work. Unfortunately, those pseudolabels often contain mislabeled
regions and inaccurate boundaries due to the incomplete recovery
of position information. It turns out that the result of semantic
segmentation becomes determinate to a certain degree. In this
article, we decompose the position information into two com-
ponents: high-level semantic information and low-level physical
information, and develop a componentwise approach to recover
each component independently. Specifically, we propose a simple
yet effective pseudolabels updating mechanism to iteratively
correct mislabeled regions inside objects to precisely refine
high-level semantic information. To reconstruct low-level physical
information, we utilize a customized superpixel-based random
walk mechanism to trim the boundaries. Finally, we design a
novel network architecture, namely, a dual-feedback network
(DFN), to integrate the two mechanisms into a unified model.
Experiments on benchmark datasets show that DFN outperforms
the existing state-of-the-art methods in terms of intersection-over-
union (mIoU).
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I. INTRODUCTION

SEMANTIC segmentation of an image [1], [2] refers
to the task of assigning each pixel a categorical label

(e.g., motorcycle or person). Owing to the rapid develop-
ment of deep learning, tremendous progress has been made
for fully annotated semantic segmentation. Some examples
include fully convolutional network (FCN) [3], DeepLab [4],
GANet [5], and SegGAN [6]. These methods assume that
the pixel-level labels are available immediately upon request.
However, this assumption is over-optimistic because the anno-
tations of numerous data are laborious. As a result, interactive
segmentation [7]–[11] and weakly supervised semantic seg-
mentation, which only requires a few weak labels, such as
bounding box [12]–[14], scribble [15], [16], points [17], and
tags [18]–[22], have attracted increasing attention.

This article focuses on weakly supervised semantic segmen-
tation, in which only image-level tags without any position
information for the least labeling cost, as shown in Fig. 1(a).
Under this circumstance, as reported in [23] and [24], the
absence of position information of weak labels prevents
segmentation network learning from these labels directly,
which makes the tag-supervised semantic segmentation prob-
lem ill-conditioned. Consequently, how to recover the lost
position information becomes a pivotal issue. In the litera-
ture, Zhang et al. [25] proposed the decoupled spatial neural
attention (DSNA) for weakly supervised semantic segmen-
tation, which can simultaneously utilize the object regions
and localize the discriminative parts to generate high-quality
pseudoannotations. Zhou et al. [26] proposed the image-level
supervision-based watershed algorithm to solve the problem of
image semantic segmentation that lacks fully supervised seg-
mentation labels. Shimoda and Yanai [27] proposed the CNN-
based class-specific saliency maps and fully connected condi-
tional random field (CRF)-based weakly supervised semantic
segmentation method to reduce its high costs of pixel-wise
annotated image datasets. Furthermore, Shen et al. [8] pro-
posed a knapsack constraint approximately based maximiz-
ing quadratic submodular energy method utilizing dynamic
programming for motion clustering and image segmentation.
In addition, Shen et al. [10] introduced a general higher order
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binary energy minimization function to solve the problem of
image segmentation. In addition, Dong et al. [11] proposed
a global and local energy-based interactive co-segmentation
method. Despite the substantial progress made by these meth-
ods, they do not consider the differences between high-level
semantic information and low-level physical information. As a
result, the recovered position information is incomplete and the
generated pseudolabels still contain incorrectly labeled regions
and inaccurate boundaries, as shown in Fig. 1(d).

In this article, we will decompose the position information
into two components (i.e., high-level semantic information and
low-level physical information) and develop a componentwise
approach to recovering two kinds of information individu-
ally [see Fig. 1(b)]. High-level semantic information is the
information that describes a semantic structure for a specific
category. Examples of high-level semantic information include
the human body structure, vehicle structure, and so on. Given
the position of a human head, it is easy to infer the region
of the neck using human body structure. By contrast, low-
level physical information is at the other end of the spec-
trum. Although high-level semantic information affects the
logical structure of categories, low-level physical information
describes the physical structure in a single image. For example,
given a region of one category, it is probably that regions with
similar textures or colors belong to the same category.

Accordingly, we propose two different mechanisms to
recover the high-level semantic information and low-level
physical information upon original pseudolabels, respectively.
The first mechanism, named pseudolabels updating mecha-
nism, aims to correct the mislabeled regions inside objects to
recover finer logical structures for categories. It uses a simple
yet effective weighted updating process, which routes segmen-
tation network output back to update the original pseudolabels.
It is worth noting that deep seed region growing (DSRG) [20]
and mining common object features (MCOFs) [22] both
also update original pseudolabels. However, they focus on
expanding discriminative regions without correcting the mis-
labeled regions in pseudolabels, which constrains the upper
bound of segmentation performance. By contrast, the second
mechanism, named customized superpixel-based random walk
mechanism, is utilized to trim the boundaries in original
pseudolabels to fit better with the physical structure of each
image. This mechanism utilizes superpixels as the base unit of
pseudolabels due to their flexible shape and size. To overcome
the over-segmented problem, we propose a customized random
walk process, which makes use of a novel relationship matrix
and additional threshold functions to generate robust and con-
fident pseudolabels with the help of network outputs. Although
MCOF [22] and superpixel pooling network (SPN) [28] also
suggest using superpixels for weakly supervised semantic seg-
mentation, they ignore the over-segmented phenomenon, thus
resulting in lots of redundant boundaries in pseudolabels. Fur-
thermore, Ahn and Kwak [29] have introduced a random walk
process to generate pseudolabels as well. However, they have
to introduce an extra network to learn the semantic affinity
matrix and do not notice the unequal confidence problem (i.e.,
regions with different probability distribution have different
confidences), which results in numerous parameters and worse

pseudolabels. In addition, to unify these two mechanisms into
a joint framework, we will introduce two feedback chains to
Deeplab-LargeFOV network [30], as shown in Fig. 1(c), which
results in the dual-feedback network (DFN).

