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Abstract— Completing a matrix from a small subset of its
entries, i.e., matrix completion is a challenging problem arising
from many real-world applications, such as machine learn-
ing and computer vision. One popular approach to solve the
matrix completion problem is based on low-rank decomposi-
tion/factorization. Low-rank matrix decomposition-based meth-
ods often require a prespecified rank, which is difficult to
determine in practice. In this paper, we propose a novel low-rank
decomposition-based matrix completion method with automatic
rank estimation. Our method is based on rank-one approximation,
where a matrix is represented as a weighted summation of a
set of rank-one matrices. To automatically determine the rank
of an incomplete matrix, we impose L1-norm regularization on
the weight vector and simultaneously minimize the reconstruc-
tion error. After obtaining the rank, we further remove the
L1-norm regularizer and refine recovery results. With a correctly
estimated rank, we can obtain the optimal solution under certain
conditions. Experimental results on both synthetic and real-world
data demonstrate that the proposed method not only has good
performance in rank estimation, but also achieves better recovery
accuracy than competing methods.

Index Terms— Low-rank decomposition, matrix completion,
rank estimation, rank-one, approximation.

I. INTRODUCTION

MATRIX completion aims to recover a whole matrix
from its partial observations. It has witnessed a burst

of activities, motivated by many applications such as machine
learning [1]–[5], image processing [6]–[8], and computer
vision [9]–[11]. Most existing methods assume the tar-
get matrix has a low-rank structure since most real-world
data (e.g., images) are low rank or approximately low rank.
Thus, for a target matrix M ∈ R

I1×I2 with partial observations
in an index set �, the matrix completion problem can be
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formulated as a rank minimization problem

min
X

rank(X) s.t. P�(X) = P�(M) (1)

where rank(X) is the rank of X ∈ R
I1×I2 , and � ∈ R

I1×I2

is the binary index matrix: �i j = 1 if Xi j is observed, and
�i j = 0 otherwise. P� is the associated sampling operator
which acquires only the entries indexed by �. However,
the model (1) is NP-hard due to the nonconvexity and combi-
national nature of the rank function.

To address this problem, a popular convex relaxation of
rank function is based on minimization of the nuclear norm
(as known as, trace norm or Schatten p-norm with p = 1)
[1], [12]–[14]. In this way, the rank minimization model (1)
is rewritten as a nuclear norm minimization model

min
X

�X�∗ s.t. P�(X) = P�(M) (2)

where the nuclear norm �X�∗ is the summation of the singular
values of X. Assuming the observed entries are uniformly
sampled from the original matrix M, Candès and Recht [1]
prove that the missing entries can be exactly recovered if
M (with rank R) satisfies certain incoherence conditions and
observes at least O(N1.2 R log(N)) (N = max(I1, I2)) entries.
This sampling bound is narrowed to O(N R log(N)) in [13].
A number of nuclear norm minimization-based algorithms
have been proposed to solve the convex model (2). Singular
value thresholding (SVT) [15] employs the linearized Bremgan
iterations [16] to solve the dual of a regularized approximation
of (2). Accelerated proximal gradient with linesearch algo-
rithm (APGL) [17] accelerates the convergence of SVT by
a fast iterative shrinkage thresholding algorithm [18]. Fixed
point continuation with approximate (FPCA) singular value
decomposition (SVD) [19] addresses the same problem as
APGL while utilizing a fast Monte Carlo algorithm for SVD
calculations. Soft-impute [20] exploits a “sparse plus low-
rank” structure to allow efficient SVD in each iteration, with
accelerated version (AIS-Impute) in [21]. Other well-known
works include [22]–[26].

