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Subspace Clustering of Categorical and Numerical
Data With an Unknown Number of Clusters
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Abstract— In clustering analysis, data attributes may have
different contributions to the detection of various clusters.
To solve this problem, the subspace clustering technique has
been developed, which aims at grouping the data objects into
clusters based on the subsets of attributes rather than the entire
data space. However, the most existing subspace clustering
methods are only applicable to either numerical or categorical
data, but not both. This paper, therefore, studies the soft subspace
clustering of data with both of the numerical and categorical
attributes (also simply called mixed data for short). Specifically,
an attribute-weighted clustering model based on the definition
of object-cluster similarity is presented. Accordingly, a unified
weighting scheme for the numerical and categorical attributes is
proposed, which quantifies the attribute-to-cluster contribution
by taking into account both of intercluster difference and
intracluster similarity. Moreover, a rival penalized competitive
learning mechanism is further introduced into the proposed
soft subspace clustering algorithm so that the subspace cluster
structure as well as the most appropriate number of clusters
can be learned simultaneously in a single learning paradigm.
In addition, an initialization-oriented method is also presented,
which can effectively improve the stability and accuracy of
k-means-type clustering methods on numerical, categorical, and
mixed data. The experimental results on different benchmark
data sets show the efficacy of the proposed approach.

Index Terms— Attribute weight, categorical-and-numerical
data, initialization method, number of clusters, soft subspace
clustering.

I. INTRODUCTION

W ITH the ability to extract potentially useful information
from databases in unsupervised learning environment,

clustering is regarded as an important technique in data mining
field and has been widely applied to a variety of scientific
areas, such as pattern recognition, signal processing, bioinfor-
matics, and so on.
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Generally, similar with the classification in supervised learn-
ing [1]–[3], clustering analysis requires data objects to be
defined with a set of relevant attributes that represent the
properties of the objects that are useful to the learning task.
With the growing applications of clustering, two main prob-
lems have been raised. The first one is that the most existing
clustering algorithms assume the data attributes are numeri-
cally valued [4]–[7]. However, as extensive data have been
collected from medical, business, industry, and social domains,
we usually have to deal with another kind of attributes that
are nominal valued, such as gender, shape, hobby, and type
of disease [8]. In the literature, this kind of attributes is
referred to as categorical attributes or categorical features.
Hereinafter, data represented with both of the numerical and
categorical attributes are called mixed data. To handle this
kind of data sets, the most straightforward way is to discretize
numerical attributes or encode categorical attribute values as
numerical integers such that popular clustering approaches can
be applied. Nevertheless, transforming the attribute type will
ignore the similarity information embedded in the original
attribute values and, thus, cannot faithfully reveal the structure
of the data sets [8], [9]. Under the circumstances, researchers
have tried to investigate new criteria for clustering analysis
of mixed data and different methods have been proposed
in [8] and [10]–[15]. However, as all these methods treat
data attributes equally during clustering process, they will
face the other problem that different attributes may have
different contributions to the detection of various clusters
from the practical viewpoint. For example, if we wish to
classify patients by types of diseases, gender information
will be a key attribute for some special diseases but useless
for the others. In general, subspace clustering is a special
technique for this problem solving [16]. This type of clustering
methods aims at grouping the data objects into clusters based
on the subspaces of data rather than the entire data space.
Although in a sense dimensionality reduction can reach similar
objective, in subspace clustering, different clusters are usually
learned from different attribute subsets. In practice, if the data
dimensionality is extremely large, dimensionality reduction
techniques [17]–[21] can also be utilized as preprocessing of
subspace clustering to improve the learning results. According
to the different ways with which the feature subspaces of
clusters are determined, the subspace clustering methods can
be divided into two categories. The first one is hard subspace
clustering, which attempts to find the exact attribute subsets
for different clusters. Typical examples include [22]–[29]. The
other category is soft subspace clustering, which learns the
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data clusters from the entire feature space, but assigns different
weights to each attribute during the clustering process to
control its contribution to the discovering of different clusters.
Representative methods are proposed in [30]–[35]. However,
all the above-mentioned subspace clustering methods are
only applicable to numerical data only, which limits their
applications in the domain where categorical attributes exist.
By contrast, some other researchers have concentrated on the
subspace clustering of data with purely categorical attributes.
Typical work includes the hard subspace clustering approaches
for categorical data proposed in [36]–[39] and the soft meth-
ods proposed in [40]–[42]. Nevertheless, to the best of our
knowledge, the study on subspace clustering for mixed data
is scarce thus far.

In addition, the most existing subspace clustering methods
need to prespecify the true number of clusters. Unfortunately,
this importance information is not always available from
the practical viewpoint. Therefore, how to conduct clustering
analysis without knowing the true number of clusters is also a
significant work in clustering area [43]. To address this issue,
researchers have presented a variety of methods that can esti-
mate the number of clusters for purely numerical or categorical
data [44]–[48]. Nevertheless, how to automatically select the
number of clusters for mixed data during clustering process
has been seldom studied. Moreover, this problem can be even
more challenging in subspace clustering as the optimal feature
subspace and the optimal number of clusters are interrelated,
i.e., different clustering results might be obtained on different
feature subspaces [49].

This paper will therefore focus on soft subspace cluster-
ing of mixed data without knowing the number of clusters.
Specifically, within the learning framework of object-cluster
similarity-based clustering method, an attribute-weighted
learning model is presented and a new attribute weighting
scheme is proposed accordingly. These attribute weights quan-
tify the contribution of different categorical and numerical
attributes to the detection of various clusters. Specifically,
the weight of an attribute to a particular cluster is determined
by two factors. The first one is intercluster difference, which
measures the ability of the attribute in distinguishing this
cluster from the other ones. The other factor is intracluster
similarity, which evaluates whether the cluster along this
attribute has a compact structure or not. This weighting
scheme in nature is consistent with the basic concept of
clustering analysis. Meanwhile, unified criteria are defined to
quantify the intercluster difference and intracluster similarity
for numerical and categorical attributes so that the proposed
method can be directly applied to data sets with categorical,
numerical, or mixed attributes. Moreover, a rival penalized
competitive learning mechanism is further introduced into the
proposed soft subspace clustering algorithm to enable it to
learn the number of clusters automatically during clustering
process. Subsequently, the subspace cluster structure as well
as the most appropriate number of clusters can be learned
simultaneously from a single learning paradigm. In addi-
tion, as the clustering results led by random initialization in
k-means-type methods are often unpredictable and a better
initialization method for mixed data clustering has not been

studied in the literature, we further present an initialization-
oriented method that can lead much more stable clustering
results and improve the performance of k-means-type methods
on numerical, categorical, and mixed data. The effectiveness of
the proposed methods has been experimentally investigated on
different benchmark data sets in comparison with the existing
counterparts. The main contributions of this paper can be
summarized as follows.

1) An attribute-weighted clustering model based on object-
cluster similarity is presented for soft subspace cluster-
ing on data with numerical and categorical attributes.

2) A new attribute weighting scheme is proposed for mixed
data, which adopts a unified criterion to quantify the
contribution of each categorical or numerical attribute to
the detection of every cluster. This weighting scheme is
the first one that simultaneously considers the cluster-
distinguishing ability and intracluster compactness of
different attributes based on probability distribution
model.

3) The rival penalized competitive learning mechanism is
introduced into the soft subspace clustering of mixed
data so that the number of clusters can be automatically
determined.

4) This is the first attempt to study the initialization
problem of clustering algorithm on mixed data type.
Accordingly, an initialization-oriented method, which is
applicable to numerical, categorical, and mixed data,
is proposed. This method can obviously improve the sta-
bility and accuracy of k-means-type clustering methods
on different types of data sets.

The rest of this paper is organized as follows. In Section II,
we will overview some related work on mixed data analysis
and subspace clustering. Section III proposes a new attribute-
weighted clustering method for soft subspace clustering of
mixed data. Section IV further introduces a competitive learn-
ing model with penalization mechanism to learn the number
of clusters. Moreover, Section V presents a new initialization
method. Then, Section VI shows the experimental results on
real data sets. Finally, we draw a conclusion in Section VII.