To sum up, our contributions are twofold.

1) We propose a componentwise approach and interpret
the position information as two distinct categories: high-
level semantic information and low-level physical infor-
mation. Accordingly, the pseudolabels updating mecha-
nism and the customized superpixel-based random walk
mechanism are proposed to compensate for the lack of
one type of position information.

2) DFN is proposed to implement the above-mentioned
two mechanisms. The first feedback chain uses a simple
yet effective weighted updating process, which will
correct the mislabeled regions inside objects in original
pseudolabels, to recover finer logical structures for cat-
egories. The second feedback chain uses a customized
superpixel-based random walk process, with the help of
the novel relationship matrix and additional threshold
functions, to trim the boundaries in original pseudolabels
to fit better with physical structures in each image.

II. RELATED WORK

Compared with fully supervised semantic segmentation,
the main issue for weakly supervised semantic segmentation
under tags supervision is the lack of position information that
describes the positions of the tagged objects in an image.
In order to recover such kind of information, a number of
efforts have been made in recent years, which can be divided
into two categories.

The first category uses a specialized loss function or net-
work structure to add prior knowledge of position information
into the framework. For example, to locate pixels of different
objects, Pathak et al. [31] initiated a multi-instance loss (MIL)
function to restrict the network output and only those pix-
els which are important for locating are considered. Latter,
Kolesnikov and Lampert [19] proposed the global weighted
rank pooling (GWRP) method to constrain all pixels and
put more weights on pixels, which are easier to classify.
Meanwhile, Pathak et al. [32] added lots of linear constraints,
such as size constraint for each tag, on the output space of the
network, thereby leading to a more complete recovery of posi-
tion information. To exploit the full object for each category,
Wei et al. [33] applied the adversarial erasing mechanism to
mine nondiscriminative regions iteratively in erased images.
Although considerable progress has been made recently along
improving the loss function or network structure, this kind of
method has a dynamic optimization direction in the training
procedure, which makes it hard to reconstruct complete and
accurate position information.

Different from the first category, the methods of the second
category generate pseudolabels to recover the missing position
information. The generated pseudolabels are relatively fixed
and lead to a steady training procedure. Kolesnikov and
Lampert [19] obtained the sparse pseudolabels by locating
the foreground regions with the class activation map (CAM)
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Fig. 1. (a) Example of training data and its ground truth. (b) Illustration of the componentwise approach. (c) Pipeline of our DFN. The two feedback chains
implement two different mechanisms to rebuild two kinds of position information. (d) Generated pseudolabels of previous methods and ours. The original
pseudolabels contain incorrectly labeled regions, such as the region labeled as bicycle on the right of the car, as shown in the blue box, and have worse
boundaries, such as the inaccurate segmentation boundaries between car and background, as shown in the red box.

method [34] and the background regions with [35]. Then,
Shimoda and Yanai [36] utilized the distinct class saliency
maps (DCSM) and Huang et al. [20] utilized the discrimi-
native regional feature integration (DRFI) [37] to generate
more accurate pseudolabels. For the pseudolabels of complex
images which contain a number of objects, Wei et al. [24]
proposed a simple-to-complex (STC) mechanism to produce
pseudolabels progressively. Recently, Huang et al. [20] have
utilized the classical seeded region growing method to expand
regions gradually and generate dense pseudolabels. In addi-
tion, Wang et al. [22] have introduced a new region classifi-
cation network to update static pseudolabels and obtain the
improved pseudolabels iteratively during the training phase.
Despite substantial progress made by these methods, they
do not consider the differences between high-level semantic
information and low-level physical information. As a result,
the generated pseudolabels still contain incorrectly labeled
regions and inaccurate boundaries, as shown in Fig. 1(d).

Following our componentwise approach, the proposed DFN
utilizes two feedback chains, one uses pseudolabels updating
mechanism to correct mislabeled regions hidden in original
pseudolabels and the other uses superpixel-based pseudolabels
mechanism to obtain accurate and concise boundaries in
pseudolabels, to reconstruct the complete position informa-
tion. It is worth noting that DSRG [20] also updates original
pseudolabels. However, they focus on expanding discrimi-
native regions and do not correct the mislabeled regions in
pseudolabels, which constrain the upper bound of segmenta-
tion performance. On the other hand, MCOF [22] also suggests
using superpixels in pseudolabels. But they do not integrate
low-level physical information among superpixels and have
to introduce an extra network to classify superpixels, which
results in numerous redundant boundaries inner objects. More-

over, experiments demonstrate that our network outperforms
both DSRG and MCOF on PASCAL VOC 2012 segmentation
set and the COCO dataset. Our proposed DFN utilizes random
walk techniques to trim the boundaries. In recent years,
random walk techniques have been widely used, For example,
Grady [38] acquired a similar probability between labeled
pixels and unlabeled pixels via random walks for multilabel
and interactive images segmentation. Dong et al. [39] pro-
posed a label prior-based sub-Markov random walk on a graph
to add the auxiliary nodes, and then applied for the image
segmentation. Shen et al. [40] first utilized the lazy random
walks to acquire the probabilities of each pixel and then
proposed a commute time and the texture measurement-based
energy function for superpixel segmentation.

