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Abstract—Streaming data clustering is a popular research
topic in data mining and machine learning. Since streaming data
is usually analyzed in data chunks, it is more susceptible to
encountering the dynamic cluster imbalance issue. That is, the
imbalance ratio (IR) of clusters changes over time, which can
easily lead to fluctuations in either the accuracy or the efficiency
of streaming data clustering. Therefore, an accurate and efficient
streaming data clustering approach is proposed to adapt to the
drifting and imbalanced cluster distributions. We first design a
self-growth map (SGM) that can automatically arrange neurons
on demand according to local distribution, and thus achieve fast
and incremental adaptation to the streaming distributions. Since
SGM allocates an excess number of density-sensitive neurons
to describe the global distribution, it can avoid missing small
clusters among imbalanced distributions. We also propose a fast
hierarchical merging (HM) strategy to combine the neurons that
break up the relatively large clusters. It exploits the maintained
SGM to quickly retrieve the intracluster distribution pairs for
merging, which circumvents the most laborious global searching.
It turns out that the proposed SGM can incrementally adapt
to the distributions of new chunks, and the self-growth map-
guided hierarchical merging for the imbalanced data clustering
(SOHI) approach can quickly explore a true number of imbal-
anced clusters. Extensive experiments demonstrate that SOHI
can efficiently and accurately explore cluster distributions for
streaming data.

Index Terms—Cluster analysis, drift adaptation, efficient algo-
rithms, imbalanced data, self-organizing map (SOM), streaming
data.
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I. INTRODUCTION

TREAMING data, specifically the datasets with flowing-
Sin or updates of its objects over time, is prevalent
in various fields, such as market research, health big data
analysis, and the Internet of Things [1], [2], [3]. Due to
the lack of readily available labels, clustering that gathers
similar data objects into a certain number of groups becomes
indispensable for data analysis. Cluster analysis of streaming
data is often conducted on a chunk-by-chunk basis to ensure
sufficient statistical information [4]. However, the nonuniform
co-occurrence of data objects from different distributions,
along with shifts in data distributions over time [5], will
frequently lead to the emergence of imbalanced clusters,
i.e., clusters with very different numbers of objects. Fig. 1
shows the causes of such a problem, which puts forward
a new clustering challenge, i.e., how to accurately explore
and efficiently adapt to the imbalanced cluster distributions
of streaming data.

Imbalanced streaming data introduces complex and chal-
lenging issues to clustering, which are manifested in two
aspects: 1) uncertainty in the number of clusters and
2) laborious detection of imbalanced clusters. On the one
hand, due to the changing sizes of clusters, it is difficult
to dynamically determine an appropriate number of clusters,
leading to unsatisfactory clustering accuracy. On the other
hand, existing imbalanced data clustering solutions [6] usually
involve two phases: 1) partition all n objects into m-scale
microclusters (m > k*, where k* is the true number of clusters)
and 2) perform m?-scale merging of the microclusters to form
final clusters. Such a time-consuming O(m?)-complex process
prevents the existing imbalanced data clustering approaches
from efficient streaming data analysis, while fast clustering
techniques struggle in exploring imbalanced clusters due to
the overlook of relatively small clusters. Subsequently, rele-
vant clustering solutions from the perspective of imbalanced
streaming data clustering (ISDC) are analyzed.

Partitional clustering algorithms demonstrate a certain level
of capability in addressing ISDC. In this stream, the most
classic method would be the k-means [7] algorithm. Thanks to
its simplicity and efficiency, it can be applied to the analysis of
streaming data with linear complexity. However, both k-means
and most of its variants (e.g., [8], [9]) tend to produce balanced
clusters [10]. To specifically address the imbalance issue, the
multicenter (MC) clustering algorithm [11] has been proposed
to partition the whole dataset into many small subclusters, and
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Fig. 1. Key problems in ISDC.

then successively merge the closer pairs to avoid neglecting
relatively small clusters. As its performance is very sensitive to
initialization, a self-adaptive clustering method called SMCL
[6] has been proposed, which more robustly generates a proper
number of seed points through competitive learning [12], [13],
[14] to describe the data distribution for exploring imbalanced
clusters. A novel rough set-based approach M3W [15] has
also been proposed to generate a hierarchical data distribution
structure that informatively facilitates the formation of small
subclusters with clear boundaries. However, they all involve
relatively laborious computation due to the m?-scale search
of many (m-scale) seed points, making them unsuitable for
efficient streaming data analysis.

Density-based clustering methods determine object-cluster
affiliation according to the local density of objects [16], and
they demonstrate a certain degree of capability in handling
imbalanced data. For instance, density peaks clustering (DPC)
[17] identifies data objects with relatively higher local density
as cluster centers, and can thus explore smaller clusters with
relatively prominent local density. To achieve more reasonable
density quantification, FKNN-DPC [18] has been proposed,
employing fuzzy weighted k-nearest neighbor as a density
measure. With a more appropriate density measure, it achieves
better performance in detecting imbalanced clusters in com-
parison with the original DPC. Later, an approach called
local density peaks for imbalanced data (LDPI) [19] has
been proposed, adopting an adaptive subcluster construction
scheme, which forms more subclusters than true clusters to
enhance the detection of imbalanced clusters. However, it
involves an object-wise quadratic time complexity.

To specifically achieve efficient cluster analysis, fast clus-
tering solutions have emerged. A conventional method is
StreamKM++ [20], which integrates a software acceleration
architecture and k-means++ [21] to dynamically update cluster
centers to incrementally fit streaming data distribution. The
efficiency of density-based clustering has also been improved
by adapting DPC to streaming data, which demonstrates supe-
rior clustering performance compared to other streaming data
clustering methods [16]. However, dynamic DPC is not robust
to hyper-parameters when dealing with nonstationary stream-
ing data. To address this issue, AMD-DPC [22] was proposed,
adopting a graph-based data structure for local density updates,
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which saves computation costs while remaining accurate. By
inheriting the efficiency of partitional clustering and the unbi-
ased cluster discovery capability of density-based clustering,
a fast and accurate clustering algorithm called IGMTT [23]
has been presented. However, the above-mentioned solutions
have yet to consider imbalanced clusters and may thus yield
unsatisfactory clustering results in the ISDC task.

To the best of our knowledge, most conventional clustering
assumes that the true number of clusters k* is given based
on prior data distribution knowledge [4], [10]. However, for
ISDC with changing distribution, it is difficult to obtain prior
knowledge about k*. Combining all the above analyses, it can
be concluded that existing methods only consider one of the
imbalances and streaming factors, and most of them do not
take into account the situation of unknown k*. Therefore, there
is an urgent need to achieve fast and accurate ISDC without
knowing the proper number of clusters k*.

This article, therefore, proposes a fast and accurate approach
called self-growth maps-guided hierarchical merging for
imbalanced data clustering (SOHI), pronounced (“so high!”)
for ISDC. First, to realize an efficient distribution descrip-
tion for data chunks, we propose a self-growth map (SGM)
learning algorithm that can quickly and incrementally adapt
the distribution via connected neurons generated as needed.
The maps use a 3-neuron triangle as the basic geometry unit
for growth. Compared to the self-organizing map (SOM) that
adopts presized grids, our SGM enables flexible distribution
exploration and can incrementally adapt to changing distri-
butions. Based on the distribution described by the abundant
neurons, relatively small clusters can be effectively captured.
Subsequently, further exploration of the imbalanced clusters is
performed by hierarchically merging the adjacent data objects
corresponding to the neurons. The topological structure of
SGM is fully utilized to accelerate the laborious hierarchical
merging (HM) by serving as a retrieval structure, allowing
only closely connected neurons to merge. According to our
analysis, such a map retrieval-based acceleration consider-
ably improves the time complexity. In comparison with the
state-of-the-art counterparts, SOHI demonstrates its superiority
in ISDC as it sufficiently improves time complexity, while
still being competitive in clustering accuracy. Comprehensive
experiments have been conducted to illustrate its promising
performance. The main contributions are summarized into the
following four aspects.

1) A new paradigm called SOHI is proposed for ISDC. The
distribution information provided by the learned SGM
is thoroughly exploited to relieve the tradeoff between
efficiency and accuracy in ISDC.

2) We propose self-growing maps named SGM with tri-
angles as the basic growth unit. Such a design avoids
the missing of small clusters, and can flexibly adapt to
streaming chunks incrementally.

3) To ensure an efficient imbalanced cluster detection, a
fast HM mechanism is designed to fully utilize the
similarity of local distributions reflected by the SGM,
thus considerably avoiding meaningless searches.

4) An imbalanced streaming data chunk generator is pre-
sented to simultaneously simulate the changing of
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cluster number and cluster size in real ISDC scenarios.
It ensures a more convincing evaluation and can be a
universal experimental tool in studying ISDC.

The rest of this article is organized as follows. Section II
reviews the related work. Section III presents the problem
statement and preliminaries, and Section IV introduces the
proposed SOHI with time complexity analysis. Section V
showcases experimental results with in-depth observations.
Finally, we conclude the whole work in Section VL.