Another class of techniques is based on low-rank matrix
decomposition/factorization, which is more suitable for large-
scale cases. Since any matrix Z ∈ R

I1×I2 can be modeled in
a bilateral factorization form: UV�, where U ∈ R

I1×R , V ∈
R

I2×R , the low-rank decomposition-based matrix completion
model is formulated as

min
Z,U,V

�Z − UV��2
F s.t. P�(Z) = P�(M) (3)
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where the integer R (R < min(I1, I2)) is the rank of
matrix M. Gradient-based optimization algorithms such as
alternating minimization methods [27]–[30] are widely used to
solve the model (3). Although (3) is nonconvex, many works
demonstrate that low-rank decomposition-based methods can
perform more efficiently and are empirically as reliable as
the convex methods [31]–[38]. Besides, there have been some
works [27], [38], [39] that provide theoretical guarantee for
their performance. For example, Jain et al. [27] theoreti-
cally prove that the alternating minimization also can exactly
recover the matrix under certain conditions similar to the
conditions given in [1] [decomposition-based methods may
require more observations than nuclear norm minimization-
based methods (O(N R log(N))) [27]].

Many matrix completion methods especially low-rank
matrix decomposition-based methods often require a prespec-
ified rank. Determining the rank of an incomplete matrix is a
challenging task, with several existing studies [35], [40]–[44].
Based on the model (3), Wen et al. [35] propose a low-
rank matrix fitting algorithm (LMaFit) that estimates the
rank by two heuristic strategies (decreasing rank strategy
and increasing rank strategy) and solve it by a nonlinear
successive over relaxation method [45]. Keshavan et al. [39],
[40], [46] reformulate the LMaFit model (3) into an SVD
form and propose a gradient descent algorithm on Grass-
mann manifold (OptSpace), which integrates the spectral tech-
niques with manifold optimization and determines the rank
by computing the SVD of the trimmed observations [40].
Recently, MaCBetH [43] is proposed to improve OptSpace
by a different spectral procedure that detects the rank (by
estimating the negative eigenvalues of a Bethe Hessian matrix)
and a better initialization for the approximation minimization.
These three methods have achieved good performance of rank
estimation on synthetic matrices while they do not work well
on real-world images, at least in our preliminary studies.
On the other hand, for a fixed-rank smooth Riemannian
manifold algorithm named LRGeomCG [47], Uschmajew
and Vandereycken [44] propose GeomPursuit that adds a
greedy outer iteration to LRGeomCG to increase the rank
with a step-size l for better recovery performance. Based
on our empirical studies, however, GeomPursuit does not
obtain exact true ranks and becomes much slower for larger
matrices.

Rank-one approximation is a specific low-rank matrix
decomposition popularly used in matrix completion [48]–[53].
Here, any matrix Z is represented as the weighted
summation of R factorized rank-one matrices:
Z = �R

r=1 wr ur v�
r = Udiag(w)V�, where the weight vector

w = [w1, . . . , wr , . . . , wR]�, U ∈ R
I1×R = {ur }R

r=1, V ∈
R

I2×R = {vr }R
r=1. Actually, SVD is a special rank-one

approximation whose factors {ur }R
r=1 and {vr }R

r=1 are
orthogonal, and it is used in OptSpace. Wang et al. [50], [51]
have recently proposed an efficient rank-one matrix pursuit
method (R1MP) by extending orthogonal matching pursuit to
the matrix case. R1MP usually achieves better results given
a rank higher than the true rank. In other words, R1MP
cannot estimate the rank and does not pursue a low-rank
approximation.

In this paper, we propose a novel rank-one matrix com-
pletion method with automatic rank estimation. Under the
low-rank assumption, we aim to automatically determine the
rank of an incomplete matrix and recover the matrix. When
a rank is given, we can minimize the reconstruction error of
the rank-one approximation via least squares to predict the
missing entries. We present it as rank-one matrix completion
(R1MC). With a correctly estimated rank, R1MC likes other
fixed-rank methods such as [32], [47], and [54] can achieve
the optimal solution for matrix completion under certain
conditions [1], [27], according to the Eckart–Young–Mirsky
theorem [55], [56]. However, the rank estimation is a difficult
task for incomplete matrices. By solving this problem, the
main contributions of this paper are as follows.