III. PROPOSED METHOD

A. Problem Definition

Tag-supervised semantic segmentation problem aims to train
a semantic segmentation model only using natural images with
their corresponding tags. Specifically, there exist two totally
different datasets: a training set Dtrain = {(Xi , Ti)}Ntrain

i=1 and a
separated testing set Dtest = {(Xk, Yk)}Ntest

k=1 , where X represents
the nature image, while T and Y are the corresponding image
tags and segmentation mask. The problem requires us to train
the deep neural network only on the training set Dtrain and
evaluate the segmentation performance on the testing set Dtest.
Obviously, due to the missing semantic segmentation mask Yi

in Dtrain, it is hard to train a semantic segmentation model
directly on it. Recently, researchers have found that the key
to this problem is to recover the missing position information
to reconstruct the missing Yi . To this end, this article first
generates the pseudolabels Y pseudo

i given the training pairs
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Fig. 2. Schematic sketch of the proposed DFN with two feedback chains. The first feedback chain (red arrow) dynamically updates the pseudolabels with
the aid of network output. The second feedback chain (blue arrows) merges the relationship matrix, the network output, and the updated pseudolabels using
a customized random walk process. The input to the backbone network includes both the training image and the updated and enhanced pseudolabels.

(Xi , Ti). Then, Y pseudo
i is used to supervise the neural network

to learn the capability of semantic segmentation. In testing, the
trained model outputs Ŷk for each Xk , and the performance can
be evaluated by the overlap between Yk and Ŷk .

B. The Proposed Approach

We decompose the improvement of pseudolabels into two
different mechanisms. One is the pseudolabels updating mech-
anism, which updates the pseudolabels with the aid of the out-
put of the backbone network to recover the high-level semantic
information. The other is the customized superpixel-based ran-
dom walk mechanism, which enhances the pseudolabels with
superpixel segmentation and customized random walk process
to recover the low-level physical information. Specifically,
analogous to [19], we use CAM [34] and object detection
map generated by DRFI approach [37] to generate original
pseudolabels. The CAM for each class is used to discriminate
which pixel belongs to the foreground, and the object detection
map is used to discriminate which pixel belongs to the
background. Then, as shown in Fig. 2, our DFN integrates two
feedback chains into a backbone network from Deeplab [30]
to update and enhance the original pseudolabels. The first
feedback chain, which implements the pseudolabels updating
mechanism, utilizes a simple weighted updating operation
to correct mislabeled regions. The second feedback chain,
which implements the customized superpixel-based random
walk mechanism, introduces the superpixel segmentation and
customized random walk process to trim the boundaries in
original pseudolabels. Finally, we obtain the updated and
enhanced pseudolabels and utilize them to train the backbone
network under the seed loss function and the boundary loss
function [19]. The formulas of each loss function for single
image are:

Lseed = −
∑N

i=1

∑Mi
k=1 log pi,k

∑N
i=1 Mi

−
∑M0

k=1 log p0,k

M0
(1)

where N denotes the number of tags in each image, Mi denotes
the number of pixels of tag i (0 represents the background),

and pi,k is the probability that pixel k is classified into tag i

Lconstrain = −
∑N

i=1

∑M
k=1 qi,k log pi,k

N M
(2)

where N and M denote the number of tags in dataset and
the number of pixels of single image, respectively, and qi,k

represents the CRF-processed [41] probability distribution.

C. Recovery of High-Level Semantic Information

With CAM and DRFI techniques, we generate the original
pseudolabels which mark the discriminative regions for each
tag in the corresponding image. Those discriminative regions
usually implicitly contain the logical structure of a special
category, e.g., person. Unfortunately, original pseudolabels still
contain some errors hidden in labeled regions, as shown in
Fig. 1(d). We have to correct those errors for the purpose of
reconstructing finer high-level semantic information. As stated
in Zhang et al. [14], the iterative learning strategy has been
widely used under the weakly supervised framework. There-
fore, we also utilize a simple yet effective pseudolabels updat-
ing mechanism to correct mislabeled regions. Specifically,
we utilize an independent feedback chain to implement it with
the help of the backbone network. The backbone network is
trained with original pseudolabels and learns a better logical
structure for each category across images. Then, the feedback
chain routes its output back into original pseudolabels to
correct the mislabeled regions. The pseudolabels updating
mechanism repeats the procedure several iterations. In each
updating process, we update pseudolabels with the network
output using the following formula:

Pi = (1 − w) × Pi−d + w × Ni
out (3)

where P denotes pseudolabels, Ni
out is the network output, i

denotes the i th iteration, d is the updating interval, and w ∈
[0, 1] is a weighting factor that determines the update rate.

One should note that there are three key points behind (3).
First, there exist many training epochs before updating the
original pseudolabels to ensure the segmentation network
reaches a good point for extracting the high-level semantic
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Fig. 3. Examples of the updated pseudolabels generated by the first feedback chain in several epochs during the training phase.

information. Second, in the interval of two subsequent updat-
ing operations, the network is trained independently with a few
epochs to make full use of updated pseudolabels. Moreover,
different from Seed, Expand and Constrain (SEC) [19], each
base unit in pseudolabels is characterized by a vector with
its element corresponding to the probability to each category,
which makes it convenient to update. As can be seen in Fig. 3,
with the increase of the number of iterations, initial errors are
corrected and the logical structures get closer to the ground
truth, which means high-level semantic information is recon-
structed progressively. The overall procedure is summarized
as Algorithm 1.

Algorithm 1 Pseudolabels Updating Mechanism

Input: origin pseudo-labels P0, the update
weight w,
the updating interval iteration d ,
the iteration to start updating tstart ,
the total training iteration T .

Procedure:
1. for i -th training iteration in range from

1 to T
2. get Ni

out from network
3. updating network parameters with Pi

4. if i is bigger than tstart and
is evenly divided by d

5. Pi = (1 − w) × Pi−d + w × Ni
out

6. else
7. Pi = Pi−1

Output: the trained network

D. Recovery of Low-Level Physical Information

To recover missing low-level physical information,
we set out to trim inaccurate and redundant boundaries in
original pseudolabels. Therefore, we propose a customized
superpixel-based random walk mechanism, which migrates
the boundaries from superpixel segmentation into origin
pseudolabels.