II. RELATED WORK

This section overviews the research topics relevant to this
article, including streaming data clustering, imbalanced data
clustering, and distribution learning techniques.

A. Streaming Data Clustering

Data stream clustering partitions a series of data chunks into
compact clusters, which places higher requirements on effi-
ciency than static data clustering. Therefore, the streaming data
clustering method strives to strike a balance between accuracy
and efficiency [4]. Many of these algorithms are variations
of traditional clustering methods like the partitional k-means
[10] (e.g., [13], [20], [24], [25]), density-based DBSCAN
(e.g., [26], [27], [28]), and hierarchical clustering [29]. Based
on the brief introduction in Section I, we know that they
either introduce approximation-based acceleration from the
computational level, such as StreamKM++ [20], or replace the
original modules involving laborious computation with more
efficient alternatives from the algorithmic level, e.g., IGMTT
[23]. However, they inevitably introduce hyper-parameters that
are difficult to tune and may cause unstable performance.

Since constructing and merging microclusters by measur-
ing the Euclidean distances between high-dimensional data
objects is challenging, OSRC [30] utilizes low-dimensional
projection to effectively select an appropriate number of rep-
resentative data objects, but may be sensitive to the selection
of hyperparameters. To circumvent this, the work proposed
in [31] uses the Davies—Bouldin index (DBI) to guide the
optimization of clustering. However, its scalability is limited
by the DBI computation based on static data. Accordingly,
the work [32] develops incremental Xie-Beni (XB) and DBI
indices to monitor the streaming clustering process of k-means
type algorithms. To extend the above methods to process
multiview data, a multiview support vector domain description
model [33] has been proposed to capture cluster evolution and
discover arbitrarily shaped clusters with limited computing
resources. Nevertheless, streaming data clustering remains a
challenging issue due to the unavoidable tradeoff between
efficiency and accuracy.

B. Imbalanced Data Clustering

Imbalanced data clustering, where the scale varies for
different clusters, has attracted much more attention in real
data mining applications [34]. In addition to the density-based
clustering methods introduced in Section I, which naturally
has a certain ability to handle imbalanced clusters, using
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many prototypes to capture the micro distributions is also
considered one of the most effective ways to specifically
avoid missing small clusters. Such a principle has been
commonly adopted by the works [11], [35], [36], [37], [38].
The undersampling strategy is also one of the solutions for
imbalanced clustering, but it often faces the difficulties of
gradient explosion and insufficient learning experience of
positive data objects. Recently, Huang et al. [39] proposed an
informative undersampling and boundary expansion strategy to
deal with it. However, they typically use a predefined number
of prototypes, which makes the clustering performance highly
sensitive to different datasets with various distributions. Hence,
their recent variants propose to adaptively generate prototypes
for distribution description.

A method called SMCL [6] achieves incremental proto-
type learning by gradually adding seed points driven by
a competitive learning mechanism to prevent the issue of
dead units [12]. However, this approach lacks robustness to
noise and is extremely computationally expensive due to the
recursive seed points generation and merging. To address this,
LDPI [19] designs an initial subcluster generation scheme,
improving the clustering method of DPC [17] by automat-
ically identifying noise points and initial subcluster centers.
According to the nearest-neighbor principle, the remaining
objects are classified as subcluster centers to represent local
microdistributions. MCNS [40] further introduces a measure
based on the reconstruction rate to select the appropriate num-
ber of clusters, enhancing convergence speed while ensuring
accuracy. However, all the above-mentioned methods seek
the optimal solution through iterative searching on n-scale
prototypes, resulting in quadratic-level time complexity.

C. Distribution Learning

Common unsupervised distribution learning approaches
include: 1) representation learning [41], [42], [43] that learns
to project the data objects from the original distance space into
a more cluster-discriminative space; 2) data summarization
[44], [45] that uses a set of prototypes to describe the data
distribution; and 3) SOM [46], [47], [48] that trains a low-
dimensional map to simultaneously realize dimensionality
reduction and distribution description on datasets. Since the
latter two types are more efficiency-promising under the sce-
nario of ISDC, we further discuss them below.

Among the summarization-based methods, data bubbles
[49] and its variants [50], [51] summarize data distribution
by randomly initializing a set of prototypes to incorporate
nearby data objects into groups (i.e., data bubbles). In general,
their performance is sensitive to the compression rate and the
initialization of prototypes. Later, the work in [52] relieves
the sensitivity issue by specifically training prototypes to fit
the distribution. To further preserve the embedded hierarchies
of more complex data distribution, hierarchical summarization
approaches [23], [24], [37] have been proposed to partition
the data into microclusters, and then construct dendrograms
for multigranular distribution summarization.

SOM [46] that trains neurons constrained by mesh topology
in a competitive learning way has been proposed to summarize
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high-dimensional data into a low-dimensional map for unbi-
ased any-shape cluster detection [47], [53]. To improve the
adaptability of SOM to represent more complex data distri-
butions, more advanced SOMs [54], [55], [56] that introduce
asymmetric connection weights, dynamic learning rates, and
adaptive neighborhood relationships, respectively, have been
proposed in recent years. Given that conventional SOMs ini-
tialize fix-sized and grid-connected neurons, they are inflexible
in the distribution exploration of streaming data. To address
this issue, growing SOMs [23], [57] have been developed
to generate neurons on demand to fit data distributions. The
growing hierarchical map [58] has been proposed to recur-
sively grow and refine the coarse-grained neurons to represent
complex data distributions. Most recently, the method pro-
posed in [59] further generalizes SOM to a sparse dictionary
of prototypes with flexible free-to-update/remove neighboring
relationships, thus facilitating efficient and accurate online
streaming data classification. However, the above-mentioned
approaches either operate in a supervised scenario, or do not
specifically address the imbalance of distributions, preventing
them from tackling the ISDC problem. Furthermore, SOM has
also been incorporated into the deep learning framework [60].
Although it facilitates a convenient end-to-end clustering, the
data scale requirement for model training and the inability to
adapt to concept drift limit its usage in ISDC.

III. PROBLEM STATEMENT

The primary cause of the unsatisfactory streaming clustering
performance is the difficulty in exploring imbalanced clus-
ters, known as the ISDC problem demonstrated in Fig. 1.
Assuming data objects are continuously generated or col-
lected, which can be more formally denoted as a data stream
Xr = {XYY, comprising N data chunks X* € R"*“ formed
at different time-stamps ¢. Generally, data streams are con-
sidered to be unbounded (i.e., N — o). Each data chunk
consists of n objects denoted as a collection of n vectors
X' = {x|,x5,...,x,}, where x‘j e R4 represents the jth data
object within X*.

For ISDC, assume the objects of a chunk X' can be
distributed to k* clusters denoted as C* = {C}, C%, ..., C},} with
the corresponding cluster centers S* = {s{,s5,...,s,.}. A jth
cluster C is a subset of X*. The conventional cluster objective
is to partition X* into C* that minimizes

.
SSQ(X.59=>"3 " |x-si, @

Jj=1 xeC'

which is the sum of squared distances [61], and |||, denotes
the L-2 norm.

When data object generation is biased toward certain clus-
ters, the cluster-imbalanced data chunks arise, where the
number of objects in the relatively large cluster can signifi-
cantly exceed that in the relatively small one, which can be
reflected by an imbalance ratio (IR)

_ max (card (C}) , card (C3) , ..., card (C},) )
" min (card (C) ,card (CY), ..., card (C%.))

2
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Fig. 2. Overview of the proposed SOHI framework.

where card(-) is a function that counts the number of elements
of a set, and IR is actually the ratio between the sizes of
the largest and the smallest clusters. Intuitively, IR = 1
indicates an extremely balanced case, while larger IR indicates
a more severe cluster imbalance. Since most existing clustering
algorithms implicitly assume balanced clusters and perform
static data clustering, how to timely capture the key smaller
clusters in ISDC is the core problem to be tackled.

IV. PROPOSED METHOD

This section provides a detailed description of the proposed
SOHI approach for ISDC. SOHI contains two main steps:
1) adaptive chunk distribution representation by SGM and 2)
HM for imbalanced cluster exploration. The overview of the
SOHI approach is shown in Fig. 2. SGM first initializes MSs
and lets them grow to fit the local object distribution (upper left
in Fig. 2). When the overall data distribution can be sufficiently
represented by the SGM, the neurons are hierarchically merged
by the HM (lower left in Fig. 2) to explore an optimal number
of imbalanced clusters based on the density gaps between
merged neurons (lower right in Fig. 2).

A. SGM: Self-Growth Maps

For ISDC, it is crucial to achieve fast microcluster
exploration for distribution description. Most conventional
SOM-based methods initialize and train a complete map to
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represent the data distribution through its neurons, where
excessive neurons can appear between adjacent clusters, mak-
ing them indistinguishable. More specifically, the neurons
are usually treated as microcluster centers and will guide
the merging of microclusters to form prominent clusters.
If redundant neurons between adjacent clusters are created,
clusters might be mistakenly merged, severely degrading the
clustering performance. Growing cell structures (GCSs) [62],
an incremental SOM, is promising as it dynamically adapts
to the changing distributions of streaming data. However,
it attempts to maintain a complete map with all neurons
connected, which may still incur the redundant neuron effect.
Although it provides a threshold-based strategy for redundant
neuron elimination, the threshold tuning is still nontrivial.