1) We address the rank estimation problem by imposing an
L1-norm regularization on the weight vector (analogous
to the vector of singular values) while minimizing the
reconstruction error. We call this L1-norm regularized
rank-one matrix completion method with automatic rank
estimation as L1MC.

2) We further develop L1MC with refinement (L1MC-RF)
by proposing a refinement strategy: once the rank is
automatically determined by L1MC, we remove the
L1-norm regularization, and further refine the recovery
results by directly minimizing the reconstruction errors
via R1MC. Essentially, L1MC-RF integrates L1MC and
R1MC, while R1MC can be replaced by other fixed-rank
completion methods such as [32].

Thus, L1MC-RF can automatically estimate the true
rank and exactly predict the missing entries under certain
conditions [1], [32], [57]. We solve the optimization problem
by the block coordinate descent approach (as known as,
alternating minimization method or nonlinear (block) Gauss-
Seidel scheme), where each variable is iteratively updated with
all the others fixed.

In the next section, we review necessary preliminaries and
related works. We present the proposed methods in Section III
and then evaluate them in Section IV. Finally, a conclusion is
drawn in Section V.

II. PRELIMINARIES AND RELATED WORKS

A. Notations

In this paper, a vector is denoted by a bold lower-case
letter x ∈ R

I and a matrix is denoted by a bold capital
letter X ∈ R

I1×I2 . The i th entry of a vector a ∈ R
I is

denoted by ai , and the (i, j)th entry of a matrix X is denoted
by Xij . The Frobenius norm of a matrix X is defined by
�X�F = √�X, X�. � ∈ R

I1×I2 is a binary index matrix:
�i j = 1 if Xi j is observed, and �i j = 0 otherwise. P� is the
associated sampling operator which acquires only the entries
indexed by �, defined as

(P�(X))i j =
�

Xij , if(i, j) ∈ �

0, if(i, j) ∈ �c (4)

where �c is the complement of �. We have P�(X) +
P�c(X) = X.
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B. Eckart–Young–Mirsky Theorem

Given a matrix M ∈ R
I1×I2 with rank R (with singular

values of M {σ1 ≥ · · · σp ≥ σp+1 ≥ · · · ≥ σR > 0}),
the optimal low-rank approximation is given by a truncated
SVD of M according to the classical Eckart–Young–Mirsky
theorem [55], [56]. That is, if M = U�V�, then Mp =�p

i=1 σi ui v�
i is the unique optimal rank-p approximation

(p < R) of M. We present the Eckart–Young–Mirsky theorem
under the Frobenius norm in Theorem 1 following [58].
This theorem is employed for matrix/tensor decompositions
in [12], [58], and [59].

Theorem 1 (Eckart–Young–Mirsky Theorem): Let M ∈
R

I1×I2 has rank R < min (I1, I2) and its SVD
is: M = U�V� = �R

i=1 σi ui v�
i , where � =

diag(σ1, . . . , σp, . . . , σR , 0, . . . , 0) and σ1 ≥ · · · σp ≥ σp+1 ≥
· · · ≥ σR > 0. Denote M as the set of I1 × I2 matrices with
rank p < R < min (I1, I2). The unique optimal solution of

min
A∈M

�M − A�2
F , s.t. rank(A) = p (5)

is given by the rank-p approximation (truncated SVD) of M:
Mp = �p

i=1 σi ui v�
i , and we have

min
A∈M

�M − A�2
F = �M − Mp�2

F =
R�

j=p+1

σ 2
j (6)

C. Existing Completion Methods With Rank Estimation

Rank estimation is important for matrix completion meth-
ods requiring a rank a priori [36], [60]. The state-of-the-art
matrix completion methods with automatic rank estimation are
LMaFit [35], Optspace [39], [40], [46], MaCBetH [43], and
GeomPursuit [44].