II. OVERVIEW OF RELATED WORK

This section reviews the related work on: 1) clustering
analysis of mixed data and 2) subspace clustering.

A. Clustering Analysis of Mixed Data

The existing methods that are applicable to clustering
analysis of data with both of the numerical and categorical
attributes can be grouped into three categories. In the first
category, different techniques have been presented to trans-
form categorical attribute values into numerical ones such
that a wide variety of algorithms for numerical data can be
directly applied. For example, the dummy variable coding
method [50] transforms each value of categorical attribute
A j with m j different values into a m j -dimensional vector,
where a single 1 in a particular position represents the attribute
value and all the rest dimensions are 0. In [51], a supervised
method, namely, density-based logistic regression framework,
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has been proposed, which replaces each categorical value with
the histogram of class labels associated with it. Moreover,
Zhang et al. [52] proposed a multiple transitive distance
learning and embedding method to learn the pairwise dissim-
ilarity among the categorical attribute values. Subsequently,
each categorical symbol can be endowed with a numerical
representation using manifold learning techniques.

In the second category, the algorithms are essentially
designed for purely categorical data, although they have been
applied to the mixed data as well by transforming the numer-
ical attributes to categorical ones via a discretization method.
This kind of methods usually tries to find the cluster structure
of categorical data based on the perspective of similarity
metric, graph partitioning, or information entropy. For exam-
ple, ROCK algorithm [53] is an agglomerative hierarchical
clustering procedure based on the concepts of similarity-based
neighbors and links. By contrast, CLICKS algorithm [54]
mines subspace clusters for categorical data set by encoding
the data set into a weighted graph structure. In addition,
the COOLCAT algorithm, an entropy-based method proposed
in [55], utilizes the information entropy to measure the
closeness between objects and presents a scheme to find a
clustering structure via minimizing the expected entropy of
clusters. Furthermore, a scalable algorithm for categorical data
clustering called LIMBO [56], which is proposed based on the
information bottleneck framework [57], employs the concept
of mutual information to find a clustering with minimum
information loss. In general, all of the above-stated algorithms
can be applied to mixed data via a discretization process,
which may, however, cause loss of important information,
e.g., the difference between numerical values.

By contrast, the work in the third category attempts
to design a generalized clustering criterion for numerical-
and-categorical attributes. For example, the similarity-based
agglomerative clustering algorithm [8] utilizes Goodall sim-
ilarity metric [58] to quantify the similarity between data
objects with mixed attributes. He et al. [12] extended the
Squeezer algorithm to cluster mixed data and proposed the
usm-squeezer method. In [13], an evidence-based spectral
clustering algorithm has been proposed for mixed data clus-
tering by integrating the evidence-based similarity metric into
the spectral clustering structure. More recently, a general clus-
tering framework based on object-cluster similarity has been
proposed, through which a unified similarity metric for both
categorical and numerical attributes has been presented [15].
In addition, a clustering model within Bayesian predictive
framework has also been presented for mixed data [59],
in which clustering solutions corresponding to random parti-
tions of given data and optimal partition are found via a greedy
search. Recently, to solve the labeling problem in sampling
clustering on large mixed data, Sangam and Om [60] proposed
a hybrid similarity coefficient to find the resemblance between
a data point and a cluster, based on which a hybrid data
labeling algorithm was further presented to designate appro-
priate cluster labels to the data points that are not sampled.
Among this category of approaches, the most popular one
would be the distance-based method, which studies distance
metric or dissimilarity measure for categorical values and

then utilizes k-means paradigm for clustering analysis. A
typical example is the k-prototypes algorithm [11], in which
the distance between categorical values is measured with
Hamming distance metric. Other distance measures available
in the literature include the association-based dissimilarity
measure [61], Ahmad’s distance measure [14], context-based
distance [62], and the distance metric proposed in [63].

B. Subspace Clustering

Generally, the purpose of subspace clustering is to identify
the feature subsets where clusters can be found and explore
different clusters from different feature subsets [41]. Accord-
ing to the ways with which the feature subsets are identified,
the existing subspace clustering methods can be divided into
two categories: hard subspace clustering and soft subspace
clustering [35], [64].

1) Hard Subspace Clustering: Most hard subspace cluster-
ing methods utilize a grid-based clustering notion. Represen-
tative algorithms include the CLIQUE [22], ENCLUS [23],
and MAFIA [24], [65]. CLIQUE [22] is the pioneering
approach to subspace clustering. It first partitions the data
space into equal-sized units with an axis-parallel grid.
Subsequently, only the units that contain a predefined number
of sample points are considered as dense, and the clus-
ters can be explored by gradually grouping the connected
dense units together. The ENCLUS algorithm [23] is an
improved version of CLIQUE. It introduces the concept of
subspace entropy, which is utilized to prune away subspaces
with poor clustering performance. Usually, the subspace
entropy is determined by three criteria of good clustering
in a subspace, i.e., high data coverage, high density, and
correlated dimensions. The subspaces with good clustering
will have a lower entropy and will be selected to explore
the clusters. Moreover, the MAFIA algorithm [24], [65]
extends the CLIQUE method by utilizing the adaptive and
variable-sized intervals (bins) in each dimension. These bins
are then merged to explore clusters in higher subspaces with
a candidate generate-and-test scheme. The usage of adaptive
grid enables the MAFIA algorithm to reduce the computational
cost and improve the clustering quality. Another variant of
CLIQUE, called nCluster [29], utilizes a more flexible method
to partition the dimensions and allows overlap between dif-
ferent bins of one dimension. As this method may result in
much more bins, only maximal δ-nClusters will be mined to
avoid generating too many clusters. Generally, the accuracy
and efficiency of these grid-based methods primarily depend
on the granularity and positioning of the grid. A higher grid
granularity will most likely produce more accurate results, but
at the same time, will result in a higher time complexity [64].
Different from the grid-based approaches, the SUBCLU algo-
rithm [66] is based on the definition of density-connected sets
and utilizes DBSCAN algorithm [67] to discover the clusters
in subspaces. This enables SUBCLU to explore clusters with
arbitrary shape and size. However, the workload of SUBCLU
is huge, which reduces its practicability [68].

2) Soft Subspace Clustering: Different from the hard
subspace clustering that identifies the exact subspaces,



JIA AND CHEUNG: SUBSPACE CLUSTERING OF CATEGORICAL AND NUMERICAL DATA 3311

soft subspace clustering usually assigns a weight vector to
each attribute to measure its contribution to the formation
of different clusters. Generally, soft subspace clustering can
be regarded as an extension of the conventional attribute-
weighted clustering methods [49], [69], [70] that only employ
one weight value to adjust the contribution of an attribute
to the whole clustering procedure [40]. Recently, increasing
research attention has been devoted to soft subspace clustering,
and different methods have been presented in [64] and [71].
Quite a lot of work among them has been dedicated to devel-
oping weighting schemes for k-means-type algorithms. For
example, the locally adaptive clustering (LAC) algorithm [33]
assigns local weights to the attributes according to the local
correlations of data along different dimensions in each cluster.
Particularly, the weights are quantified based on the average
in-cluster distance along each dimension. Similar idea has been
employed in [31], in which the compact attributes of a cluster
where the projected distance along the corresponding dimen-
sion is less than the average projected distance values along
all dimensions will be assigned relatively higher weights.
Moreover, the work in [34], [35], and [72] has introduced the
concept of entropy to control the attribute weights and pro-
posed the entropy weighting subspace clustering algorithms,
in which the weight of an attribute in a cluster is regarded
as the contribution probability of that dimension in forming
the cluster. As the most soft subspace clustering approaches
only utilize within-cluster information to estimate the attribute
weights, Deng et al. [71] have presented the enhanced soft
subspace clustering (ESSC) method, which employs both
within-cluster compactness and between-cluster separation to
develop a new fuzzy optimization objective function.