Inspired by GCS, the SGM is proposed to train MSs for
rapid data distribution fitting. A network A consisting of T
subnetworks is initialized

T
=Ja 3)
=1

where T is typically set at a value larger than the optimal
number of clusters k* to avoid missing relatively small clusters.
To ensure that each subnetwork can appropriately fit the
local data distribution without overlapping, rapid Poisson disk
sampling is employed for generating initial subnetworks [63]
(each of which is a basic triangle 3-neuron network), which
are allowed to grow independently. Planar triangle structures
are adopted by the growing network rather than the high-
dimensional hypertetrahedra as in the original GCS for an
efficient purpose. Given a chunk X*, subnetworks, e.g., A;, are
trained to fit the local object distribution by

1d 1d
2 =17) +e (x - 7)) ) )

if z;, is the best matching neuron (BMN) of object x‘j
determined by

Z;; = argmin ||X - Ziy || 5)
z; €A

Note that z;; is a d-dimensional vector representing the sth
neuron of A;, as the training of neurons is driven by the
d-dimensional data objects from X‘. Moreover, to ensure a
smooth and efficient update of the BMNs, a small learning
rate €, is adopted in (4). To ensure a structural update of the
subnetwork, the update provided by X; is also propagated to
the neurons that are directly connected with the BMN

7). = z?lcd + €q (x - z?lcd)
s.t. . € Q (2) (6)

where Q(z; ;) represents the set of 1-hop adjacent neurons of
Z;5, and eq is the corresponding learning rate. Since only the
BMN and its 1-hop neighbors are trained with respect to each
object X, an efficient adaptation to new data distributions can
be achieved without involving all the subnetwork’s neurons.
By randomly selecting data objects from X‘ for the above
training, the network gradually fits the distribution of X*.
Due to the distribution complexity, mapping too many
distant data objects to a neuron will lead to an improper
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distribution representation. Such an effect can be reflected
by the accumulated BMN distance, which we call BMN
inadaptability. For each training input X/, its corresponding
BMN inadaptability is updated by

T:ew — nld + ”X
Ls

2, (7)

In the same subnetwork A;, the neurons other than the BMN
typically exhibit lower inadaptability with respect to the cur-
rent input. Therefore, their inadaptability values are slightly
decreased, with the reduction rate governed by a parameter «

new _ _old _ old
Tzl.q = Tzl.q CL’Tqu
St Zy #2. (8)

When A has been trained to adapt to p data objects, it is
necessary to evaluate whether the network needs to create
new neurons or merge nearby subnetworks. A reasonable
evaluation method is to compare the distance between the
neurons with the highest and second highest inadaptability,
e.g., z;, and z;,, which belong to two different subnetworks,
given by

Z;, = argmaxty,,
zi ;€A

and zj, = argmaxt,,,. 9
zjs€A\{Ai}

If the distance between z;,, and z;, is larger than that between
z;, and its furthest adjacent neuron z;,, i.e.,
|22 = 2sll, > |20 = 2],

s.t. z;, = argmax ||z,-,g - z,-,V”
2;,€Q(z;,)

, (10)
then it suggests that z;, may suffer from under-adaptation and
be insufficient to properly represent its associated objects. To
address this, a new neuron z;;, = (z;, + z;,)/2 is created and
connected to the common neighbors of z;, and z; ;, preserving
the basic triangle topology of the network.

To facilitate sustainable map growth, an inadaptability value

7,0 should be assigned to the new neuron z;,

éfold new

new __ Zic Zic _old

Ton = Z é‘old TZi,c (1 1 )
2,.€Q(zi) Zic

which is the sum of the reduced inadaptability of its neighbor-
ing neurons. The reduced amount of inadaptability is reflected
by the receptive field of a neuron

1
LS e, (2
card (Q (z.)) s ne)
which is the average distance between z;. and its neighboring
neurons. As the new z;;, splits up the receptive fields from its
neighboring neurons, the inadaptability of each neighboring
neuron z;. is updated with a corresponding reduction as

é'old new
Tnew — Told PZic  PLic _old

Zic Zic T oold | Zie
Zic

stz € Q(2) . (13)

If the distance between z;, and z;, is not larger than
the distance between z;, and z;,, it implies that the two
corresponding subnetworks A; and A; are too close, and
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Algorithm 1 IGCM: Inadaptability Measure-Guided Neuron
Creation or Subnetwork Merging

Input: Network A.
Output: Updated network A with created neurons or
merged subnetworks.
1 Find z; , and z; , with the largest and second largest
inadaptability by Eq. (9);
Find the furthest adjacent neuron z; ; of z; , from A;;
if |ziy — 2 gll2 > |12y — Zi 4ll2 then
Create z; ;, with its inadaptability 7, , by Eq. (11);
Update inadaptabilities of €2(z; ) by Eq. (13);
Create edges to connect z; , to z;, and z; ,;
else
Connect z; , and z; ;, t0 z; 5, merge A; and Aj;
end

E-EEN- - B N L )

a merging procedure should be launched. Specifically, an
edge is created to connect z;, and z;, to Z;,, maintaining
the triangular topology within and across subnetworks. The
complete algorithm of inadaptability-guided neuron creation
and subnetwork merging is summarized in Algorithm 1.

Remark 1 (Merits of Subnetworks): The multisubnetwork
design naturally circumvents the thorny elimination of redun-
dant neurons located at the distribution boundary of clusters.
Moreover, it allows for the flexible removal of subnetworks
that do not fit the data distribution in a new data chunk without
affecting the structure of the other subnetworks. In addition,
parallel computing can be performed to accelerate the training
of the independent subnetworks before their merging.

Remark 2  (Rationality of the IGCM Algorithm): Sub-
network merging is conducted by considering the neurons
with high inadaptability and their intersubnetwork distance.
Inadaptability filters most neurons that can well represent the
corresponding objects, and the designed merging process will
not merge two nearby neurons with relatively low inadaptabil-
ity. This is because the lower inadaptability indicates a clear
distribution boundary between the two microclusters.

Through the SGM training, a network A containing Q
neurons organized in a certain number of subnetworks is
obtained. Each neuron can be treated as a microcluster center
to partition the data chunk into Q microclusters. A is also
utilized for quickly retrieving the neighboring neurons, which
is significant in accelerating the hierarchical microcluster
merging process in Section IV-B.

B. HM for Imbalanced Clustering

With the distribution knowledge of the current data chunk
obtained through SGM training, the microclusters are merged
to obtain a proper number of imbalanced clusters. The topo-
logical structure of the neurons is exploited to accelerate the
merging process. Since clusters corresponding to nonadjacent
neurons are less likely to be merged, the topology is utilized
as a retrieval structure that only allows the merging of adjacent
neurons, thereby significantly avoiding the laborious traversing
of all the possible microcluster pairs during the merging.

To judge the merging of two clusters, the concept of density
gap is introduced to describe the prominence of their boundary.
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Based on this, global compactness and global separability can
be derived as measures to monitor the merging process and
guide the selection of the optimal number of clusters. Specifi-
cally, Q microclusters {Gy, G, ..., Gp} obtained through SGM
are the initial microclusters. During their merging, the current
k clusters composed of a certain number of microclusters are
denoted as ®(k) = {Cy,C>,...,Cy}, with their centers denoted
as S = {s1,$2,...,8}. Note that these cluster centers are not
necessarily original neurons, as each cluster may consist of
data objects belonging to multiple neurons’ corresponding
microclusters. Given two clusters C; and C}, their merging is
considered by projecting all their objects onto the 1-D space
passing through their centers s; and s;

, (x—§)T (Si —Sj)

Isi = sill,
where § = (s;+s;)/2. To characterize the 1-D Gaussian mixture
probability density distribution of C; and C;, their objects are

further mapped onto the 1-D space with respective cluster
centers as 0.5 and —0.5

(14)

M (usi, j)
card (C1) f (ul0.5,02) + card (C;) f (ul - 0.5,03)
- card (C;) + card (Cj)

15)

where f(u0.5,07) describes the probability density distribu-
tion of C;, with variance o7 computed from the objects in C;
after mapping them to the 1-D space crossing s; and s;. Then,
the density gap between C; and C; can be defined as

1

" it M (7, ) (1o
where U = {-0.5,-0.49,...,0.5} is a traverse set of u with a
step size of 0.01. Since a smaller min, ey M(u; i, j) reflects a
more prominent distribution density gap between two clusters,
then the corresponding m;; will be larger, indicating that C; and
C; are more unsuitable for merging. Conversely, C; and C; are
selected for merging if their m;; reaches the global minimum
among all the cluster pairs in ®(k), which can be defined as
the global compactness

Hk_ min mij. (17)
eDk)

ci.C
It reflects the compactness of the clusters that will be merged
currently in ®(k). A lower 6; indicates that the new cluster
formed by merging will be more compact, and thus a lower
0 is preferred by the typical clustering objective. After the
merging, a new cluster is formed as C, = {C;, C;} and added
to ®(k), while the original C; and C; are removed

O (k)\{C:,C;} and D (k) UC,. (18)

Then, a new status ®(k — 1) arises as the number of clusters
becomes k—1. The merging stops when all clusters are merged
into one cluster, i.e., k = 1.