1) LMaFit: Based on the low-rank matrix decomposition
model (3): minZ,U,V �Z − UV��2

F s.t. P�(Z) = P�(M),
LMaFit [35] is proposed to heuristically estimate a rank
starting from an over estimated rank or under estimated
rank (initially higher or lower than the true rank) for matrix
completion. Moreover, LMaFit only requires solving a linear
least squares problem per iteration instead of an SVD and
integrates an efficient nonlinear successive over relaxation
scheme to accelerate the convergence.

2) OptSpace: Keshavan et al. [46] propose OptSpace with
another matrix decomposition form (SVD form)

min
U,�,V

�X − U�V��2
F s.t. P�(X) = P�(M) (7)

where the factor matrices U and V have orthogonal columns
and � is a diagonal matrix. OptSpace consists of three
steps [40], [46]. First, it trims the observed matrix P�(M)
by setting to zero all rows (respectively, columns) with more
observed entries than twice the average number of observed
entries per row (respectively, per column). Second, it computes
the best rank-R approximation of the trimmed matrix via
sparse SVD, where the rank R is estimated as the singular
value index if the ratio between two consecutive singular
values is minimum [40]. Third, it minimizes the reconstruc-
tion error via a special gradient descent method over the

Grassmann manifold. Besides, the authors further provide the
performance guarantee for OptSpace under moderate incoher-
ence condition [39].

3) MaCBetH: Recently, Saade et al. [43] propose MaCBetH
to improve OptSpace by replacing the first two steps with a
different spectral procedure that detects a rank and provide
a better initialization for the approximation minimization.
In MaCBetH, the rank is estimated as the number of negative
eigenvalues of the Bethe Hessian matrix, and the correspond-
ing eigenvectors are used as initial conditions for minimizing
the difference between the predicted matrix and the observed
entries [43].

4) GeomPursuit: Another state-of-the-art algorithm,
GeomPursuit [44], combines a greedy outer iteration that
increases the rank with a step-size l with a smooth Riemannian
algorithm LRGeomCG [47] that optimizes the cost function
on a fixed-rank manifold. In other words, LRGeomCG needs
a fixed rank as input, while GeomPursuit can estimate the
rank via Greedy rank updates. Based on the empirical studies,
however, we found that GeomPursuit cannot obtain exact
true ranks though it improves the recovery performance of
LRGeomCG. Moreover, it is sensitive to the step-size l and
becomes much slower for larger matrices.

On the other hand, FBCP [61] is one of recent tensor com-
pletion methods which can automatically determine the rank
of an incomplete tensor (a matrix is a second-order tensor),
where the authors formulate CANDECOMP/PARAFAC (CP)
decomposition [62], [63] using a hierarchical probabilistic
model and employ a fully Bayesian treatment for automatic
rank estimation. Our rank-one approximation model (10)
(to be presented in Section III) can be considered as the matrix
case of CP decomposition. Here, we degenerate FBCP to
matrix case to compare with ours and other existing methods.

D. Existing Rank-One Matrix Completion Methods

Given a matrix Z ∈ R
I1×I2 , it can be written as a linear

combination of rank-one matrices by extending the atom
decomposition [64] to matrix case [48], [50], [52]

Z = Y(θ) =
�

i∈I
θi Yi (8)

where {Yi , i ∈ I} is the set of rank-one matri-
ces with �Yi�F = 1, and θ is the weight vector:
θ = [θ1, . . . , θi , . . . , θ|I|]�. Here, the weight vector θ includes
infinite number of weights [50].

Based on the model (8), Wang et al. [50], [51] reformulate
the matrix completion problem as (9), and propose rank-one
matrix pursuit (R1MP)

min
θ

�P�(Y(θ) − M)�2
F s.t. �θ�0 ≤ c (9)

where c is an integer and �θ�0 denotes the cardinality of
the number of nonzero elements of θ . R1MP alternatively
constructs rank-one basis matrices and learns weights of the
bases by orthogonal matching pursuit method. R1MP can
efficiently obtain better results given a rank higher than the
true rank of the original (complete) matrix. In other words,
R1MP cannot automatically estimate the rank of an incomplete
matrix and does not pursue a low-rank approximation.