1) Superpixel Based Pseudolabels: Owing to the low spatial
resolution of deep convolutional network output, previous
methods always utilize square pixels blocks as the basic unit to

store pseudolabels for each image. Each block is characterized
by a scalar that represents the tag of a box of corresponding
pixels whose size is 8 × 8 in an input image. Unfortunately,
due to the fixed shape and size of the square pixels block, it is
hard to learn the details of boundaries in the backpropagation
process as mentioned in [42] and rebuild the missing low-level
physical information.

To solve this problem, this article proposes to use superpix-
els, which have varying sizes and sophisticated boundaries,
to replace square pixels blocks as the basic unit of pseudola-
bels. The superpixel-based pseudolabels have the same spatial
resolution as the input image, which makes the network keep
the details during the backpropagation process. To achieve
this goal, we have to segment input image into superpix-
els with normal superpixel segmentation methods, such as
felzenszwalb [43], as shown in Fig. 4(b), and then convert
the old pseudolabels whose basic unit is square pixels blocks
into the new pseudolabels using superpixels. As mentioned
earlier, each superpixel in the new pseudolabel uses a vector
of classification probability to describe the labels. In detail,
we convert the scalar in each pixel into the one-hot classifica-
tion probability. Then, each superpixel gets a vector averages
among all the one-hot probabilities of pixels belonging to the
corresponding superpixel.

2) Customized Random Walk Process: Unfortunately, there
still exists an over-segmentation phenomenon for all superpixel
segmentation methods, as mentioned in [44]. This phenom-
enon refers to that an image is segmented into a number
of small superpixels, which introduces numerous unnecessary
boundaries and cuts off the fusion of low-level physical
information inner one object. To prevent the over-segmentation
phenomenon, we introduce a relationship matrix to describe
the similarity and adjacency between any two superpixels
inner one image and use it to merge the low-level physical
information by our customized random walk process.

a) Relationship matrix: The construction of our rela-
tionship matrix consists of four steps. First, we generate
Euclidean distance matrix [see Fig. 4(c)] for superpixels using
zoom-out features [45]. However, unlike them, we only use
the first two convolutional layers in VGG-16 [46] to obtain
low-level physical features. Nevertheless, owing to the diver-
sity of objects under complex backgrounds in each image,
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Fig. 4. Top row orderly shows a training image and its corresponding
superpixel segmentation result given by [43]. The next two rows show the
Euclidean distance matrix, the relative similarity matrix, the distance matrix,
and the relationship matrix. (a) Input. (b) Superpixel. (c) Distance Matrix.
(d) Similarity Matrix. (e) Adjacency Matrix. (f) Relationship Matrix.

the Euclidean distance with absolute values cannot precisely
reflect the similarity between any two superpixels. Therefore,
we transform the Euclidean matrix to a simple relative similar-
ity matrix (denoted Msiml), as shown in Fig. 4(d). Specifically,
we pick the ten smallest values in each row of the Euclidean
matrix and set their values to 1, indicating that they are
similar. We then set the values of the remaining elements
in each row of the Euclidean matrix to 0, suggesting that
they are not similar. Next, we construct an adjacency matrix
(denoted Madj) for superpixels to incorporate their similarity
in geometric space. If two superpixels are neighboring, the
corresponding element in the adjacency matrix is 1, otherwise
0 [see Fig. 4(e)]. We finally obtain a relationship matrix
(denoted Mrel) with the following formula [see Fig. 4(f)]:

Mrel = Msiml � Madj (4)

where � denotes entrywise product.
b) Unequal confidence problem: After recovering the

low-level physical information characterized by the relation-
ship matrix built upon superpixels, we apply the random
walk process to incorporate low-level physical information
into network training by using the relationship matrix as the
transition probability matrix and superpixel-based pseudola-
bels as the initial state. However, a serious problem, named
unequal confidence problem, arises when directly adopting
the normal random walk process. Specifically, each superpixel

in pseudolabels is characterized by a classification probabil-
ity vector and it means that if the value of the maximum
element in the vector (of a superpixel) is small, we have
a high classification uncertainty to assign this superpixel to
its corresponding category. Moreover, the superpixels with
high classification uncertainty will mislead the direction of
pseudolabels changing in each iteration of the random walk
process.

Therefore, we propose two simple methods to improve the
normal random walk process. At first, we filter the unconfi-
dent superpixels out of pseudolabels during the random walk
process, which ensures all superpixels inputted to the random
walk process have high confidence. In essence, we use a
simple threshold function [denoted Th1(·)] to achieve this goal
and it is coupled with two hyperparameters αfg and αbg for
foreground and background in pseudolabels, respectively, due
to the different complexities to locate related regions. For
example, if the maximum element of one superpixel belonging
to the foreground in pseudolabels is less than αfg, we dropout
this superpixel in the following random walk process. Next,
to ensure the high confidence of new superpixel outputted
from the random walk process, we route network output back
to confirm it along the second feedback chain. Specifically,
network output is resized into the same size as the input image
using bilinear interpolation, and the new superpixel obtains
its corresponding probability averaged all the probabilities
of pixels belonging to this superpixel. Then, we also use
another threshold function [denoted Th2(·)], coupled with
hyperparameters βfg and βbg for foreground and background,
to filter out unconfident superpixels on the generated new
pseudolabels.