An optimal £ can be selected by evaluating the merging
process. Since 6; may keep monotonic increasing due to the
gradual merging of adjacent microclusters with lower density
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gaps, it is incompetent in determining the optimal number of
clusters. Therefore, a global separability is also introduced

W = max Z Ny (x;) \ {N; (x)) N Ci

Cied(k s
) x;€C;

19)

where s refers to the number of global nearest neighbors of
an object X; € C;, and N,(x;) \ {Ny(x;) N C;} represents the
number of objects that are the s-nearest neighbors of x; but
are not included in the cluster C;. It is intuitive that if a
cluster C; is located far away from the other clusters, a small
(N;(x))\{Ny(x;)NC;})/s is yielded as most s-nearest neighbors
of Xx; may be included in its cluster C;. The cluster size of
C; is not introduced to this measure to ensure equal status
to imbalanced clusters, thus avoiding overlooking relatively
small clusters in ISDC. Accordingly, a lower w; indicates a
higher separability of the current clusters, which is preferred
by the typical clustering objective. As merging progresses,
wy, decreases because more inseparable adjacent clusters are
merged to form larger prominent clusters.

By collectively considering the global compactness and
global separability, a proper number of clusters can be auto-
matically determined as

k* = argmin

Ok
ke(1,2,...,0} max (91, 92, e

.60)

n nd ) (20)
max (wl, wy,. .., wQ)

where the two denominators are utilized to normalize 6, and
wy, into the same scale to ensure their comparability, and form
a tradeoff between them. Consequently, the optimal number
of clusters k* is estimated as the knee point [6], i.e., IAc*, of the
composite curve of 6 and wy.

Algorithm 2 SOHI: SGMs-Guided HM for Imbalanced Data
Clustering

Input: Data chunk X*, learning rates €q, €, reduction coeffi-
cient @, and number of nearest neighbors s.
Output: k* clusters {C1,Co, ..., C}.
1. SGM: Self-Growth Maps:
1.1 Initialize network A with T subnetworks;
1.2 Train A according to Egs. (4)—(6) by randomly
selecting objects from X*;
1.3 Update A with created neurons or merged subnet-
works according to Algorithm 1.
2. HM: Hierarchical Merging:
2.1 Calculate density gap of adjacent microclusters
according to Eqgs. (14)—(16);
2.2 Compute global compactness according to Eq. (17)
and merge all the clusters through A-guided retrieval;
2.3 Compute global separability according to Eq. (19);
2.4 Obtain k* clusters according to Eq. (20).

C. Overall Algorithm and Complexity Analysis

The complete SOHI is summarized as Algorithm 2. SGM
is first implemented to grow and merge subnetworks to

16055

represent the distribution of the imbalanced dataset. Then,
the microclusters corresponding to the neurons are adaptively
merged using HM, and an optimal number of clusters is
obtained by evaluating the merging process. The time and
space complexity of SOHI is provided below.

Theorem 1: Given an n-object chunk X*, and its Q-neuron
SGM. The time complexity of SOHI is 0(nQ%d).

Proof: Time complexity of SGM: for each input data
object, all Q neurons are considered to find the BMN, then
the BMN and its B adjacent neurons are updated together
with their inadaptability values. For all the n objects, the
time complexity for neurons updating is O(nBd + nQ + nd).
Considering the neuron creation and subnetwork merging in
Algorithm 1, its one implementation involves Q-scale search-
ing for the target neurons and B’d-scale updating of the
involved neurons’ statistics, thus resulting in a complexity of
O(nQ + nB?d) for at most n implementations of Algorithm 1.
In summary, the overall time complexity of the SGM process
is O(nQ + nd + nB%d).

Time complexity of HM: we analyze in two main stages:
1) intrasubnetwork merging (IASM) and 2) intersubnetwork
merging (IESM). In IASM, each merge estimates the density
distribution based on at most n- and d-dimensional objects
from two candidate clusters chosen from at most Q micro-
clusters connected with a branching factor of B. Since there
are at most Q merges, the time complexity is O(nQ?Bd). For
IESM, each of the T clusters contains at most n objects, and T
merges are needed. Since each merge involves considering 77
pairs of clusters, the overall IESM complexity is thus O(nT>d).
In addition, each merge also involves the computation of the
global separability, which needs the preparation of n> object-
level similarities, and then traverses each of the n objects
by going through their s neighbors. Thus, the complexity
of this part is O(n*Qd + nQs) for merging Q neurons. An
alternative way for accelerating such n’-scale complexity is
to treat neurons as objects, which improves the complexity to
O(Q*d + Q?s). In summary, the overall time complexity of the
HM process is O(nQ?Bd + nT3d + Q*d + Q%s), which can be
simplified to O(anBd), given that Q < n, and both T and s
are small constants in most cases.

The overall time complexity of SOHI, combining the com-
plexity of SGM and HM, is O(nQ + nd + nB>d + nQ*Bd).
Since B is also a small constant, the time complexity of SOHI
can be simplified to O(nQ>d).m

Theorem 2: Given an n-object chunk X*, and its Q-neuron
SGM. The space complexity of SOHI is S (nd + nQ).

Proof: Space complexity of SGM: the growth of SGM
involves the storage of X' as an n X d matrix. The SGM is
described by a Q x d matrix and a Q x B adjacency matrix
for its neurons and linkages, respectively. The object-neuron
similarity is stored in an n X Q matrix. A Q-dimensional
vector is required to record the inadaptability of the Q
neurons. Therefore, the overall space complexity of SGM is
S(nd 4+ Qd + OB+ nQ + Q).

Space complexity of HM: based on the space taken by SGM,
an additional Q x Q matrix is needed to store the density gap of
each pair of clusters during their merging. Global separability
computation needs the storage of s neighbors for each of
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TABLE 1

STATISTICAL INFORMATION OF THE 11 DATASETS. d, n, k*, AND IR
REPRESENT THE NUMBERS OF ATTRIBUTES, DATA OBJECTS, TRUE
CLUSTERS, AND THE IR, RESPECTIVELY

No. | Dataset Abbrev. | d n IR k*
1 Gaussian GA 2 2000 19.87 4
2 IDS2 ID 2 3200 10.00 5
3 Abalone AB 8 4177 689.00 28
4 Car Evaluation CE 6 1728 18.62 4
5 Haberman’s Survival HS 3 306 2.78 2
6 Heart Failure HF 12 299 2.11 2
7 Land Mines LM 3 338 1.09 5
8 Page Blocks PB 10 5473 17543 5
9 Raisin RA 7 900 1.00 2
10 Seeds SE 7 210 1.00 3
11 Wholesale Customers wC 7 440 6.72 3

the n objects. Thus, the space complexity required by HM
is §(Q? + ns).

The overall space complexity of SOHI is thus S (nd + Qd +
QB+nQ-+Q+Q?+ns), which can be simplified to S (nd+nQ),
given that Q < n, and B and s are usually small constants.m

V. EXPERIMENTS

Three experiments, i.e., efficiency evaluation, clustering
accuracy evaluation, and ablation study, have been conducted
on 11 datasets by comparing ten counterparts, including eight
existing methods and two ablated versions of SOHI.

A. Experimental Settings

Eleven datasets, including two synthetic and nine real
datasets with varying sizes, dimensions, and distribution types,
are utilized for the experiments. Their statistics are provided in
Table I. GA and ID [11] are synthesized by applying a mixture
of bivariate Gaussian density functions [6]. All real datasets
are obtained from the UCI Machine Learning Repository [64].
Min—max normalization is adopted to preprocess each feature
into the identical value domain [0, 1].

A streaming data chunk generation algorithm named two-
layer random sampling (TLRS) described in Algorithm 3 is
designed to more realistically validate the performance of
clustering methods on the ISDC problem. A selected dataset
serves as the basis for generating data chunks. Through
controlling the IR and number of imbalanced clusters, TLRS
can generate arbitrary-sized data chunks with £* imbalanced
clusters to include various imbalance states of streaming data
while preserving the original data distribution. The TLRS
serves to enhance the diversity of experimental data, allowing
a more convincing ISDC performance evaluation under various
imbalanced scenarios.