SHI et al.: RANK-ONE MATRIX COMPLETION WITH AUTOMATIC RANK ESTIMATION VIA L1-NORM REGULARIZATION 4747

III. PROPOSED METHODS

We can represent any matrix Z ∈ R
I1×I2 as the weighted

summation of R factorized rank-one matrices

Z =
R�

r=1

wr ur v�
r = Udiag(w)V�

s.t. �ur�2 = �vr�2 = 1, for r = 1, . . . , R (10)

where the weight vector w = [w1, . . . , wr , . . . , wR]�, U ∈
R

I1×R = {ur }R
r=1, V ∈ R

I2×R = {vr }R
r=1, and R(R <

min(I1, I2)) is the rank of Z.
Remark 1: This model (10) is different from the model (8)

used in [50] and [52]: the number of weights (analogous to
singular values) of (10) is finite and should be small (low
rank), and we represent each rank-one matrix in a factorization
form. Besides, our model (10) is similar to the SVD form (used
in OptSpace [46]) but the columns of the factor matrices
U and V of our model are not enforced to be orthogonal.
In addition, our rank-one matrix decomposition can also be
considered as the matrix case of CP decomposition.

Next, we present R1MC and develop our methods L1MC
and L1MC-RF progressively.

A. Rank-One Matrix Completion Given True Rank

Based on the rank-one approximation model (10), given a
low-rank matrix M ∈ R

I1×I2 with partially observed entries
in �, i.e., P�(M), we reformulate the matrix completion
problem as

min
X,Z

1

2
�X − Z�2

F

s.t. Z =
R�

r=1

wr ur v�
r , P�(X) = P�(M),

�ur �2 = �vr�2 = 1 for r = 1, . . . , R (11)

where Z is the summation of R rank-one matrices. Here,
we assume the true rank R is known, and we can minimize
the reconstruction error via least squares to predict the missing
entries. We summarize this R1MC in Algorithm 1.

Algorithm 1 Rank-One Matrix Completion (R1MC)
1: Input: Incomplete matrix P�(M), index matrix �, given

rank R, maximum iterations K , and stopping tolerance tol.
2: Initialization: P�(X) = P�(M), P�c (X) = 0, Z =

zeros(I1, I2).
3: for k = 1, . . . , K do
4: Compute the rank-R approximation of X: [U0 �0 V0]=

svd(X), U0 = {ur }R
r=1 ∈ R

I1×R,�0 ∈ R
R×R, V0 =

{vr}R
r=1 ∈ R

I2×R .
5: Set Z = U0�0V�

0 .
6: Update the missing entries by: P�c(X) = P�c (Z).
7: If �P�(X − Z)�F /�P�(X)�F < tol or �Xk+1 −

Xk�F/�Xk+1�F < tol, break; otherwise, continue.
8: end for
9: output: Z.

Remark 2: R1MC shares the same spirit as iterative hard
thresholding (IHT) [54], [65] and singular value projec-
tion (SVP) [32], where the SVD of the target matrix is
truncated by keeping the top R singular values and asso-
ciated singular vectors. On the other hand, R1MC requires
less parameter tuning, e.g., no step-size parameter required
in [32], [54], and [65], so it is simpler to implement and use.
Different from the convex completion methods such as [1]
which relax the rank function via nuclear norm using soft SVT,
R1MC is a nonconvex method and obtains a low-rank solution
using hard SVT. Unlike the methods in [27] which optimize the
underlying matrix in a bilateral factorization form, the matrix
is represented as a set of rank-one matrices in R1MC.