In general, all the above-mentioned soft subspace cluster-
ing methods are only applicable to purely numerical data.
By contrast, Chan et al. [73] have introduced an attribute-
weighted distance measure into the framework of general
k-means method. Subsequently, if Hamming distance [74] is
adopted to measure the distance between categorical values,
the proposed subspace clustering algorithm can also be applied
to categorical and mixed data following the procedure of
k-modes [75] and k-prototypes [11] algorithms. However,
as the distance between categorical values is limited to
0 or 1 and the attribute weights are defined with within-cluster
distances, the weight value of categorical attribute has a high
possibility to be 0 or 1 in practice, which will not work well
during clustering process [40], [41]. Therefore, Bai et al. [40]
and Cao et al. [41] have proposed some other attribute-
weighting techniques for k-modes algorithm to conduct soft
subspace clustering on purely categorical data. Nevertheless,
data mixed with categorical and numerical attributes have yet
to be considered by them.

III. ATTRIBUTE-WEIGHTED OCIL ALGORITHM FOR

SOFT SUBSPACE CLUSTERING OF MIXED DATA

A. OCIL Clustering Algorithm for Mixed Data Analysis

The OCIL algorithm proposed in [15] is based on the con-
cept of object-cluster similarity and follows the optimization
procedure of k-means-type methods. Extensive experiments

have demonstrated that this clustering algorithm can obtain
satisfying performance on both categorical and mixed data
sets. The general task of OCIL algorithm is to group the
given data objects into several clusters such that the similarity
between objects in the same cluster is maximized. Specifi-
cally, suppose we have a mixed data set X of N objects,
{x1, x2, . . . , xN }, to be grouped into k different clusters,
denoted as C1, C2, . . . , Ck . Each mixed data object xi is rep-
resented with d different attributes {A1, A2, . . . , Ad }, which
consists of dc categorical attributes {Ac

1, Ac
2, . . . , Ac

dc
} and du

numerical attributes {Au
1, Au

2, . . . , Au
dc

} (dc +du = d). Thus, xi

can be denoted as [xc
i

T , xu
i

T ]T with xc
i = (xc

i1, xc
i2, . . . , xc

idc
)T

and xu
i = (xu

i1, xu
i2, . . . , xu

idu
)T . Here, xu

ir (r = 1, 2, . . . , du)
belongs to R and xc

ir (r = 1, 2, . . . , dc) belongs to dom(Ac
r ),

where dom(Ac
r ) contains all the possible values that can be

chosen by attribute Ac
r . Usually, dom(Ac

r ) with mr elements
can be represented with dom(Ac

r ) = {ar1, ar2, . . . , armr }. The
goal of OCIL algorithm is to find the optimal Q∗ via the
following objective function:

Q∗ = arg max
Q

⎡
⎣

k∑
j=1

N∑
i=1

qi j s(xi , C j )

⎤
⎦ (1)

where s(xi , C j ) is the similarity between object xi and clus-
ter C j , and Q = (qi j ) is an N × k partition matrix satisfying

k∑
j=1

qi j = 1, and 0 <

N∑
i=1

qi j < N (2)

with

qi j ∈ [0, 1], i = 1, 2, . . . , N, j = 1, 2, . . . , k. (3)

According to [15], the object-cluster similarity for mixed data
can be simply defined as

s(xi , C j ) = 1

d f

{ dc∑
r=1

s
(
xc

ir , C j
) + s

(
xu

i , C j
)}

(4)

with

s
(
xc

ir , C j
) = �Ac

r =xc
ir
(C j )

�Ac
r �=NULL(C j )

(5)

and

s
(
xu

i , C j
) = exp

( − 0.5Dis
(
xu

i , c j
))

k∑
t=1

exp
( − 0.5Dis

(
xu

i , ct
)) (6)

where d f = dc +1. �Ac
r =xc

ir
(C j ) counts the number of objects

in cluster C j that have the value xc
ir for attribute Ac

r , NULL
refers to the empty, and �Ac

r �=NULL(C j ) means the number
of objects in cluster C j that have the attribute Ac

r . c j is the
center of all numerical vectors in cluster C j and Dis(.) stands
for a distance function. Specifically, if the Euclidean distance
is adopted to measure the distance between numerical vectors,
(6) can be rewritten as

s
(
xu

i , C j
) = exp

( − 0.5
∥∥xu

i − c j
∥∥2)

k∑
t=1

exp
( − 0.5

∥∥xu
i − ct

∥∥2)
. (7)
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In this paper, we concentrate on hard cluster partition only,
i.e., qi j ∈ {0, 1}. Thus, the optimal Q∗ = {q∗

i j } in (1) can be
obtained with

q∗
i j =

{
1, if s(xi , C j ) ≥ s(xi , Ct ) ∀1 ≤ t ≤ k

0, otherwise
(8)

where i = 1, 2, . . . , N and j = 1, 2, . . . , k. Subsequently,
the OCIL algorithm for mixed data clustering can be described
as Algorithm 1 [15].

Algorithm 1 OCIL Algorithm for Mixed Data Clustering
1: Input: data set X = {x1, x2, . . . , xN } and the number of

clusters k
2: Output: cluster label Y = {y1, y2, . . . , yN }
3: Set Y = {0, 0, . . . , 0} and select k initial objects, one for

each cluster
4: repeat
5: Initialize noChange = true.
6: for i = 1 to N do
7: y(new)

i = arg max
j∈{1,...,k}[s(xi , C j )]

8: if y(new)
i �= y(old)

i then
9: noChange = f alse

10: Update the information of clusters C
y(new)

i
and C

y(old)
i

,
including the frequency of each categorical value and
the centroid of numerical vectors.

11: end if
12: end for
13: until noChange is true

B. Attribute-Weighted OCIL Algorithm

The basic idea of soft subspace clustering is to introduce the
attribute-cluster weights into the clustering process to measure
the contribution of each attribute in forming different clusters.
Therefore, the object-cluster similarity-based soft subspace
clustering for mixed data is to maximize the following objec-
tive function:

Q∗ = arg max
Q,W

⎡
⎣

k∑
j=1

N∑
i=1

qi j sw(xi , C j )

⎤
⎦ (9)

where sw(xi , C j ) denotes the attribute-weighted object-cluster
similarity and W = (wr j ) is a d ×k weight matrix. According
to (4), sw(xi , C j ) can be defined as

sw(xi , C j ) = 1

d f

{ dc∑
r=1

sw

(
xc

ir , C j
) + sw

(
xu

i , C j
)}

(10)

where the attribute-weighted similarity sw(xc
ir , C j ) is

calculated by sw(xc
ir , C j ) = wc

r j s(xc
ir , C j ). Here, wc

r j ,
r = 1, 2, . . . , dc denotes the weight of categorical attribute
Ac

r to cluster C j , which satisfies 0 ≤ wc
r j ≤ 1. Moreover,

based on (7), the attribute-weighted object-cluster similarity
on numerical part can then be expressed as

sw

(
xu

i , C j
) =

exp
(
−0.5

∑du
r=1 wu

r j

(
xu

ir − c jr
)2

)

k∑
t=1

exp
(
−0.5

∑du
r=1 wu

rt

(
xu

ir − ctr
)2

) (11)

where wu
r j (r = 1, 2, . . . , du) denotes the weight of the r th

numerical attribute to cluster C j and satisfies 0 ≤ wu
r j ≤ 1.

In general, the sum of all the attribute weights to a particular
cluster C j should be 1. That is, wc

r j and wu
r j satisfy

dc∑
r=1

wc
r j +

du∑
r=1

wu
r j = 1, j = 1, 2, . . . , k. (12)

Utilizing a simplified symbol wr j to represent the weight of
an arbitrary attribute Ar to cluster C j , we will have

d∑
r=1

wr j = 1, j = 1, 2, . . . , k. (13)

To well measure wr j (r = 1, 2, . . . , d , j = 1, 2, . . . , k),
the contribution of the r th attribute to the detection of clus-
ter C j , denoted as Hr j , will be investigated. According to
the general task of clustering analysis, two important factors
should be considered when analyzing the contribution of a
particular attribute. The first one is the intercluster difference,
denoted as Fr j , which measures the ability of attribute Ar

in distinguishing cluster C j from the other clusters. The
other factor is intracluster similarity, denoted as Mr j , which
evaluates whether the cluster C j along the attribute Ar has a
compact structure or not.