The eight counterparts include the advanced automatic
k-selection algorithms (CPCL [14] and M3W [15]), advanced
algorithms designed for streaming data (StreamKM++ [20]
and BIRCH [24]), and state-of-the-art methods suitable for
static imbalanced data (SMCL [6], IGMTT [23], DenSOINN
[13], and LDPI [19]). For StreamKM++ and BIRCH, the
number of clusters needs to be specified in advance. In con-
trast, CPCL, SMCL, IGMTT, DenSOINN, LDPI, M3W, and
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Algorithm 3 TLRS: Two-Layer Random Sampling

Input: The whole original dataset X, the maximum
imbalance ratio I R, true number of clusters k*,
true clustering partition C.
Output: Data chunk X* and its clustering partition C*.
1 Randomly set k£ as an integer in the interval [2, < k*];
Initialize imbalance ratio set / R* with k' elements;
fori < 1t k' —1do
‘ Randomly set I R; values from the interval [1, I R];
end
IR" < sort IR in ascending order;
card(C}) <« card(C));
for i < 2 to k' do
if IR;_, - card(Ci_) < card(C;) then
‘ card(C;) < IR;_, - card(C;_y);
else
| card(C}) < card(C;);
end
end
Each C; randomly takes card(C;) objects from C; to
form X'

o e N R W N

< e~
B W N =S

our method can adaptively determine the number of clusters
without prior specification. Hyperparameters of our method
are set as follows: the initial number of subnetworks is set at
T =15, the number of objects p for triggering Algorithm 1 is
set at p = 100 recommended by [62], the number of nearest
neighbors is set at s = 10, and the learning rates €, €q,
and « are set at 0.6, 0.02, and 0.005, respectively. The other
parameters for all the compared methods are set following the
recommendations in the source literature.

Three metrics, i.e., adjusted rand index (ARI), normalized
mutual information (NMI), and DBI, are utilized for evalua-
tion. ARI indicates the agreement in clustering that would be
expected by random chance, which is a discriminative index
with a range of [—1, 1]. NMI reflects the correlation between
the clustering results and the given labels from the perspective
of information theory, and its value range is [0, 1]. For both
ARI and NMI, the larger their values, the better the clustering
performance is. DBI is derived from the principles of internal
consistency and density gap in cluster analysis. It evaluates
the quality of clustering by measuring the distinction between
adjacent clusters while also considering the tightness within
clusters. A lower DBI value indicates better clustering, as it
suggests that data objects within clusters are more compact
and there is a higher degree of density gap between different
clusters. The DBI range is [0, o0), where O represents a perfect
clustering effect, i.e., clusters are very tight internally and
completely separable from the others.

The experiments are programmed using Python 3.11 and
implemented on a workstation with 16-GB RAM and a
2.4-GHz AMD R9 7940HX CPU.

B. Efficiency Evaluation
The impact of data size on the running time of clustering

methods is studied by plotting their running time with the
increase of data size in Fig. 3. It can be seen that the proposed
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TABLE I

CLUSTERING PERFORMANCE OF DIFFERENT METHODS EVALUATED BY THE ARI (7), NMI (T), AND DBI (]) METRICS. THE RESULTS MARKED IN
Orange AND Gray COLORS INDICATE THE BEST AND SECOND-BEST RESULTS ON EACH DATASET, RESPECTIVELY

Dataset | Metric BIRCH StreamKM++ CPCL SMCL IGMTT DenSOINN LDPI M3wW SOHI (ours)
ART | 023602000  0.0098F001  -0.0002£0.01  0.9252£0.06  05725%022  0.3234£0.01  0.0226£0.07  0.8264£0.13 | 0.9667£0.01
GA NMI | 000534000 001224000  0.0114£0.00  0.8685+£0.08  0.6744+0.12  04707+£0.00  0.0480+£0.12  0.8406:+£0.07 | 0.9447+0.02
DBI | 25.0641+2.85  0.7303+0.14  0.958940.16  0.5321+£0.05 098714035  1.3108+£4.82  0.9864-0.28  3.6246+1.91 | 0.4879+0.01
ARI | 0.0008+0.00  0.007740.00  0.011840.01 = 1.0000£0.00  0.6611+0.10  0.00554£0.00  0.5959+0.00  0.85280.00 | 0.9930+0.01
D NMI | 000434000  0.0085+0.00  0.016840.00  1.0000+£0.00  0.7668+0.06  0.0097+£0.00  0.6983+£0.00  0.8367+£0.00 | 0.9901+0.01
DBI | 52.6033+1326 022144000  0.844040.05  0.2084-£0.00  0.78074+0.16 ~50.8885+8.07  0.2198+£0.00  1.49580.01 | 0.2194+0.01
ARI | 000274000  0.0610+0.17 000314001  -0.2316+0.01  0.092840.04  0.00014£0.00  0.0010+0.01 = 0.21530.03 | 0.1431+£0.03
AB NMI | 008624001 017414021  0.0795+£0.03  0214040.07  0.25354£0.05  0.0650+£0.01  0.0289+0.00 041474005 | 0.28194+0.07
DBI | 08233+0.04 074274008 088354045  0.9685+0.16  1.6856+0.18  4.4526+197  0.618140.13  2.2018+1.66 | 0.6918-£0.26
ARI | -0.0004+0.00  0.0847+0.00  -0.0076+0.02  -0.0895+0.37  0.0069+0.02  -0.0010+0.00  0.009240.02 - 0.1138+0.07
CE NMI | 000524000 001394000  0.01204£0.01 00424024  0.065240.01  0.00524£0.00  0.0243+0.01 - 0.08370.06
DBI | 2089724161 | 141444001 = 3.0599+0.71 357174143  1.7767+0.10 20.8279+1.58 18903021 - 1.9068+0.38
ARI | -0.0028+0.01  0.0465+0.02  0.005940.03  -0.0166+0.01  0.0018+0.01  0.0066+0.01  -0.002240.03  -0.0101£0.02 | 0.0613£0.03
HS NMI | 000464000 001984001  0.0140£0.01  0.0077+0.00  0.0071£0.00  0.0105+£0.00  0.0202+0.02  0.0127+0.01 | 0.0251%0.01
DBI | 95495191 09385001 135094026  0.8764+0.05  1.5378+0.56 15814943.38  0.3927+0.15  0.8223+001 | 0.7448+0.16
ARI | 0.0039+001  0.0333+002  0.02004£0.03  0.0058+0.01  0.0046+0.02  0.0041-£0.00 - 0.0035+0.00 | 0.0346:£0.03
HF NMI | 000494000  0.026840.02  0.0106+0.01  0.0038+0.00  0.004740.00  0.0080-0.00 - 0.0389+0.00 | 0.0117+0.01
DBI | 27.3766+£19.03 = 031584026  0.616540.03  19381+0.80  22353+0.14  46.5634+19.15 - 1.759540.00 | 0.5804+0.11
ARI | 000104000 001304001  0.0585+0.01  0.041940.02 001474002  0.002840.00  0.0059+0.01  0.0189+0.03 | 0.1066:£0.07
LM NMI | 001794000 003114001  0.1037+0.01  0.1660+£0.04  0.0446+0.04  0.0182+0.00  0.0405+£0.02  0.126240.06 | 0.203340.05
DBI | 17.827442.17 091594003 087144002  09369+0.04  09819+0.04 184434+2.68 = 0.8165+0.12  1.87424+0.34 | 0.9554-0.31
ARI | -0.0011+0.00 001124001  -0.005940.01  -0.0323£0.01  0.1224+0.04  0.0034-0.00  0.0103+0.01  0.0315+0.03 | 0.1336:£0.08
PB NMI | 001234000 002824001  0.0076+£0.00  0.0382+0.01  0.1936+0.04 ~ 0.0170+£0.00  0.0131+£0.01 | 02376£0.01 | 0.1491+0.04
DBI 553144074 091434002  0.6875+0.00  1.1289+0.04  1.0646+0.20 17.80861.16 | 0.4487+0.11 1.1744£0.10 | 051604027
ARI | 000094001  0.036140.02  0.0070+0.01 051734022  0.2135+0.10  0.0137+0.01  0.0053+£0.01  0.0642+0.00 | 0.531940.02
RA NMI | 000274000 000834001 001244000  04568+0.22  0.2024+0.08  0.0105+£0.00  0.0020+£0.00  0.1757+0.00 | 0.3979+0.01
DBI | 21.2803+9.64  0.50714£0.00 056444001  09011+0.14  1.62334+0.57 84.928142233 | 0.3169+0.00  53499+0.00 | 0.3607-0.11
ARI | 000234001  0.064840.02  0.0848+0.01  0.6047+0.14  0.327740.13  0.0039+0.01  0.0103+£0.06  0.3040+0.12 | 0.8684-0.05
SE NMI | 002604000  0.0600+0.01  0.1218+0.00  0.6790+0.09  0445740.11  0.0236+0.00  0.0344:+0.04  04591+0.05 | 0.792040.07
DBI | 1347894273  08175£0.06 093364273  0.840140.11  1.60624045 12.0563+2.43  0.6264+0.03  12176+0.13 | 0.65310.09
ART | 0.0004+£0.00  0.0205+£0.01  -0.0017+0.01 = 0.053540.02 004204001  0.0032+£0.00  -0.0025+0.01  -0.0033+0.00 | 0.0036+0.00
wC NMI | 000884000 002834001  0.0141£0.01  0.0501+0.01  0.0418+0.02  0.0124+0.00  0.01254£0.00  0.0179+0.00 | 0.0473+0.01
DBI | 12.11154£1.56  0.8360+£0.08  1.112240.11  0.5299+0.06  1.0990+0.12 11.1380+1.84  1.2536+0.08  0.6666+0.07 | 0.3799+0.11
200 with 10 chunks, and the average experimental results are
BIRCH reported. The best and second-best-performing methods on
{ —— StreamKM++ L . .
175 z;zim each dataset are highlighted in orange and gray, respectively.
1504 —— sMmcL From Table II, it can be observed that the proposed SOHI
— IGMTT performs the best in general, winning or being the runner-
o] . . . .
@ 1259 DenSOINN up in 28 out of 33 comparisons. In comparison with the fast
¥ 1001 LDPI clustering methods, i.e., StreamKM++, BIRCH, and IGMTT,
M3W . Lo .
-S our SOHI demonstrates its superiority in accuracy, as it is
c —e— SOHI . . . .
2 751 competent in detecting imbalanced clusters, while the three
. —A fast methods do not adopt a mechanism to specially take the
: imbalanced issue into account. The results of LDPI on the
251 e ] HF dataset and the results of M3W on the CE dataset are not
o et M reported, because they wrongly group all the data objects into
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Data length [x1000]

Fig. 3. Effect of increasing data size on running time.