In summary, the second feedback chain performs an
improved random walk process to suppress the over-
segmentation phenomenon. The input to this customized ran-
dom walk includes the relationship matrix which describes
the similarity and adjacency among superpixels, pseudolabels
whose basic unit is superpixels, and the output of backbone
network. By using the superpixel-based pseudolabels as the
initial state and the relationship matrix as the transition proba-
bility matrix, the random walk process generates expanded and
alternative superpixels with “P × Mrel,” where “×” denotes
matrix multiplication. However, to solve the unequal confi-
dence problem, we use two threshold functions [Th1(·) and
Th2(·)] to filter those superpixels out with aid of network
output Nout . Therefore, the result P̂ of our one-step customized
random walk process is given by

P̂ = Th1(P) × Mrel � Th2(Nout) (5)

where � denotes the entrywise product. We repeat the opera-
tion of “×Mrel �Th2(Nout)” n times on the thresholded initial
state Th1(P) to obtain the n-step customized random walk
result. For example, the result of two-step customized random
walk is given by

P̂ = Th1(P) × Mrel � Th2(Nout) × Mrel � Th2(Nout). (6)

Moreover, we present two examples of our customized
random walk process in Fig. 5. By merging low-level physical
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Fig. 5. Evolution of pseudolabels with our customized random walk process: (a) training images; (b) filtered superpixel-based pseudolabels; (c) one-step
result of normal random walk; (d) one-step result of customized random walk; (e) two-steps result of normal random walk; (f) two-steps result of customized
random walk. The normal random walk encounters unequal confidence problems and changes toward wrong direction while our customized random walk
produces high confident results.

information, the enhanced pseudolabels change toward the
right direction and fit well with the object boundaries.

The overall procedure of the superpixel-based random walk
mechanism is summarized as Algorithm 2.

Algorithm 2 Superpixel-Based Random Walk

Input: origin pixel-based pseudo-labels P0,
the superpixel segmentation S,
the threshold functions T h1 and T h2,
the random walk step n

Procedure:
1. generate superpixel-based pseudo-labels

P using P0 and S
2. generate relative similarity matrix Msiml

and adjacency matrix Mad j by S
3. generate relationship matrix:

Mrel = Msiml � Mad j

4. for i -th training iteration
5. get Nout from network
6. repeate n times to enhance pseudo-

labels: P̂ = T h1(P) × Mrel

�T h2(Nout )

7. updating network parameters with P̂
Output: the trained network

E. Dual-Feedback Algorithm

In the summary, our DFN simultaneously utilizes the
pseudolabels updating mechanism and the superpixel-based
random walk mechanism. The entire algorithm can be
described by Algorithm 3.

IV. EXPERIMENTS

A. Experiment Setup

1) Dataset and Evaluation Metrics: We evaluate the pro-
posed DFN on the PASCAL VOC 2012 segmentation bench-
mark dataset [47], which contains 20 foreground object classes

Algorithm 3 Dual-Feedback Algorithm

Input: origin pixel-based pseudo-labels P0,
the superpixel segmentation S,

Procedure:
1. generate superpixel-based pseudo-labels

P using P0 and S
2. for i-th training iteration in the range

from 1 to T
3. get Nout from network
4. run the Pseudo-labels Updating

Mechanism to get the updated pseudo-
labels Pi using Nout

5. run the Superpixel-based Random Walk
Mechanism to get enhanced P̂ using Pi

and Nout

6. updating network parameters with P̂
Output: the trained network

and one background class, and the COCO dataset [48],
which contains 80 foreground object classes and one back-
ground class. In detail, the segmentation part of the PASCAL
VOC 2012 dataset is split into three parts: training (train,
1464 images), validation (val, 1449 images), and testing (test,
1456 images). Analogous to [20] and [22], the training set
is extended with the additional images from [49], resulting
in an augmented set of 10 582 images. On the other hand,
the COCO dataset is split into two distinct parts: training
(train, 82 784 images) and validation (val, 40 505 images).
Following the common practice, we use the mean intersection-
over-union (mIoU) criterion averaged on all classes to compare
our method with the other approaches on val or test sets. The
frequency weighted IoU (f.w. IoU) [3] and accuracy (accu)
are also used to evaluate our methods under the different
experiment settings. In addition, we report our results on
standard val set when the ground truth segmentation masks
are available. For the test set, we submit the results of our
final best model to the official evaluation server.
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2) Implementation Details: Following the previous meth-
ods [19], a slightly modified VGG-16 network is used for
classification. Then, we adopt CAM [34] to extract pseudola-
bels for the foreground classes, and DRFI [37] to extract
pseudolabels for the background class. For all segmentation
experiments, such as SEC [19], STC (2017) [24], com-
bining bottom-up, top-down, and smoothness cues (CBTS)
(2017) [50], adversarial erasing-prohibitive segmentation
learning (AE-PSL) (2017) [33], background estimation and
built-in priors (BEBP) (2018) [23], watershed algorithm
with image-level supervision (WAILS) (2019) [26], and
MCOF [22], we use the DeepLab-LargeFOV network [30]
based on VGG-16 [46] as the backbone segmentation network
which is pretrained on ImageNet [51]. Moreover, we use a
mini-batch of six images for SGD and an initial learning
rate of 3e-3, which is decreased by a factor of 3 every five
epochs. The momentum is 0.9, the dropout rate is 0.5 and the
total epochs of training is 20 at which the superpixel-based
pseudolabels do not change.

In addition, for the first feedback chain, we set w to 0.2 and
start to update the pseudolabels every three epochs after the
tenth epoch. For the second feedback chain, we set αfg to 0.90,
αbg to 0.90, βfg to 0.75, and βbg to 0.90. Moreover, we perform
two steps of customized random walk. In the test phase, same
to [19], the fully connected CRF [52], and the multiscale
prediction [4] are applied with their default parameters.