First, to evaluate the intercluster difference Fr j , we can com-
pare the value distribution of attribute Ar within the cluster C j

with the distribution outside cluster C j . The larger difference
these two value distributions have, the better the cluster C j

can be distinguished from the other clusters with attribute Ar .
Thus, we introduce the Hellinger distance, which is derived
from the Bhattacharyya coefficient [76] and can work as an
effective metric to quantify the dissimilarity between two prob-
ability distributions [77], [78]. Let P1 and P2 denote two prob-
ability distributions, then the Hellinger distance HD(P1, P2)
between them satisfies 0 ≤ HD(P1, P2) ≤ 1. If Ar is a
categorical attribute, we denote its value distribution within
cluster C j as Pc

1 (r, j) and the value distribution outside cluster
C j as Pc

2 (r, j). Then, the Hellinger distance between Pc
1 (r, j)

and Pc
2 (r, j) is calculated by

HD
(
Pc

1 (r, j), Pc
2 (r, j)

)

= 1√
2

√√√√
mr∑
t=1

(
�Ac

r =art (C j )

�Ac
r �=NULL(C j )

− �Ac
r =art (X \ C j )

�Ac
r �=NULL(X \ C j )

)2

.

(14)

If Ar is a numerical attribute, for simplicity, we will utilize
Gaussian distribution to estimate its within-cluster distribution
and outside-cluster distribution. That is, we assume Pu

1 (r, j) ∼
N (μ1, σ

2
1 ) and Pu

2 (r, j) ∼ N (μ2, σ
2
2 ) with

μ1 = 1

N j

∑
xi∈C j

xir , μ2 = 1

N − N j

∑
xi /∈C j

xir

σ 2
1 = 1

N j − 1

∑
xi∈C j

(xir − μ1)
2

σ 2
2 = 1

N − N j − 1

∑
xi /∈C j

(xir − μ2)
2 (15)
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where N j stands for the number of data objects in cluster C j .
Subsequently, the Hellinger distance between Pu

1 (r, j) and
Pu

2 (r, j) is calculated by

HD
(
Pu

1 (r, j), Pu
2 (r, j)

)

=
√√√√1 −

√
2σ1σ2

σ 2
1 + σ 2

2

exp
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2

σ 2
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2

)
. (16)

Thus, the intercluster difference Fr j (r = 1, 2, . . . , d ,
j = 1, 2, . . . , k) can be quantified with

Fr j =
{

HD
(
Pc

1 (r, j), Pc
2 (r, j)

)
, if Ar is categorical

HD
(
Pu

1 (r, j), Pu
2 (r, j)

)
, if Ar is numerical.

(17)

Second, to investigate the intracluster similarity Mr j for
attribute Ar and cluster C j , the object-cluster similarity
concept [15] can be utilized. Specifically, Mr j can be estimated
with the average object-cluster similarity in cluster C j along
attribute Ar , that is

Mr j = 1

N j

∑
xi∈C j

s(xir , C j ) (18)

where

s(xir , C j ) =
⎧⎨
⎩

�Ar =xir (C j )

�Ar �=NULL(C j )
, if Ar is categorical

exp(−0.5(xir − c jr)
2), if Ar is numerical.

(19)

As both of Fr j and Mr j reaching large values imply the impor-
tant contribution of attribute Ar to the detection of cluster C j ,
Hr j of attribute Ar to cluster C j can be calculated by

Hr j = Fr j Mr j . (20)

Since 0 ≤ Fr j ≤ 1 and 0 ≤ Mr j ≤ 1, we have 0 ≤ Hr j ≤ 1.
Subsequently, the attribute weight wr j can be defined as

wr j = Hr j∑d
t=1 Ht j

, r = 1, 2, . . . , d, j = 1, 2, . . . , k. (21)

To conduct soft subspace clustering analysis, an iterative
algorithm will be designed to optimize (9). As global statistic
information of different clusters is needed by the estimate of
attribute weights, the value of wr j should be updated after
each learning epoch (i.e., scanning the whole data set once)
rather than the input of every single data object. Initially, wr j s
can be set at an average value. That is, let wr j = (1/d) for
r = 1, 2, . . . , d , j = 1, 2, . . . , k. Consequently, the corre-
sponding attribute-weighted OCIL algorithm is summarized
as Algorithm 2. According to the analysis in [15], the time
complexity of OCIL algorithm is O(T kd N), where T stands
for the total number of learning epoches. Comparing with the
OCIL algorithm, the additional procedure needed by WOCIL
algorithm is to update the attribute-cluster weights after each
learning epoch. To calculate wr j , we will scan the whole
data set at most once. Thus, updating the matrix W needs
O(kd N) time. Subsequently, the total time cost of Algorithm 2
is also O(T kd N). As k and T are usually much smaller
than N in practice, this algorithm is efficient for data set
with a large sample size. In the general case of solving (9),

the optimization of the cluster partition matrix Q is nonconvex.
Therefore, it is a nontrivial task to theoretically analyze the
convergence property of the learning algorithm. Under the
circumstances, in the experiments, we empirically investigated
the convergence of Algorithm 2 and found that the WOCIL
usually converges quickly to a good accuracy. The details can
be found in Section VI.

Algorithm 2 Attribute-Weighted OCIL Algorithm (WOCIL)
1: Input: data set X = {x1, x2, . . . , xN } and the number of

clusters k
2: Output: cluster label Y = {y1, y2, . . . , yN } and attribute-

cluster weights matrix W
3: Set Y = {0, 0, . . . , 0}, wr j = 1

d , and select k initial objects,
one for each cluster.

4: repeat
5: Initialize noChange = true.
6: for i = 1 to N do
7: y(new)

i = arg max
j∈{1,...,k}[sw(xi , C j )]

8: if y(new)
i �= y(old)

i then
9: noChange = f alse

10: Update the information of clusters C
y(new)

i
and C

y(old)
i

,
including the frequency of each categorical value and
the centroid of numerical vectors.

11: end if
12: end for
13: Update wr j according to equations (21), (20), (18),

and (17).
14: until noChange is true

IV. LEARNING THE NUMBER OF CLUSTERS

Similar to the most existing soft subspace clustering algo-
rithms, the above presented WOCIL algorithm still needs the
number of clusters k to be preassigned exactly equal to the
true one; otherwise, an incorrect clustering result will be
obtained. To overcome this problem, in this section, we further
investigate an attribute-weighted clustering method with the
capability of learning the number of clusters automatically.

The studies in [46] have indicated that competitive learning
with penalization mechanism can enable the EM and k-means
clustering algorithms to select the number of clusters auto-
matically during the learning process by gradually fading out
the redundant clusters. Therefore, in this paper, we also adopt
this approach to solve the selection problem of the number
of clusters in soft subspace clustering. Specifically, a set of
cluster weights will be introduced into the objective function
expressed by (9), thus resulting in the following equation:

Q∗ = arg max
Q

⎡
⎣

k∑
j=1

N∑
i=1

qi j g j sw(xi , C j )

⎤
⎦ (22)

where g j ( j = 1, 2, . . . , k) is the weight of cluster C j

satisfying 0 ≤ g j ≤ 1. This weight measures the importance
of cluster C j to the whole cluster structure. Specifically, all
clusters with a weight value approaching to 1 mean that each
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of them is a component of the whole cluster structure. In case
a cluster has a very low weight, the similarity between data
objects and this cluster will be reduced. Then, according to
the cluster assignment criterion, the number of data objects
assigned to this cluster will decrease rapidly and finally this
cluster will be eliminated.