20

SOHI has a similar running time as that of StreamKM++,
BIRCH, and CPCL, thanks to low complexity, while the group
of SMCL and DenSOINN is with heavy computational cost

due to their polynomial time complexity.

C. Clustering Accuracy Evaluation

The clustering performance of different clustering methods
is compared on all the datasets, where each dataset is generated

one cluster. LDPI’s criteria for selecting initial subclusters is
highly sensitive to the data distributions. It fails in clustering
the HF dataset because a part of the objects is distributed with
an extremely high density than the other parts. This results
in only one subcluster being initialized by the LDPI. As for
M3W, it fails on the CE dataset because the data objects are
distributed in a sparse and relatively uniform way. Even the
smallest number of neighbors suggested by M3W is still too
large, leading to the merging of all the initialized cores to form
a single cluster. In addition, since M3W tends to partition data
objects into a larger number of smaller clusters, it is reasonable
that M3W achieves superior clustering performance on the
AB dataset with many (i.e., k* = 28) clusters and performs
well in terms of the internal DBI index. In general, SOHI
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Fig. 6. DBI performance on 50 streaming chunks of LM dataset.

demonstrates higher clustering accuracy in comparison with
the fast algorithms for streaming data processing, while being
extremely competitive in accuracy compared to the state-of-
the-art algorithms proposed for static data clustering.

Then, we evaluate the performance of different methods in
adapting to consecutive imbalanced streaming data chunks.
50 chunks are generated using TLRS, and the ARI, NMI, and
DBI performance of the methods per chunk (time-stamp) is
shown in Figs. 4-6, respectively. It can be observed that SOHI
still significantly outperforms the other methods in general,
which conforms with the observations of Table II. Since the
static data-oriented CPCL, M3W, SMCL, DenSOINN, and
LDPI are also executable on streaming data chunks by treating

each chunk as a static dataset, their ISDC performance is also
reported. In summary, the proposed SOHI is superior in terms
of clustering accuracy in handling imbalanced streaming data
chunks with various imbalance ratios.

D. Ablation Study

To more specifically validate SOHI’s effectiveness, we
conduct ablation experiments to compare SOHI and its ablated
variants. Since the merits of SOHI mainly stem from the
initialization of multiple subnetworks (MSs), the learning of
SGM, and the HM module that obtains a proper number of
clusters, the ablated variants are formed as follows: 1) to
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TABLE III

COMPARISON OF ABLATED SOHI VARIANTS. THE SYMBOL “v” INDI-
CATES THAT THE CORRESPONDING COMPONENT IS NOT ABLATED.
THE SYMBOL “%” REPRESENTS THE EXPECTED PERFORMANCE
DEGRADATION COMPARED TO SOHI (1.E., THE FIRST ROW ON
EACH DATASET)

Dataset|[MS SGM HM| ARl | NMI |  DBI

VoV V| 0.9674£0.01 [0.9228+0.02 |0.4969+0.02

GA v V| 0.820740.25%0.799640.207 | 0.5174:0.08%
v | 0.729840.07% | 0.674620.05% | 1.0782+0.18:%

VoV V] 0.9958£0.09 [0.9889+0.05 |0.415420.07

D vV | 0.835740.03% |0.883240.02 | 0.583540.08%
v | 0.65162£0.00% |0.70290.00% | 0.7464£0.00

VvV | 0.03860.00 [0.0910£0.00 |0.549440.11

AB v v | 0.038540.00% |0.090740.00% | 1.1043+0.04%
v | 0.0048:£0.003 | 0.0347-£0.00: | 0.6926:£0.00

v vV | 0.1087£0.03 [0.0832£0.02 |1.6209::0.02

CE vV ] 0.025840.08% |0.022340.04% | 1.8348+0.10%
v | 0.015120.003 |0.00720.00 | 2.40990.00

VvV | 0.1357£0.04 [0.064740.02 |0.365840.03

HS vV | 0.1103£0.01% | 0.046840.00% | 0.6296+0.181%
v | 0.014340.00% | 0.005140.007 | 1.658640.02:

VvV | 0.0475£0.00 [0.02060.01 |0.124240.01

HF vV | 0.005340.00% |0.001640.00% | 0.721940.00%
v | 0.01352£0.00% |0.001620.00% | 0.56590.00

v vV | 0.1001£0.04 [0.1937£0.08 |0.850320.04

LM vV [-0.001640.02% |0.007440.02 | 1.334740.06%
v |-0.00392£0.00% |0.002520.00% | 1.1030£0.00

VvV ] 0.1055£0.02 [0.1047£0.02 |0.15650.06

PB vV ] 0.089140.02% |0.097940.02 | 1.687740.25%
v |-0.012740.00% |0.02760.00 | 0.941340.00

VvV | 0.4033£0.08 [0.344420.02 |0.257440.08

RA v v | 0.3673£0.01%|0.291140.02: | 0.6584-:0.02
v | 0.175840.00% | 0.2554-0.001 | 0.532340.00%

VoV V| 07121020 [0.71542£0.19 |0.5450+0.02

SE v V| 0.405240.03% |0.49960.01¢ | 0.7902-:0.00%
v | 0.033420.01%|0.074320.02: | 1.6588+0.13%

VoV V| 0.0447£0.00 [0.0419£0.01 |0.1707+0.03

wC vV ] 0.029540.01% |0.007440.00% | 1.982740.35%
v |-0.0106£0.00% |0.0052£0.00 | 1.20732£0.00

ablated MS, a single network is trained without MS initializa-
tion and subnetwork fusion; 2) to ablate SGM, the network’s
growth is restricted by preventing new neuron addition; and
3) since the effectiveness of HM is in the efficiency perspec-
tive, the HM module is treated as a module in this experiment.
Because the ablated versions cannot handle streaming data, the
ablation study is conducted on each whole static dataset. This
is why the ablation study results in Table III are not exactly
the same as the chunk-wise results in Table II.

It can be observed that the ablation of any module of SOHI
leads to a decrease in its clustering performance, indicating
that each module contributes to achieving good clustering
performance. More specifically, the MS ablation has a smaller
impact, while the SGM ablation results in more significant
accuracy differences. This is because even if MS is replaced
by a single network, a considerable number of neurons can
still represent the data distribution. However, for the SGM
module, when it is restricted to grow, the limited number
of neurons cannot finely describe the data distribution, thus

16059

severely influencing the following subnetwork fusion and
cluster merging. In short, SOHI consistently produced the best
clustering results across all ablation versions, confirming the
effectiveness of the key components.

VI. CONCLUSION

An accurate and efficient ISDC method called SOHI is pro-
posed. It adaptively trains growing neuron maps named SGM
to achieve a topological representation of data distribution with
rich local density information. The structure is proven to be:
1) efficient in adapting to new data distributions by incremen-
tally updating its neurons; 2) effective in describing relatively
small cluster distributions; and 3) efficient in providing
retrieval information for microcluster merging. In the process
of hierarchically merging microclusters to explore imbalanced
clusters, the density distribution reflected by SGM is utilized
to make a fine judgment on whether two microclusters should
be merged. Such a process also guides the selection of the final
appropriate number of clusters. To facilitate convincing exper-
imental evaluation, we also propose a streaming data chunk
generator that can simulate various extreme situations in real
streaming data scenarios. Extensive experiments, including
clustering accuracy and efficiency evaluation on streaming and
static data, ablation studies, and so on, have been conducted.
By comparing with the state-of-the-art methods on various
datasets, the proposed method is proven to be superior in both
accuracy and efficiency for ISDC.

ACKNOWLEDGMENT

The authors would like to thank Zhanpei Huang for pro-
viding the computational resources necessary to complete
the efficiency evaluation experiments, Peilin Zhan for the
insightful discussions regarding the learning mechanism of
SGM, and Yongqi Xu and Yujian Lee for conducting the
preliminary experiments in verifying the impact of the ISDC
on clustering accuracy and efficiency.