B. Comparison With Previous Methods

1) PASCAL VOC 2012 Dataset: Tables I and II report the
mIoU values of our method on PASCAL VOC 2012 val
and test sets, respectively, against the previous state-of-the-art
methods, namely, EM-Adapt (2015) [18], SEC (2016) [19],
STC (2017) [24], CBTS (2017) [50], AE-PSL (2017) [33],
BEBP (2018) [23], MCOF (2018) [22], DSRG (2018) [20],
AffinityNet (2018) [29], H&S (2019) [53], DSNA (2019) [25],
WAILS (2019) [26], and Easiness (2020) [27]. It can be seen
that our method outperforms all compared methods in terms of
mIoU value under the same experimental setting. In addition,
although MCOF [22] also uses superpixels as the base unit
for pseudolabels, our method introduces a customized random
walk process with a robust relationship matrix to tide over
the over-segmented problem and achieves a performance gain
of 3.8% and 3.5% on val and test sets, respectively. The
improvement is 1.0% and 0.7%, respectively, compared with
DSRG [20], which only expands labeled regions in original
pseudolabels and does not correct mislabeled regions directly.
Compared with AffinityNet [29], our customized random walk
process utilizes additional threshold functions to overcome
the unequal confidence problem and gains 0.9% and 0.3%
improvement on val and test sets, respectively.

2) COCO Dataset: We also conduct experiments on the
COCO dataset to demonstrate the generality of our DFN. The
involved methods include SEC(2016) [19], BEBP(2018) [23],
DSRG(2018) [20], WAILS(2019) [26], and WSIF(2020) [54].
Most images in the COCO dataset have a more complex
background and are closer to natural scenes. Moreover, there
exist nearly 80k and 40k images for training and val set,
respectively, which has far more data than PASCAL VOC

2012 set. Therefore, the high complexity and enormous quan-
tity make it hard to train a weakly supervised semantic
segmentation network with this dataset. Table III shows the
comparison results to a few previous works in mIoU and f.w.
IoU. From Table III, we can see that our DFN indeed outper-
forms the previous works and has high generality. In detail,
our DFN reaches 26.8% and 67.6% in mIoU and f.w. IoU,
respectively. The relative gains in f.w. IoU (22.2% compared
with BFBP, 11.4% compared with SEC, 7.8% compared with
WAILS, 1.8% compared with DSRG, and 0.4% compared with
WSIF) is smaller than it in mIoU (31.4% compared to BFBP,
19.6% compared to SEC, 19.1% compared to WAILS, 3.1%
compared to DSRG and 1.9% compared to WSIF), which
demonstrates our method works better with the unbalanced
dataset, due to f.w. IoU puts more weight on majority.

3) Different Supervision Types: We also compare our net-
work with other methods under different types of supervi-
sions. They are FCN [3], DeepLab [4], weakly and semi-
supervised learning (WSSL) [18], BoxSup [12], random-walk
(RAWK) [55], ScribbleSup [15], and What’sPoint [17]. As can
be seen in Table IV, our network achieves comparable per-
formance to other methods that require stronger supervisions,
e.g., the WSSL, the RWAK, or even the fully supervised FCN.
It suggests that our componentwise approach indeed recon-
structs most of the missing position information. This result
also suggests that there is a large performance gap between
fully supervised semantic segmentation and weakly supervised
semantic segmentation, especially for point supervisions.

C. Quantitative Results

The segmentation results shown in Fig. 6 corroborate our
quantitative evaluations. Note that our method can generate
precise segmentation results even for images containing com-
plex backgrounds. However, our method is likely to fail when
there are multiple small and dense objects on top of another
larger object. Let us take the last row of Fig. 6 as an example.
Our method mislabels most of the pixels in the table into the
background. One possible reason is that there are a number
of plates and foods on the table, such that various colors and
textures of these small and dense objects make our method
hard to generate a precise relationship matrix to prevent the
over-segmentation phenomenon.

D. Ablation Studies

To validate the effects of different components, we perform
some ablation experiments under different settings. In Table V,
we summarize the performance of our network in different
degrading settings. Specifically, the “baseline” indicates our
baseline network without two feedback chains, which is the
same as the SEC network. Similar to DSRG, due to the precise
background mask generated by DRFI, the final result is better
than it reported in the original paper. The “baseline + F1”
indicates only integrating the first feedback chain into the
baseline network. With this feedback chain, we integrate high-
level semantic information from network output and correct
mislabeled regions in original pseudolabels. Then, the “base-
line + F2” indicates to use the second feedback chain only in
the network. The customized random walk process recovers
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TABLE I

COMPARISON OF DIFFERENT WEAKLY SUPERVISED SEMANTIC SEGMENTATION METHODS ON PASCAL VOC 2012 VAL SET. THE “-” DENOTES
UNKNOWN VALUES THAT WERE NOT REPORTED BY THE CORRESPONDING PAPER. THE “OURS1” DENOTES THE OUR NETWORK BASED ON

VGG-16 NETWORK WHILE “OURS2” DENOTES THE OUR NETWORK BASED ON RESNET-101 NETWORK

TABLE II

COMPARISON OF DIFFERENT WEAKLY SUPERVISED SEMANTIC SEGMENTATION METHODS ON PASCAL VOC 2012 TEST SET. THE “-” DENOTES
UNKNOWN VALUES THAT WERE NOT REPORTED BY THE CORRESPONDING PAPER. THE “OURS1” DENOTES THE OUR NETWORK BASED ON

VGG-16 NETWORK WHILE “OURS2” DENOTES THE OUR NETWORK BASED ON RESNET-101 NETWORK

low-level physical information among superpixels with the
feedback chain and generates accurate and concise boundaries.
In addition, “baseline + F2” in Table V means not to use the
pseudolabels updating mechanism in DFN, which is equal to
w = 0. When setting w = 1, the network fails to predict
the semantic segmentation result, and all pixels are predicted
as background. It seems that the mechanism updates the
pseudolabels too much and the updated pseudolabels become
a mess.