Generally, the basic idea of competitive learning with penal-
ization mechanism is that, for each input xi , not only the
winning cluster selected from the initialized cluster candidates
is updated toward xi , but also the rival nearest to the win-
ner (i.e., the runner-up) is penalized according to a specific
criterion. Thus, in this kind of method, the number k of clusters
can be initialized not less than the true one (i.e., k ≥ k∗)
and the redundant clusters can be gradually eliminated during
the clustering process. According to the clustering objective
represented by (22), for a given data object xi , the winner Cv

among the k clusters should satisfy

v = arg max
1≤ j≤k

[g j sw(xi , C j ))]. (23)

However, iterative learning according to this criterion will
result in that some seed points located in marginal positions
will immediately become dead without learning chance any
more in the subsequent learning process [79]. To overcome
this problem, Ahalt et al. [79] proposed to gradually reduce
the winning chance of a frequent winning seed point. That
is, the relative winning frequency of different clusters will be
further utilized to adjust the selection of winner. Thus, (23)
will be revised as

v = arg max
1≤ j≤k

[(1 − γ j )g j sw(xi , C j ))]. (24)

The relative winning frequency γ j of cluster C j is defined as

γ j = n j∑k
t=1 nt

(25)

where n j is the winning times of cluster C j in the past. At the
same time, the nearest rival Cr to the winner is determined by

r = arg max
1≤ j≤k, j �=v

[(1 − γ j )g j sw(xi , C j ))]. (26)

For each data object xi , when the winning cluster and its
nearest rival are determined, on the one hand, the data object xi

will be assigned to the winner Cv and the statistic information
of this cluster as well as its winning times will be updated
accordingly. On the other hand, we will further reward the
winner by increasing its weight while penalize the nearest rival
by decreasing its weight. As the values of cluster weights g j ,
j = 1, 2, . . . , k are limited to the interval [0, 1], we can update
them through an indirect way. Specifically, we utilize sigmoid
function to conduct the transformation and let

g j = 1

1 + e(−10β j+5)
, j = 1, 2, . . . , k. (27)

The mappings between β j and g j are illustrated in Fig. 1.
Thus, the updating of g j can be accomplished by changing
the value of β j instead. Subsequently, following the penalized
competitive learning model proposed in [46], the winner Cv

will be awarded with:
β(new)

v = β(old)
v + η (28)

Fig. 1. Illustration of the mappings between the values of β j s and g j s.

and meanwhile, the nearest rival Cr will be penalized with

β(new)
r = β(old)

r − ηsw(xi , Cr ) (29)

where η is a small learning rate. From (29), we can see
that the rival-penalized strength increases with the similarity
between xi and the rival. It can be noted that, once the
weight of some cluster reaches or approaches to 0, no data
objects will be assigned to this cluster during the subsequent
learning epoches. According to (20), the contribution of each
attribute to this empty cluster will also become 0. Then,
the corresponding attribute-cluster weights become meaning-
less. Finally, the main procedure of the attribute-weighted
clustering with the automatic selection of the number of
clusters can be summarized as Algorithm 3.

Algorithm 3 Attribute-Weighted Clustering With Rival Penal-
ized Mechanism (RP-WOCIL)
1: Input: data set X , learning rate η, and an initial value of

k (k ≥ k∗)
2: Output: cluster label Y = {y1, y2, . . . , yN }, the number k∗

of clusters, and attribute-cluster weights matrix W
3: Select k initial objects, one for each cluster, and set Y =

{0, 0, . . . , 0}, wr j = 1
d , n j = 1 and β j = 1.

4: repeat
5: Initialize noChange = true.
6: for i = 1 to N do
7: Determine v and r according to (24) and (26).
8: Let y(new)

i = v, n(new)
v = n(old)

v + 1, and update the
statistic information of Cv based on xi .

9: Update βv and βr using (28) and (29).
10: if y(new)

i �= y(old)
i then

11: noChange = f alse
12: end if
13: end for
14: Update wr j according to equations (21), (20), (18),

and (17).
15: until noChange is true

V. INITIALIZATION-ORIENTED METHOD

In the first step of k-means-type clustering methods, includ-
ing the WOCIL and RP-WOCIL algorithms, we have to
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initialize k clusters. In general, random initialization is the
simplest and most popular method. However, due to the
uncertainty of the randomly initialized seed points, the clus-
tering results are often somewhat unpredictable and cannot be
relied with confidence. Under the circumstances, in order to
evaluate the performance of an algorithm, we usually have to
repeat the clustering procedure many times with the different
initializations to get statistic information. This problem can be
even more serious in soft subspace clustering because a poor
initialization will degrade the clustering performance mean-
while mislead the learning of attribute-cluster weights. Thus,
the whole clustering process will suffer much more negative
effects. In the literature, some improved initialization meth-
ods for k-means-type clustering have been presented, such
as [80]–[83] for numerical data clustering and [84], [85] for
categorical data clustering. However, to the best of our knowl-
edge, such initialization refinement for mixed data clustering
has yet to be studied. In this section, we will, therefore,
propose a new initialization method that conducts a selection
process of initial seed points for mixed data clustering.

In general, if we want to get a good clustering result,
we often expect that the dissimilarity between the initial
seed points is high so that they are more likely from dif-
ferent clusters. Nevertheless, if we only seek for a higher
dissimilarity, some outliers that have negative influence on
the clustering process may be preferred. Therefore, when we
estimate the priority of an object to be selected as an initial
seed point, we should simultaneously consider two factors:
the dissimilarity between this object and the already selected
seed points and also the similarity between this object and the
whole data set. Given the mixed data set X for clustering
analysis, we let U = {µ1,µ2, . . . ,µl} be the set of seed
points that have already been selected, where l < k, and k is
the desired number of seed points. Similarly, each individual
µ j ( j ∈ {1, 2, . . . , l}) can also be represented by [µc

j ,µ
u
j ]T ,

where µc
j and µu

j denote the categorical and numerical parts,
respectively. In the selection process, if we want to choose
another seed point and add it to U , we should first estimate
the selection priority for each object in X and then select the
one with the largest priority. Let Pry(xi ) denote the selection
priority of object xi . Since xi contains both the categorical
and numerical attributes, Pry(xi ) can be decomposed as

Pry(xi ) = Pry
(
xc

i

) + Pry
(
xu

i

)
. (30)

Thus, given the estimation of Pry(xc
i ) and Pry(xu

i ), we can get
the priority of xi .

First, to get the priority of xc
i , we should estimate the

dissimilarity between xc
i and U as well as the similarity

between xc
i and X . To this end, the object-cluster similarity

metric for categorical attributes can be utilized to calculate the
object-set similarity here. Therefore, analogous to (4) and (5),
the similarity between xc

i and U can be calculated by

Sim
(
xc

i , U
) = 1

dc

dc∑
r=1

�Ac
r =xc

ir
(U)

�Ac
r �=NULL(U)

. (31)

Also, the similarity between xc
i and X is given by

Sim(xc
i , X) = 1

dc

dc∑
r=1

�Ac
r =xc

ir
(X)

�Ac
r �=NULL(X)

. (32)

Actually, the result of (32) is equivalent to the average density
of an object in X defined in [85]. Subsequently, the priority
of xc

i can be estimated by

Pry(xc
i ) = DSim

(
xc

i , U
) + Sim

(
xc

i , X
)

= (
1 − Sim

(
xc

i , U
)) + Sim

(
xc

i , X
)

=
(

1 − 1

dc

dc∑
r=1

�Ac
r =xc

ir
(U)

�Ac
r �=NU L L (U)

)

+ 1

dc

dc∑
r=1

�Ac
r =xc

ir
(X)

�Ac
r �=NULL(X)

(33)

where DSim(xi , U) = 1−Sim(xi , U) denotes the dissimilarity
between xi and U .