REFERENCES

[1] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data
streams: A review,” SIGMOD Rec., vol. 34, no. 2, pp. 18-26, 2005.

[2] L. Zhao, Z. Chen, Y. Yang, L. Zou, and Z. J. Wang, “ICFS clustering
with multiple representatives for large data,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 3, pp. 728-738, Mar. 2019.

[3] L. Zhao, Y. Zhang, Y. Ji, A. Zeng, F. Gu, and X. Luo, “Heterogeneous
drift learning: Classification of mix-attribute data with concept drifts,”
in Proc. IEEE 9th Int. Conf. Data Sci. Adv. Anal. (DSAA), Oct. 2022,
pp. 1-10.

[4] A. Zubaroglu and V. Atalay, “Data stream clustering: A review,” Artif.
Intell. Rev., vol. 54, no. 2, pp. 1201-1236, Feb. 2021.

[S] L. Wang, H. Zhu, J. Meng, and W. He, “Incremental local distribution-
based clustering using Bayesian adaptive resonance theory,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 30, no. 11, pp. 3496-3504, Nov. 2019.

[6] Y. Lu, Y.-M. Cheung, and Y. Y. Tang, “Self-adaptive multiprototype-
based competitive learning approach: A k-means-type algorithm for
imbalanced data clustering,” [EEE Trans. Cybern., vol. 51, no. 3,
pp. 1598-1612, Mar. 2021.

[71 J. A. Hartigan and M. A. Wong, “A K-means clustering algorithm,”
J. Roy. Stat. Soc., C, Appl. Statist., vol. 28, no. 1, pp. 100-108, 1979.

[8] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton,
“Competitive learning algorithms for vector quantization,” Neural Netw.,
vol. 3, no. 3, pp. 277-290, 1990.

[9] L. Xu, A. Krzyzak, and E. Oja, “Rival penalized competitive learning for
clustering analysis, RBF net, and curve detection,” IEEE Trans. Neural
Netw., vol. 4, no. 4, pp. 636-649, Jul. 1993.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on September 08,2025 at 09:34:19 UTC from IEEE Xplore. Restrictions apply.



16060

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Hem-
ing, “K-means clustering algorithms: A comprehensive review, variants
analysis, and advances in the era of big data,” Inf. Sci., vol. 622,
pp. 178-210, Apr. 2023.

J. Liang, L. Bai, C. Dang, and F. Cao, “The K-means-type algorithms
versus imbalanced data distributions,” IEEE Trans. Fuzzy Syst., vol. 20,
no. 4, pp. 728-745, Aug. 2012.

Y.-M. Cheung, “On rival penalization controlled competitive learning
for clustering with automatic cluster number selection,” IEEE Trans.
Knowl. Data Eng., vol. 17, no. 11, pp. 1583-1588, Nov. 2005.

B. Xu, F. Shen, and J. Zhao, “A density-based competitive data stream
clustering network with self-adaptive distance metric,” Neural Netw.,
vol. 110, pp. 141-158, Feb. 2019.

H. Jia, Y.-M. Cheung, and J. Liu, “Cooperative and penalized com-
petitive learning with application to kernel-based clustering,” Pattern
Recognit., vol. 47, no. 9, pp. 3060-3069, Sep. 2014.

M. Du, J. Zhao, J. Sun, and Y. Dong, “M3W: Multistep three-way
clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4,
pp. 5627-5640, Apr. 2022.

R. Liu, H. Wang, and X. Yu, “Shared-nearest-neighbor-based clus-
tering by fast search and find of density peaks,” Inf Sci., vol. 450,
pp. 200-226, Jun. 2018.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492-1496, Jun. 2014.

J. Xie, H. Gao, W. Xie, X. Liu, and P. W. Grant, “Robust clustering by
detecting density peaks and assigning points based on fuzzy weighted
K-nearest neighbors,” Inf. Sci., vol. 354, pp. 1940, Aug. 2016.

W. Tong, Y. Wang, and D. Liu, “An adaptive clustering algorithm based
on local-density peaks for imbalanced data without parameters,” I[EEE
Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3419-3432, Apr. 2023.
M. R. Ackermann, M. Mirtens, C. Raupach, K. Swierkot, C. Lam-
mersen, and C. Sohler, “StreamKM++: A clustering algorithm for data
streams,” J. Exp. Algorithmics, vol. 17, pp. 1-15, May 2012.

A. David and V. Sergei, “K-means++: The advantages of careful
seeding,” in Proc. Annu. ACM SIAM Symp. Discrete Algorithms, Jan.
2007, pp. 1027-1035.

D. Amagata, “Scalable and accurate density-peaks clustering on fully
dynamic data,” in Proc. IEEE Int. Conf. Big Data (Big Data), Dec.
2022, pp. 445-454.

Y.-M. Cheung and Y. Zhang, “Fast and accurate hierarchical clustering
based on growing multilayer topology training,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 3, pp. 876-890, Mar. 2019.

T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: A new data clus-
tering algorithm and its applications,” Data Mining Knowl. Discovery,
vol. 1, no. 2, pp. 141-182, 1997.

C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework
for clustering evolving data streams,” in Proc. VLDB Conf., 2003,
pp. 81-92.

F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in Proc. SIAM Int. Conf. Data Min.,
2006, pp. 328-339.

Y. Chen and L. Tu, “Density-based clustering for real-time stream data,”
in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2007, pp. 133-142.

M. Peng, Y. Wu, Y. Lu, M. Li, Y. Zhang, and Y.-M. Cheung, “Weighted
density for the win: Accurate subspace density clustering,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2025,
pp. 1-5.

P. P. Rodrigues, J. Gama, and J. P. Pedroso, “Hierarchical clustering
of time-series data streams,” IEEE Trans. Knowl. Data Eng., vol. 20,
no. 5, pp. 615-627, May 2008.

J. Chen, S. Yang, C. Fahy, Z. Wang, Y. Guo, and Y. Chen, “Online
sparse representation clustering for evolving data streams,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 36, no. 1, pp. 525-539, Jan. 2025.

K. Zhang, L. Zhong, L. Tian, X. Zhang, and L. Li, “DBIECM—An
evolving clustering method for streaming data clustering,” Adv. Model.
Anal. B, vol. 60, no. 1, pp. 239-254, Mar. 2017.

M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey,
“Online cluster validity indices for performance monitoring of streaming
data clustering,” Int. J. Intell. Syst., vol. 34, no. 4, pp. 541-563, Apr.
2019.

L. Huang, C.-D. Wang, H.-Y. Chao, and P. S. Yu, “MVStream: Multiview
data stream clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
no. 9, pp. 3482-3496, Sep. 2020.

J. Zhang, H. Tao, and C. Hou, “Imbalanced clustering with theoreti-
cal learning bounds,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9,
pp. 9598-9612, Sep. 2023.

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]

[53]

(54

[55]

[56]

(571

[58]

M. Liu, X. Jiang, and A. C. Kot, “A multi-prototype clustering
algorithm,” Pattern Recognit., vol. 42, no. 5, pp. 689-698, May 2009.
Y. Zhang, R. Zou, Y. Zhang, Y. Zhang, Y.-M. Cheung, and K. Li,
“Adaptive micro partition and hierarchical merging for accurate mixed
data clustering,” Complex Intell. Syst., vol. 11, no. 1, pp. 1-14, Jan.
2025.

S. Cai, Y. Zhang, X. Luo, Y.-M. Cheung, H. Jia, and P. Liu, “Robust cat-
egorical data clustering guided by multi-granular competitive learning,”
in Proc. IEEE 44th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2024,
pp. 288-299.

Y. Zhang, X. Luo, Q. Chen, R. Zou, Y. Zhang, and Y. Cheung, “Towards
unbiased minimal cluster analysis of categorical-and-numerical attribute
data,” in Proc. Int. Conf. Pattern Recognit. Cham, Switzerland: Springer,
Dec. 2024, pp. 254-269.

Z. A. Huang, Y. Sang, Y. Sun, and J. Lv, “Neural network with a
preference sampling paradigm for imbalanced data classification,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 35, no. 7, pp. 9252-9266, Jul.
2024.

D. Li, S. Zhou, T. Zeng, and R. H. Chan, “Multi-prototypes convex
merging based K-means clustering algorithm,” IEEE Trans. Knowl. Data
Eng., vol. 36, no. 11, pp. 6653-6666, Nov. 2024.

J. Chen, Y. Ji, R. Zou, Y. Zhang, and Y.-M. Cheung, “QGRL: Quaternion
graph representation learning for heterogeneous feature data clustering,”
in Proc. 30th ACM SIGKDD Conf. Knowl. Discovery Data Mining, Aug.
2024, pp. 297-306.

Y. Zhang, M. Zhao, Y. Chen, Y. Lu, and Y.-M. Cheung, “Learning
unified distance metric for heterogeneous attribute data clustering,”
Expert Syst. Appl., vol. 273, May 2025, Art. no. 126738.