Moreover, the “baseline + F1 + F2” indicates integrating
both two chains, which rebuild complete position information.
The “baseline + F1 + SRW” indicates to use the normal
random walk process replacing the standard random walk.
It is easy to find that the result is better than “baseline +
F1” and worse than “baseline + F2”, which indicates the
effectiveness of the random walk process and the harmfulness
of the unequal confidence problem. The “baseline + F1 + F2-
BLF” indicates to remove the boundary loss function in (2).
On the one hand, it is obvious to find that the widely used

1http://host.robots.ox.ac.uk:8080/anonymous/1ANUBJ.html
2http://host.robots.ox.ac.uk:8080/anonymous/2LASXN.html

boundary loss term brings a large improvement for weakly
supervised semantic segmentation. On the other hand, the
second feedback chain achieves a comparable improvement
compared with the boundary loss term, demonstrating the
effectiveness of our methods. Besides, when we used the
second feedback chain, the boundary loss function still works
well, indicating the robustness of the proposed method.

Table V shows a 2.4% gain in mIoU when using the first
feedback chain. This indicates that our pseudolabels updating
mechanism improves the original pseudolabels. To prove the
effectiveness of the first feedback chain, we also conduct an
experiment that adds this feedback chain to DSRG (based on
VGG-16), whose result is 57.8% in mIoU and it has a 0.4%
increase compared with our implemented DSRG network. This
suggests that our method indeed corrects mislabeled regions
hidden in original pseudolabels explicitly. Then, with the
comparison of the results between “baseline + F1” and “base-
line + F2”, we can see that the improvement of the second
feedback chain is higher than that of the first feedback chain.
It shows that previous works focus on recovering high-level
semantic information but pay little attention to rebuilding
low-level physical information. By comparing the mIoU value
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TABLE III

PERFORMANCE OF DIFFERENT METHODS ON COCO DATASET

TABLE IV

COMPARISON OF SEMANTIC SEGMENTATION METHOD UNDER DIFFERENT
SUPERVISION TYPES ON PASCAL VOC 2012 SET

TABLE V

COMPARISON OF OUR METHOD UNDER DIFFERENT SETTINGS ON PAS-
CAL VOC 2012 VAL SET. “SRW” REPRESENTS THE NORMAL

RANDOM WALK PROCESS. “BLF” REPRESENTS THE BOUNDARY

LOSS FUNCTION IN (2). THE “ACCU” DENOTES THE PIXEL

ACCURACY AND THE “F.W. IOU” DENOTES FREQUENCY
WEIGHTED IOU

of “baseline + F2” with that of MCOF (56.2% based on
VGG-16), although both methods attempt to use superpixel,
our customized random walk achieves 2.2% performance gain.
It suggests that it effectively reduces the over-segmentation
phenomenon and reconstructs complete low-level physical
information. In addition, we get a larger gain in mIoU with
“baseline + F1 + F2” which proves the necessity to rebuild
complete position information and the effectiveness of our
componentwise approach to reconstructing two categories of
position information, respectively.

E. Quality Improvement of Pseudolabels

In this section, we conduct a series of experiments to
demonstrate the improvement of pseudolabels.

Table VI reports the mIoU values of generated pseudolabels
on PASCAL VOC 2012 val set, against previous methods,
namely, SPN [28], DSRG [20] and AffinityNet [29]. The
“baseline” represents the original pseudolabels (foreground
region from CAM and background region from DRFI), the
“superpixel-based” represents the superpixel-based pseudola-
bels and the “updated” represents the updated pseudolabels.
It can be seen that our pseudolabels achieve higher segmen-
tation performance. Although SPN integrates the superpixels
into the network structure, our superpixel-based pseudola-
bels have a 1.7% improvement compared with SPN, which
demonstrates the effectiveness to use superpixels as the base

TABLE VI

IMPROVEMENT OF PSEUDOLABELS ON MIOU

unit of pseudolabels. The updating process of DSRG does
not correct the initial regions in pseudolabels, and thus, our
updated pseudolabels outperform them by 4.3%.

To explore the relative improvement on pseudolabels using
different mechanisms, inspired by the usage of trimap in [56],
we also introduce the trimap mask to detect where the majority
of improvement takes place. The trimap refers to a narrowband
region along object boundaries and the distance of trimap
decides the bandwidth, as shown in Fig. 7. In comparison
among improvement in trimap of five pixels, improvement
in trimap of ten pixels, improvement in trimap of 15 pixels,
improvement in trimap of 20 pixels, and improvement of the
reversed mask of trimap of 20 pixels, we can clearly see how
the two mechanisms work. Meanwhile, using the pseudolabels
updating mechanism and the customized superpixel-based
random walk mechanism, there exist four different types
of pseudolabels. The “original pseudolabels” refers to the
generated pseudolabels whose base unit is the square pix-
els blocks and are the same as DSRG. The “superpixel-
based pseudolabels” infers the converted pseudolabels whose
base unit is superpixels. The “enhanced pseudolabels” refers
to the outputted pseudolabels by our customized random
walk process. The “updated pseudolabels” refers to changed
pseudolabels by (1).

As shown in Table VII, in comparison between
superpixel-based pseudolabels and original pseudolabels,
the main improvement occurs in the trimap with a small
distance (49.0% when d ≤ 5 compared with 33.9%
when d > 20) and demonstrates our superpixel-based
pseudolabels indeed produce more accurate segmentation
boundaries. In comparison between enhanced pseudolabels
and superpixel-based pseudolabels, we can see that the
performance improvement is mainly in the regions far away
from the boundaries, especially the regions out of trimap of
distance less than 20 (10.8% when d > 20 compared with
5.3% when d ≤ 20). It suggests our customized random
walk process conquers the over-segmentation phenomenon
and focus on removing unnecessary boundaries inner object.
In the meantime, the majority of improvement of the updated
pseudolabels compared with original pseudolabels takes
place in the region inner object, which demonstrates the
pseudolabels updating mechanism indeed focuses on the
logical structure inner object and recovers high-level semantic
information.