Remark 3: If M (with rank R) obeys the incoherence
property and observes enough randomly sampled entries [1],
R1MC can exactly recover the missing entries with high
probability. The theoretical guarantees of IHT (R1MC) is first
conjectured in [32], and recently [57] theoretically improves
the sampling bound for IHT (R1MC): R1MC converges to the
exact low-rank solution when the number of known entries is
more than O(N R2 log2(N)), N = max (I1, I2). Furthermore,
Wei et al. [57] demonstrate that this sampling complexity can
achieve the optimal one O(N R) empirically. In other words,
for an incomplete matrix X with enough observed entries from
M [i.e., P�(X) = P�(M)], the missing entries of M can be
exactly recovered. In R1MC, we predict the missing entries
by iteratively updating: P�c(X) = P�c (Z) and computing the
rank-R approximation of X by the truncated SVD of X, and
finally recover the matrix exactly under the above assumptions.
On the other hand, the unique optimal rank-R approximation
of M is given by the truncated SVD of M according to the
Eckart–Young–Mirsky theorem (Theorem 1).

In this way, assuming the true rank R is known, R1MC
can achieve the optimal solution for matrix completion under
the appropriate conditions. If the input rank is higher (over
estimate) or lower (under estimate) than the true rank, it may
result in poor recovery performance. Therefore, it is important
to determine a good rank value (true rank) for low-rank matrix
decomposition for matrix completion [36].

B. L1-Norm Regularized Rank-One Matrix Completion
With Automatic Rank Estimation

To address the important rank estimation issue, we impose
L1-norm regularization on the weight vector w and reformu-
late the R1MC model (11) as follows:

min
X,w,{ur ,vr }R

r=1,R
μ�w�1 + 1

2

�
�
�
�
�

X −
R�

r=1

wr ur v�
r

�
�
�
�
�

2

F
s.t. P�(X) = P�(M)

�ur �2 = �vr�2 = 1, for r = 1, . . . , R (12)

where μ is the regularization parameter and R is the rank to
be estimated. By simultaneously minimizing the L1-norm reg-
ularization and the reconstruction error, we can automatically
determine the rank of an incomplete matrix and simultaneously
predict the missing entries. We name this new L1-norm
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regularized R1MC method with automatic rank estimation as
L1MC.

Remark 4: Note that the weights in model (11) are analo-
gous to the singular values. L1-norm regularization makes the
weight vector sparse and leads to a low-rank solution.

Derivation of L1MC via BCD: we employ the block
coordinate descent (BCD) method [66] for optimization.
The BCD method is also known as the alternating
minimization method or nonlinear (block) Gauss–
Seidel scheme. We divide the target variables into R + 1
blocks: {{w1, u1, v1}, . . . , {wr , ur , vr }, . . . , {wR, uR, vR}, X}.
We optimize a group (block) of variables while fixing the
other groups (blocks), and update one variable while fixing
the other variables in each group. After finishing the update
of these R + 1 blocks variables, we finally determine the
rank.

The Lagrangian function with respect to the r th block
{wr , ur , vr } is

Lwr ,ur vr = μ|wr | + 1

2

�
�Xr − wr ur v�

r

�
�2

F

s.t. Xr = X −
r−1�

q=1

wq uqv�
q

P�(X) = P�(M), �ur�2 = �vr�2 = 1 (13)

where Xr is the residual of the approximation.
1) Update ur , vr : The function (13) with respect to ur is

Lur = 1

2

�
�Xr − wr ur v�

r

�
�2

F . (14)

Then, we set the partial derivative of Lur with respect to ur

to zero, and get

w2
r ur − wr Xr vr = 0 ⇒ ur

(k+1) = Xk
r vk

r

wk
r

. (15)

We normalize u(k+1)
r = (u(k+1)

r /�u(k+1)
r �2). Note that we only

update the blocks with nonzero weights (e.g., wk
r �= 0).

Similarly, we can update vr
(k+1) by

vr
(k+1) = X�

r
kur

(k+1)

wk
r

(16)

and normalize v(k+1)
r = (v(k+1)

r /�v(k+1)
r �2).