S. Feng, M. Zhao, Z. Huang, Y. Ji, Y. Zhang, and Y.-M. Cheung, “Robust
qualitative data clustering via learnable multi-metric space fusion,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr.
2025, pp. 1-5.

M. Ahmed, “Data summarization: A survey,” Knowl. Inf. Syst., vol. 58,
no. 2, pp. 249-273, Feb. 2019.

Z. R. Hesabi, Z. Tari, A. Goscinski, A. Fahad, I. Khalil, and C. Queiroz,
“Data summarization techniques for big data—A survey,” in Handbook
on Data Centers. Berlin, Germany: Springer, 2015, pp. 1109-1152.

T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21,
nos. 1-3, pp. 1-6, Nov. 1998.

J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 586—600, May 2000.

X. Luo, Y. Zhang, Y. Ji, P. Liu, and T. Xiao, “Efficient topology-driven
clustering for imbalanced streaming biomedical data analysis,” in Proc.
IEEE Int. Conf. Bioinf. Biomed. (BIBM), Dec. 2024, pp. 2262-2267.
M. M. Breunig, H.-P. Kriegel, P. Kroger, and J. Sander, “Data bubbles:
Quality preserving performance boosting for hierarchical clustering,” in
Proc. ACM SIGMOD Conf. Manag. Data, 2001, pp. 79-90.

M. M. Breunig, H.-P. Kriegel, and J. Sander, “Fast hierarchical clustering
based on compressed data and optics,” in Principles of Data Mining and
Knowledge Discovery. Berlin, Germany: Springer, 2002, pp. 232-242.
S. Nassar, J. Sander, and C. Cheng, “Incremental and effective data
summarization for dynamic hierarchical clustering,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, Jun. 2004, pp. 467-478.

Y. Zhang, Y.-M. Cheung, and Y. Liu, “Quality preserved data summa-
rization for fast hierarchical clustering,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2016, pp. 4139-4146.

J. A. F. Costa and M. L. De Andrade Netto, “Clustering of complex
shaped data sets via Kohonen maps and mathematical morphology,”
Proc. SPIE, vol. 4384, pp. 16-27, Mar. 2001.

D. Olszewski, “Asymmetric k-means clustering of the asymmetric self-
organizing map,” Neural Process. Lett., vol. 43, no. 1, pp. 231-253,
Feb. 2016.

A. Ali Hameed, B. Karlik, M. S. Salman, and G. Eleyan, “Robust
adaptive learning approach to self-organizing maps,” Knowl.-Based
Syst., vol. 171, pp. 25-36, May 2019.

Y. Zhang, M. Simsek, and B. Kantarci, “Empowering self-organized
feature maps for Al-enabled modeling of fake task submissions to
mobile crowdsensing platforms,” IEEE Internet Things J., vol. 8, no. 3,
pp. 1334-1346, Feb. 2021.

B. Fritzke, “Growing self-organizing networks—History, status quo,
and perspectives,” in Kohonen Maps. Kidlington, U.K.: Elsevier, 1999,
pp. 131-144.

A. Rauber, D. Merkl, and M. Dittenbach, “The growing hierarchical self-
organizing map: Exploratory analysis of high-dimensional data,” IEEE
Trans. Neural Netw., vol. 13, no. 6, pp. 1331-1341, Nov. 2002.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on September 08,2025 at 09:34:19 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: LEARNING SGMs FOR FAST AND ACCURATE ISDC

[59] D.N. Coelho and G. A. Barreto, “A sparse online approach for streaming
data classification via prototype-based kernel models,” Neural Process.
Lett., vol. 54, no. 3, pp. 1679-1706, Jun. 2022.

S. Li, E Liu, L. Jiao, P. Chen, and L. Li, “Self-supervised self-
organizing clustering network: A novel unsupervised representation
learning method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 2,
pp. 1-15, Feb. 2022.

R. Zhu, Z. Wang, Z. Ma, G. Wang, and J.-H. Xue, “LRID: A new metric
of multi-class imbalance degree based on likelihood-ratio test,” Pattern
Recognit. Lett., vol. 116, pp. 3642, Dec. 2018.

B. Fritzke, “Growing cell structures—A self-organizing network for
unsupervised and supervised learning,” Neural Netw., vol. 7, no. 9,
pp. 1441-1460, Jan. 1994.

R. Bridson, “Fast Poisson disk sampling in arbitrary dimensions,”
SIGGRAPH Sketches, vol. 10, no. 1, p. 22—es, 2007. [Online]. Available:
https://dl.acm.org/doi/10.1145/1278780.1278807

M. Kelly, R. Longjohn, and K. Nottingham. The UCI Machine Learning
Repository. Accessed: Oct. 14, 2024. [Online]. Available: https://
archive.ics.uci.edu

[60]

[61]

[62]

[63]

[64]

Yiqun Zhang (Senior Member, IEEE) received the
B.Eng. degree from the South China University of
Technology, Guangzhou, China, in 2013, and the
M.S. and Ph.D. degrees from Hong Kong Baptist
University, Hong Kong, in 2014 and 2019, respec-
tively.

He is currently an Associate Professor with
the School of Computer Science and Technology,
Guangdong University of Technology, Guangzhou.
His research works have been published in top-tier
journals and conferences, including IEEE TRANS-
ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI),
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYS-
TEMS (TNNLS), IEEE TRANSACTIONS ON CYBERNETICS (TCYB), KDD,
NeurIPS, Conference on Computer Vision and Pattern Recognition (CVPR),
AAAI Conference on Artificial Intelligence International (AAAI), and Joint
Conference on Artificial Intelligence (IJICAI). His current research interests
include machine learning, data mining, and their applications.

Dr. Zhang serves as an Associate Editor for IEEE TRANSACTIONS ON
EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE.

Sen Feng received the B.Eng. degree from
Henan University of Technology, Zhengzhou, China,
in 2023. He is currently pursuing the master’s
degree with the School of Computer Science and
Technology, Guangdong University of Technology,
Guangzhou, China.

He has published a series of research works
in reputable journals and conferences, including
IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS (TNNLS), ECAI’24, and
ICASSP’25. His current research interests include

— vy

unsupervised machine learning, ensemble clustering, and complex distribution
data clustering.

Pengkai Wang received the B.Eng. degree from
the School of Computer Science and Technology,
Guangdong University of Technology, Guangzhou,
China, in 2024, where he is currently pursuing the
master’s degree.

His current research interests include complex
data clustering and self-supervised learning.

16061

Zexi Tan is currently pursuing the bachelor’s
degree with the School of Computer Science and
Technology, Guangdong University of Technology,
Guangzhou, China.

His current research interests include unsuper-
vised machine learning and time-series data mining.

Mr. Tan serves as a reviewer for several interna-
tional journals and conferences, including TETCI,
BIBM’24, and so on.

Xiaopeng Luo (Member, IEEE) received the B.Eng.
degree from Shenzhen University, Shenzhen, China,
in 2019, the M.S. degree from Hong Kong Bap-
tist University, Hong Kong, in 2021, and the
M.Phil. degree from Beijing Normal University-
Hong Kong Baptist University United International
College (UIC), Zhuhai, China, in 2023.

He has published a series of research works
in reputable journals and conferences, including
TNNLS, ICDCS’24, BIBM’24, and so on. His cur-
rent research interests include machine learning,
differential privacy, and their applications.

Yuzhu Ji (Member, IEEE) received the B.S. degree
in computer science from the PLA Information Engi-
neering University, Zhengzhou, China, in 2012, and
the M.S. and Ph.D. degrees from the Department of
Computer Science, Harbin Institute of Technology,
Shenzhen, China, in 2015 and 2019, respectively.
He is currently an Associate Professor at the
School of Computer Science and Technology,
Guangdong University of Technology, Guangzhou,
China. His current research interests include salient
object detection, image segmentation, and graph

oy

clustering.

Rong Zou received the B.Eng. degree from Xiamen
University, Xiamen, China, in 2016, and the M.S.
degree from Hong Kong Baptist University, Hong
Kong, in 2017, where he is currently pursuing the
Ph.D. degree.

His current research interests include machine
learning, image processing, and their applications.

Yiu-Ming Cheung (Fellow, IEEE) received the
Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong, Hong Kong, in 2000.

He is currently a Chair Professor with the
Department of Computer Science, Hong Kong Bap-
4 tist University, Hong Kong. His research interests
4 include machine learning, data science, visual com-

> puting, and optimization.
‘ e Prof. Cheung is a fellow of the American Asso-
ciation for the Advancement of Science (AAAS),
the International Association for Pattern Recognition (IAPR), the Institution
of Engineering and Technology (IET), and British Computer Society (BCS).
Also, he is an awardee of RGC Senior Research Fellow. He is the Editor-in-
Chief of IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL
INTELLIGENCE and an Associate Editor of several prestigious journals,
including IEEE TRANSACTIONS ON CYBERNETICS, IEEE TRANSACTIONS
ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, Pattern Recognition, to
name a few. For more details, please refer to: https://www.comp.hkbu.edu.hk/
~ymc/

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on September 08,2025 at 09:34:19 UTC from IEEE Xplore. Restrictions apply.