Next, we discuss the estimation of priority for numerical
part of (30), i.e., Pry(xu

i ). For any two numerical instances,
as the dissimilarity between them is usually quantified by
their distance, we can give an estimation of the selection
priority for numerical vectors based on the distance metric.
First, we find the extremum of all numerical vectors in the
whole data set X . Let xu

max = (xu
max,1, xu

max,2, . . . , xu
max,du

)T

and xu
min = (xu

min,1, xu
min,1, . . . , xu

min,du
)T be the upper and

lower bounding vectors, respectively. Then, these two specific
vectors can be calculated by

xu
max,r = max

1≤i≤N

(
xu

i,r

)
and xu

min,r = min
1≤i≤N

(
xu

i,r

)
(34)

where r ∈ {1, 2, . . . , du}. Suppose D(xu
max, xu

min) denotes
the Euclidean distance between xu

max and xu
min. For any two

numerical vectors xu
i and xu

j in X , we then have

D
(
xu

i , xu
j

) ≤ D
(
xu

max, xu
min

)
. (35)

Subsequently, similar to the max–min principle in [86], the dis-
similarity between xu

i and the set of already selected seed
points U can be defined as

DSim
(
xu

i , U
) = min1≤ j≤p D

(
xu

i ,µu
j

)

D
(
xu

max, xu
min

) . (36)

That is, DSim(xu
i , U) is determined by the minimum distance

between xu
i and the numerical vectors in U . The regulating

term D(xu
max, xu

min) in (36) is to guarantee a value from interval
[0, 1], which will be consistent with the result on categorical
attributes.

On the other hand, the similarity between xu
i and X can

be estimated via investigating whether xu
i has a relatively

high local density in X . Generally, a standard way to get
the local density of xu

i is to calculate the distance between
xu

i and each of other numeric vectors. However, the time
complexity of this method is at least O(N2), which will
result in plenty of additional computation cost compared to the
random initialization. Therefore, we present an approximation
method to estimate the local density. Specifically, all numerical
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vectors in X will first be grouped into k clusters with standard
k-means algorithm [4]. Let Cu = {cu

1 , cu
2 , . . . , cu

k } be the
centers of these k clusters. Then, the similarity between xu

i
and X can be estimated with the similarity between xu

i and
the cluster center set Cu , i.e.

Sim
(
xu

i , X
) = Sim

(
xu

i , Cu) = 1 − DSim
(
xu

i , Cu)

= 1 − min1≤ j≤k D
(
xu

i , cu
j

)

D(xu
max, xu

min

) . (37)

Subsequently, we have

Pry
(
xu

i

) = DSim
(
xu

i , U
) + Sim

(
xu

i , X
)

= min1≤ j≤p D
(
xu

i ,µu
j

)

D
(
xu

max, xu
min)

+
(

1 − min1≤ j≤k D
(
xu

i , cu
j

)

D
(
xu

max, xu
min

)
)

. (38)

Finally, based on (30), (33), and (38), the priority of mixed
data xi to be selected as a clustering seed point is calculated by

Pry(xi )

= Pry
(
xc

i

) + Pry
(
xu

i

)

=
(

1 − 1

dc

dc∑
r=1

�Ac
r =xc

ir
(U)

�Ac
r �=NULL(U)

)
+ 1

dc

dc∑
r=1

�Ac
r =xc

ir
(X)

�Ac
r �=NULL(X)

+min1≤ j≤p D
(
xu

i ,µu
j

)

D
(
xu

max, xu
min

) +
(

1 − min1≤ j≤k D
(
xu

i , cu
j

)

D
(
xu

max, xu
min

)
)

.

(39)

Particularly, when selecting the first seed point, as U is
an empty set, only the similarity between xi and X should
be investigated. That is, the first seed point µ1 is selected
according to

µ1 = arg max
xi∈X

[
Sim

(
xc

i , X
) + Sim

(
xu

i , X
)]

. (40)

Consequently, the procedure of initialization-oriented method
for mixed data clustering can be summarized as Algorithm 4,
where Xu = {xu

1, xu
2 , . . . , xu

N } and kmeans(Xu, k) means
executing k-means clustering on the set Xu . In Algorithm 4,
the computation cost from State 3 to State 5 is O(Ndu +
k Ndu + k Nd). For each selection, the cost of State 8 and
State 9 is O(Ndc + (1/2)k Ndu). Thus, the total time cost is
O(k Nd + (1/2)k2 Ndu)). It can be seen that this computation
time approaches to that cost by a single iteration of OCIL
algorithm. Therefore, the proposed initialization method will
not cost much additional computation.

VI. EXPERIMENTS

This section is to investigate the effectiveness of the pro-
posed approaches for soft subspace clustering of data with
different types and compare their performance with the exist-
ing counterparts. The algorithms were coded with MATLAB
and all the experiments were implemented by a desktop PC
computer with Intel(R) Core2 Quad CPU, 2.40-GHz main
frequency, and 4 GB DDR2 667 RAM.

Algorithm 4 Oriented Initialization for Mixed Data Clustering
1: Input: data set X and the number of clusters k
2: Output: set of initial seed points U
3: Find the extremum vectors xu

max and xu
min according

to (34).
4: Let Cu = kmeans(Xu, k)
5: For each xi ∈ X , calculate Sim(xc

i , X) and Sim(xu
i , X)

according to (32) and (37), respectively.
6: Select µ1 from X based on (40), let U = µ1 and

Counter = 1.
7: while Counter < k do
8: For each xi ∈ {X \ U}, calculate Pry (xi ) with (39).
9: Let xi∗ = arg max

xi∈{X\U }[Pry (xi )], U = U ∪ {xi∗ }, and

Counter = Counter + 1.
10: end while

A. Utilized Data Sets

Experiments were conducted on various mixed, purely cat-
egorical, and purely numerical data sets obtained from UCI
machine learning data repository (URL: http://archive.ics.uci.
edu/ml/). Specifically, five mixed data sets have been utilized
and the detailed information is as follows.

1) Heart Disease Database: This data set contains
303 instances concerning heart disease diagnosis, which
are characterized by seven categorical attributes and six
numeric attributes. All the instances can be grouped
into two classes: healthy (164 instances) and sick
(139 instances).

2) Credit Approval Data Set: There are 690 data instances
about credit card application. Each of them is described
by nine categorical attributes and six numeric attributes.
In the experiments, 653 instances without missing values
were utilized, which have been labeled with positive
(296 instances) or negative (357 instances).

3) Statlog German Credit Data: It contains the information
of 1000 people described by 13 categorical attributes
and 7 numerical attributes. All people are grouped as
good or bad credit risk.

4) Adult Data Set: This data set was extracted from the
census database. 45222 instances without unknown val-
ues were adopted. They are described by eight categor-
ical attributes and six numerical attributes, and can be
grouped into two clusters.

5) Dermatology Data Set: This data set contains
366 instances about six types of Eryhemato-Squamous
Disease. All instances are characterized by 34 attributes,
33 of which are numerical and the other one is
categorical.

Moreover, the utilized five purely categorical data sets are
Soybean, Voting, Wisconsin Breast Cancer Database (WBCD),
Car, and Zoo. Their information is listed as follows.

1) Small Soybean Database: There are 47 instances charac-
terized by 35 multivalued categorical attributes. Accord-
ing to the different kind of diseases, all the instances
should be divided into four groups.
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TABLE I

STATISTICS OF THE UTILIZED DATA SETS

Fig. 2. Convergence curve of the WOCIL algorithm on (a) adult data set, (b) car data set, and (c) handwritten data set.

2) Congressional Voting Records Data Set: There are
435 votes based on 16 key features and each vote comes
from one of the two different party affiliations: democrat
(267 votes) and republican (168 votes).

3) WBCD: This data set has 699 instances described by
nine categorical attributes with the values from 1 to 10.
Each instance belongs to one of the two clusters labeled
by benign (contains 458 instances) and malignant
(contains 241 instances).

4) Car Evaluation Database: It contains 1728 car samples
derived from a simple decision model that evaluates
cars according to six different aspects. Each sample is
labeled with one of the four categories: unacceptable,
acceptable, good, and very good.

5) Zoo Data Set: This data set consists of 101 instances
represented by 16 attributes, in which each instance
belongs to one of the 7 animal categories.