F. Effects of Hyperparameters

We finally evaluate the performance of our network with
respect to different hyperparameter settings in two feedback
chains and specify the way to pinpoint their values.

For the first feedback chain, the hyperparameter w in (3)
represents the update rate in the first feedback chain, which
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Fig. 6. Qualitative segmentation results on PASCAL VOC 2012 val set. One failure case is shown in the last row.

Fig. 7. Some trimap examples. (a) Input image. (b) Ground truth. (c) Trimap of five pixels. (d) Trimap of 20 pixels. (e) Reversed mask of trimap of 20 pixels.

Fig. 8. Performance of our method with respect to different values of αfg,
αbg, βfg, and βbg.

determines the weight of feedback from network output.
A large w makes pseudolabels change rapidly and cannot
supervise network training effectively, whereas a small w
slows down the correction of errors incurred by original
inaccurate pseudolabels. We go through possible values of
w in a large range and select the best-performing one from

experiments. From Table VIII, the optimal value of w is 0.20,
which reaches the peak point at all three measurement index:
accuracy, mIoU, and f.w. IoU.

For the second feedback chain, we also conduct some exper-
iments with different steps counts in a customized random
walk process. The steps count n represents the repeating itera-
tions of a single-step customized random walk, which decides
the degree of integration of low-level physical information.
Results in Table IX suggests that 2 is an optimal point for steps
count n. There are no more increases when n is bigger than
2, which shows all low-level physical information is merged
into pseudolabels.

In the second feedback chain, there are four hyperparame-
ters, i.e., αfg, αbg, βfg, and βbg in threshold functions. We set
their values to αfg = 0.90, αbg = 0.90, βfg = 0.75, and
βbg = 0.90. These hyperparameters are tuned with a coarse-
to-fine procedure. In the coarse module, we roughly determine
a satisfactory range for each hyperparameter (for example, the
range of αfg is [0.6, 1.0]). Then, in the fine-tuning module,
we divide these parameters into two groups based on their
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TABLE VII

RELATIVE IMPROVEMENT OF PSEUDOLABELS ON MIOU. “d ≤ 5,”
“d ≤ 10,” “d ≤ 15,” AND “d ≤ 20” DENOTE EVALUATING USING

THE MASK OF TRIMAP OF 5, 10, 15, OR 20 PIXELS. THE “d > 20”
REPRESENTS USING THE REVERSED MASK OF TRIMAP

OF 20 PIXELS. “ALL” DENOTES EVALUATING ON ALL THE
PIXELS. THE “S TO O” REPRESENTS THE COMPARISON

BETWEEN SUPERPIXEL-BASED PSEUDOLABELS

AND ORIGINAL PSEUDOLABELS. THE “E
TO S” REPRESENTS THE COMPARISON

BETWEEN ENHANCED PSEUDOLABELS TO

SUPERPIXEL-BASED PSEUDOLABELS.
THE “U TO S” REPRESENTS

THE COMPARISON BETWEEN

UPDATED PSEUDOLABELS

TO SUPERPIXEL-BASED
PSEUDOLABELS

TABLE VIII

PERFORMANCE OF OUR METHOD FOR DIFFERENT w

TABLE IX

PERFORMANCE OF OUR METHOD FOR DIFFERENT n

correlations: 1) {αfg, αbg} and 2) {βfg, βbg}. When we test
values of one group of hyperparameters, another group is set to
default values, i.e., the mean value of the optimal range given
by the coarse module. In each group, the hyperparameters
are tuned with grid search (for example, αfg is tuned at the
range [0.6, 1.0] with an interval 0.1). We finally pinpointed the
specific value as the one that can achieve the highest mIoU
value (for example, the final value of αfg is 0.90). We also
test the sensitivity of these hyperparameters. To this end,
we evaluate the performance variation for one hyperparameter
with the other three fixed. The results are shown in Fig. 8.
We can observe that in a wide range, our network outperforms
the baseline (52.2%) with a large margin. It demonstrates that
our performance is not sensitive to these four hyperparameters.
Moreover, the performance variation for αfg and αbg seems less
than that for βfg and βbg. One possible reason is that network
output changes more rapidly than pseudolabels, which makes

the result of thresholding network output more sensitive to its
parameters.

V. CONCLUSION

To the best of our knowledge, this article is the first
attempt to apply a componentwise approach to recover the
lost position information, which is critical to solving the tags
supervised semantic segmentation issue. We have explicitly
considered the inherent differences between the high-level
semantic position information and the low-level physical posi-
tion information and designed a novel DFN to reconstruct
each component independently. Different from the previous
methods that aim to recover position information as a whole,
we have developed the feedback mechanisms in the tailored
network to seek the complete recovery of a separate part of
position information. As a result, the generated pseudolabels
contain more correctly labeled regions and more accurate
boundaries. Extensive experimental results on segmentation
datasets have demonstrated the superiority of our approach
over the state-of-the-art alternatives in various images.

As for the limitation of this approach, the failure only exists
in a few cases, which contain lots of small and dense objects
with a complicated background. It is mainly because of the
incomplete recovery of low-level physical position information
for those images. In the future work, we will explore more
on reconstructing the low-level physical position informa-
tion to address the above-mentioned limitation. Currently,
the approach applies a hand-designed relationship matrix to
capture the lost low-level physical information, in which some
relationships among superpixels are discarded due to the
various contexts in natural images. The performance may be
further improved if we utilize a deep neural network to gen-
erate a more accurate relationship matrix. On the other hand,
the proposed approach still uses an encoder-shape network as
the backbone, which does not make full use of the details
in our pseudolabels that have the same size as input images.
Therefore, a further extension of the proposed approach is to
apply an encoder–decoder segmentation network, as shown
in [57]. Moreover, it would be interesting to introduce gen-
erative adversarial nets [58] to recover the missing position
information for its amazing ability to reconstruct any data.
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