Besides, more experiments were conducted on the following
five purely numerical data sets.

1) Iris Data Set: It contains 150 instances characterized
by four attributes from three classes, where each class
refers to a type of iris plant.

2) Wine Data Set: There are 178 data samples from a
chemical analysis of wines that determined the quantities
of 13 constituents found in each of the three types of
wines.

3) Ionosphere Data Set: This data set is about the classifi-
cation of radar returns from the ionosphere. It contains
351 instances described by 34 attributes. Each instance
has been labeled with good or bad.

4) Optical Recognition of Handwritten Digits Data: The
data are extracted from the bitmaps of ten different hand-
written digits. Each of the 5620 instance is represented
by 64 attributes.

5) Sonar Data Set: This data set is utilized to discriminate
between sonar signals bounced off a metal cylinder and
a roughly cylindrical rock. It contains 208 instances
described by 60 attributes.

In addition, Table I has briefly summarized the general infor-
mation of all utilized data sets for quick check.

B. Study of WOCIL Algorithm

1) Convergence of WOCIL Algorithm: To investigate the
convergence property of WOCIL algorithm, this experiment
executed it on data sets with different types and recorded the
value of objective function after each learning iteration. The
adopted data sets were Adult, Car, and Handwritten, which
have relatively larger sample sizes among the others. The
curves in Fig. 2 show the variation trend of objective function
values with the number of learning iterations. Here, F stands
for the value of objective function

∑k
j=1

∑N
i=1 qi j sw(xi , C j ).

It can be observed that the performance of the WOCIL algo-
rithm was converged within five learning iterations on Adult
and Car data sets, and for the Handwritten data sets, about ten
learning epoches were spent. These results demonstrate that
the WOCIL algorithm has a good convergence rate in practice
and can conduct efficient learning on data with large sample
size.

2) Performance Evaluation of WOCIL Algorithm: To eval-
uate the performance of WOCIL algorithm, we applied it to
different real data sets and compared its performance with the
existing counterparts. As the number of clusters is preassigned
in this kind of method, we adopted three popular validity
indices, i.e., clustering accuracy (ACC) [87], rand index (RI),
and normalized mutual information (NMI), to evaluate the
clustering results. The definitions of these three indices are
as follows.
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TABLE II

CLUSTERING PERFORMANCE IN TERMS OF ACC OF DIFFERENT ALGORITHMS ON MIXED DATA SETS

TABLE III

CLUSTERING PERFORMANCE IN TERMS OF RI OF DIFFERENT ALGORITHMS ON MIXED DATA SETS

TABLE IV

CLUSTERING PERFORMANCE IN TERMS OF NMI OF DIFFERENT ALGORITHMS ON MIXED DATA SETS

1) Clustering Accuracy

ACC =
∑N

i=1 δ (ci , map(li ))

N
where N is the number of objects in the data set, ci

stands for the provided label, map(li ) is a mapping
function that maps the obtained cluster label li to the
equivalent label from the data corpus, and the delta
function δ (ci , map(li )) = 1 only if ci = map(li ),
otherwise 0.

2) Rand Index

RI = TP + TN

TP + FP + FN + TN
where TP, TN, FP, and FN stand for true positive, true
negative, false positive, and false negative, respectively.

3) Normalized Mutual Information

NMI =
∑k

i=1
∑k∗

j=1 Ni, j log
(

N ·Ni, j
Ni ·N j

)
√(∑k

i=1 Ni log Ni
N

) (∑k∗
j=1 N j log

N j
N

)

where k∗ stands for the true number of classes, k is
the number of clusters obtained by the algorithm,
Ni, j denotes the number of agreements between cluster i
and class j , Ni is the number of data objects in cluster i ,
N j is the number of objects in class j , and N is the
number of objects in the whole data set.

In general, all of ACC, RI, and NMI have values from
interval [0, 1] and larger values of them indicate better
performance.

First, we investigated the performance of WOCIL algorithm
on mixed data. For comparative studies, the performance
of simple OCIL algorithm [15], WKM algorithm [70], and
EWKM algorithm [35] on these data sets has also been
investigated. All these algorithms are k-means-type method.
The WKM and EWKM algorithms are applicable to numer-
ical, categorical, and mixed data if the learning model of
k-means, k-modes [75], and k-prototypes [11] methods are
utilized, respectively. In the experiment, each algorithm has
been executed 50 times on each data set and the clustering
results are statistically summarized. According to the authors’
recommendation in [70], the parameter β in WKM algorithm
was set at 2 and the parameter γ in EWKM algorithm was
set at 1.5. Tables II–IV present the clustering results obtained
by different methods in the form of the means and standard
deviations of ACC, RI, and NMI, respectively. In the tables,
WOCIL+OI stands for the WOCIL algorithm initialized with
the initialization-oriented method, while the other algorithms
are implemented with random initializations. From the results,
we can find that the WOCIL algorithm outperforms the
OCIL, WKM, and EWKM algorithms in the most cases. This
indicates that appropriate attribute weights can improve the
clustering performance on the most data sets. The results
obtained by different algorithms on the Adult data set are
similar to each other, which would indicate that this data set
does not have subspace structures. Moreover, comparing the
results of the WOCIL+OI and WOCIL methods, we can find
that the proposed initialization-oriented method can lead to
much better and more stable clustering performance. In addi-
tion, to investigate the effectiveness of the proposed attribute
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TABLE V

ATTRIBUTE-CLUSTER WEIGHTS LEARNED BY THE WOCIL METHOD ON HEART DATA SET

TABLE VI

ATTRIBUTE-CLUSTER WEIGHTS LEARNED BY THE WOCIL METHOD ON CREDIT DATA SET

TABLE VII

CLUSTERING PERFORMANCE IN TERMS OF ACC OF DIFFERENT ALGORITHMS ON CATEGORICAL DATA SETS

TABLE VIII

CLUSTERING PERFORMANCE IN TERMS OF RI OF DIFFERENT ALGORITHMS ON CATEGORICAL DATA SETS

TABLE IX

CLUSTERING PERFORMANCE IN TERMS OF NMI OF DIFFERENT ALGORITHMS ON CATEGORICAL DATA SETS

weighting scheme, we took the Heart data set as an example
to show the changes of attribute weights during the learning
process. Initially, all attribute-cluster weights were set at an
equal value, i.e., 1/d . After the learning algorithm converged,
the obtained attribute-cluster weights were the values shown
in Table V. It can be seen that the proposed weighting scheme
can well distinguish the contribution of different attributes to
the detection of each cluster. Besides, one more example has
been shown in Table VI, from which we can draw a similar
conclusion.

Moreover, to investigate the performance of WOCIL algo-
rithm on purely categorical data, further clustering analysis
was conducted on five categorical data sets. Besides the
WKM and EWKM algorithms, the proposed method has also

been compared with the wk-Modes algorithm [41], which
is a subspace clustering method for purely categorical data.
The average clustering performance as well as the standard
deviation evaluated with the three criteria has been recorded
in Tables VII–IX. It can be observed that, with random ini-
tializations, the WOCIL algorithm has competitive advantage
in terms of ACC compared to the OCIL, WKM, EWKM,
and wk-Modes methods on the first three data sets. Although
the WKM and EWKM algorithms have better performance
on the Car and Zoo data sets, respectively, the results of the
WOCIL algorithm are still comparable to theirs. In addition,
the problem of large standard deviation in ACC caused by
random initializations on categorical data can also be solved by
the initialization-oriented method. Particularly, the true label
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TABLE X

CLUSTERING PERFORMANCE IN TERMS OF ACC OF DIFFERENT ALGORITHMS ON NUMERICAL DATA SETS

TABLE XI

CLUSTERING PERFORMANCE IN TERMS OF RI OF DIFFERENT ALGORITHMS ON NUMERICAL DATA SETS

TABLE XII

CLUSTERING PERFORMANCE IN TERMS OF NMI OF DIFFERENT ALGORITHMS ON NUMERICAL DATA SETS

of the Soybean data set could always be obtained by the
WOCIL+OI method in our experiments.

Besides, the performance of WOCIL algorithm on purely
numerical data sets was further studied. The evaluations of
clustering outcomes obtained by different algorithms have
been listed in Tables X–XII in the form of the means
and standard deviations of ACC, RI, and NMI, respectively.
Two subspace clustering methods for purely numerical data,
i.e., LAC [33] and ESSC [71], were investigated as well
for comparative study. From the statistical results, we can
find that the best results on different data sets have also
been obtained by the WOCIL+OI method. Among the other
random-initialization-based methods, the WOCIL method out-
performs the others in the most cases. An additional observa-
tion is that, for the Handwritten data set, the OCIL algorithm
without attribute weighting has a better performance than
the WOCIL, WKM, EWKM, LAC, and ESSC methods. This
result indicates that subspace clustering is not suitable for all
kinds of data sets. Some cases prefer the attributes to be treated
equally during clustering analysis.

In addition, we further investigated the real execution time
of WOCIL algorithm on different types of data sets. Table XIII
reports the average execution time of five main algorithms
over 50 repeats on mixed, categorical, and numerical data
sets. Comparing the results, we can find that the WOCIL
algorithm generally has the same time complexity level with
the other algorithms. Due to the additional computation costs
by the calculation of attribute weights, the WOCIL algorithm
needs more execution time than the OCIL method on each
data set. However, the time difference between them is not

TABLE XIII

COMPARISON OF THE AVERAGE EXECUTION TIME BETWEEN
DIFFERENT ALGORITHMS (IN SECONDS)

large and will not reduce the practicability of WOCIL method.
Moreover, it can also be observed that the real execution
time of WOCIL+OI method is just a little more than that of
the WOCIL algorithm with random initialization. This result
validates that the proposed initialization-oriented method will
not bring much additional computation load.

C. Performance Evaluation of RP-WOCIL Algorithm

1) Convergence of RP-WOCIL Algorithm: In order to inves-
tigate the convergence performance of RP-WOCIL algorithm
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Fig. 3. Learning curves of g j s and α j s obtained by the RP-WOCIL algorithm on Heart, Soybean, and Wine data sets.

and its ability of automatically learning the number of clusters,
this experiment applied it to the Heart, Soybean, and Wine data
sets, which belong to different date types and have a varied
number of clusters. Fig. 3 shows the detailed learning process
of RP-WOCIL algorithm on each data set. In the experiment,
the initial number of clusters k was set at five and the variable
α j , j = 1, 2, . . . , k, was utilized to record the proportion of
objects among the whole data set that had been assigned to
the j th cluster. The learning curves of α j s and cluster weights
g j s over the epoch numbers obtained by the RP-WOCIL
algorithm on the three data sets are shown in Fig. 3. It can be
observed from Fig. 3(a) that the values of three g j s converged
to around 0 after about 40 learning epoches while the other
two converged to 1. This means that the learning algorithm
has identified the true number of clusters by eliminating
the three redundant clusters from the initial cluster structure.
Meanwhile, it can be found from Fig. 3(d) that α j s of the three
redundant clusters also converged to 0 as no data objects will
be assigned to a cluster with zero weight. The final obtained
values of the other two α j s were 0.5149 and 0.4851, which are
approximate to the data-member proportions of the two true
clusters, i.e., 54.13% and 45.87%. For the categorical data
set, Soybean data, the weight value of one cluster converged
to 0, while the other four converged to 1. The correct cluster
structure has also been leant. Moreover, similar result has
been obtained on the Wine data set, where the two redundant
clusters have been successfully eliminated and the obtained
nonzero α j s are 0.3652, 0.3539, and 0.2809.

2) Parameter Analysis on Learning Rate η: The setting of
learning rate η plays an important rule in the RP-WOCIL
algorithm. Generally, a too small value of η may lead to
an insufficient penalization process by which the redundant
clusters cannot be completely eliminated from the initial

cluster structure. Conversely, a too large value of η may cause
an excessive penalization, such that the initialized clusters are
overeliminated and the obtained number of clusters will less
than the true one. To investigate a good setting method for
this parameter, we have performed the RP-WOCIL algorithm
on different data sets with the varied settings of learning
rate η. From these experiments we find that the robustness
of RP-WOCIL’s performance to the setting of η has obvious
difference on different data sets. A plausible reason is that the
cluster structures of different data sets usually have the varied
levels of partition difficulty. Fig. 4 presents the experimental
results on Heart and Soybean data sets for comparison, where
the initial value of k was set at 5. As shown in Fig. 4(a),
for the Heart data sets, the RP-WOCIL algorithm can always
obtain the correct number of clusters with η setting from
0.0001 to 0.005. By contrast, for the Soybean data set, if the
value of η is set larger than 0.0006, the RP-WOCIL algorithm
tends to overpenalize the initialized clusters and the obtained
number of clusters will less than the true one. Moreover, from
Fig. 4(b) and (d), we can find that the convergence speed of
RP-WOCIL algorithm will slow up as the value of η decreases.
Based on this empirical study, it is appropriate to set the value
of η between 0.0001 and 0.0005 in practice.

3) Performance Evaluation of the RP-WOCIL Algorithm:
This experiment was to investigate the performance of the
RP-WOCIL algorithm on different data sets. Specifically, six
data sets were utilized, which consisted of two mixed data
sets, two categorical data sets, and two numerical data sets.
To study the ability of the RP-WOCIL algorithm in learning
the number of clusters, we implemented the experiments with
the varied settings of k, and the statistic result over 20 runs
in each case has been recorded. Moreover, according to [44],
the performance of clustering algorithms with the different
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Fig. 4. Learning performance of RP-WOCIL algorithm on Heart and Soybean data sets with different settings of learning rate η.

TABLE XIV

CLUSTERING RESULTS OBTAINED BY DIFFERENT ALGORITHMS WITH THE VARIED SETTINGS OF k

settings of the number of clusters can be evaluated by the
following partition quality (PQ) index:

P Q =

⎧⎪⎨
⎪⎩

∑k∗
i=1

∑k′
j=1 [p(i, j)2 · (p(i, j)/p( j))]

∑k∗
i=1 p(i)2

, if k ′ > 1

0, otherwise

where k ′ is the number of clusters learned by the algorithm.
The term p(i, j) calculates the frequency-based probability
that a data point is labeled i by the true label and labeled j by
the obtained label. This PQ index achieves the maximum value
1 when the obtained labels induce the same partition as the
true ones. That is, all data points in each cluster have the same
true label and the estimated k ′ is equal to k∗. The learning
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rate η in the RP-WOCIL algorithm was set at 0.0003 and the
initialization-oriented method was adopted in the experiments.
Table XIV summarizes the clustering results obtained by the
RP-WOCIL and WOCIL algorithms in each situation. It can
be observed that the RP-WOCIL algorithm has given a good
estimation of the number of clusters and obtained better parti-
tion qualities. By contrast, for the WOCIL algorithm without
cluster-number-learning mechanism, the obtained number of
clusters was always equal to the preassigned one and the
clustering performance degraded seriously when the initialized
number of clusters was not appropriately chosen.

VII. CONCLUSION

In this paper, we have presented a new soft subspace
clustering method, which is applicable to data with numerical,
categorical, and mixed data. This method follows the learning
model of object-cluster similarity-based clustering analysis.
A unified weighting scheme for numerical and categorical
attributes has been proposed, which quantifies the contribu-
tions of different attributes to the detection of various clusters
with two factors, i.e., intercluster difference and intracluster
similarity. Moreover, to solve the selection problem regarding
the number of clusters, a rival penalized competitive learning
mechanism has been introduced, which enables the number
of clusters to be determined automatically during clustering
process. In addition, a new initialization-oriented method has
been proposed to improve the performance of k-means-type
clustering methods on numerical, categorical, and mixed data
sets. Experiments on benchmark data sets have shown the
effectiveness of the proposed method in comparison with the
existing algorithms.
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