2) Update wr : The function (13) with respect to wr is

Lwr = μ|wr | + 1

2

�
�Xr − wr ur v�

r

�
�2

F . (17)

Then we set the partial derivative of Lwr with respect to wr

to zero

∂Lwr

∂wr
= μ|wr |

∂wr
+ �

wr − trace
�
vr u�

r Xr
��

= μ|wr |
∂wr

+ wr − �
Xr , vr u�

r

	 = 0. (18)

According to (18), we know wr = �Xr , vr u�
r �−μ (|wr |/∂wr ).

Based on the soft thresholding algorithm [67] for L1-norm
regularization, we update w

(k+1)
r by

w(k+1)
r = shrinkμ

��
Xk

r , vr
(k+1)u�

r
(k+1)	�

(19)

where shrink is the soft thresholding operator [18], [67]

shrinkμ(a) =

⎧
⎪⎨

⎪⎩

a − μ (a > μ)

0 (|a| ≤ μ)

a + μ (a < −μ).

(20)

3) Update X: The function (12) with respect to X is

min
X

1

2
�X −

R�

r=1

wr ur v�
r �2

F

s.t. P�(X) = P�(M), �ur�2 = �vr�2 = 1. (21)

By deriving simply the Karush–Kuhn–Tucker (KKT)
conditions for (21) [68], we can update X(k+1) by
X(k+1) = P�(X) + P�c (Z(k+1)), where Z(k+1) =
�R

r=1 w
(k+1)
r u(k+1)

r v�
r

(k+1)
.

4) Estimate the Rank R: After iteratively updating all the
above variables till convergence or reaching the maximum
iterations, we finally determine a rank. By checking the weight
vector w, we only keep the weights larger than a thresh-
old (we set the threshold at 10−3 × Sampling Ratio (SR) ×
Total Weight), i.e., removing the zero and small weights which
account for a very small proportion of total weights. Finally,
the number of the remaining weights in w is the estimated
rank and we keep the corresponding factors.

We summarize this new matrix completion method with
automatic rank estimation, L1MC, in Algorithm 2. In addition,
since we need an initial rank for optimizing our L1MC
objective function (12), we denote R̂ as the initial rank for
rank estimation.

Remark 5: In L1MC, we set the threshold in rank esti-
mation at 10−3 × SR × Total Weight, i.e., removing small
weights (analogous to singular values) less than 0.01% to
0.09% of total weights for data with SR = 10% − 90%
observed entries, respectively. This setting follows the similar
idea in [69], where the low-rank matrix is truncated by
removing small singular values less than 1% of the L2-norm of
the vector of singular values. Furthermore, based on empirical
studies, this threshold can be loose to be an ideal value 0 on
the synthetic matrices (and real data with SR > 30%). By only
removing small singular values which account for a very small
proportion of total singular values, we keep most information
of the target matrix. This threshold for rank estimation can
be fixed with no need of tuning. It works well in all tested
synthetic and real data although we do not have theoretical
guarantee for it yet.

C. L1MC With Refinement

L1MC can automatically estimate the rank and
simultaneously predict the missing entries. However, the
L1-norm regularization of model (12) restricts L1MC to
directly optimize the factors and weights of rank-one approx-
imation. To improve the recovery performance, we propose
a refinement strategy. We refine the recovery results by
directly minimizing the reconstruction error without the
L1-norm regularization after rank estimation, i.e., we first
determine the rank of an incomplete matrix by L1MC, and
then we remove the L1-norm regularizer and further improve
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Algorithm 2 L1-Norm Regularized Rank-One Matrix
Completion With Automatic Rank Estimation
1: Input: Incomplete matrix P�(M), index matrix �,

regularization parameter μ, initial rank R̂, maximum iter-
ations K , and stopping tolerance tol.

2: Initialization: Initialize {w = {wr }R̂
r=1, {ur ∈ R

I1 , vr ∈
R

I2 , �ur �2 = �vr�2 = 1}R̂
r=1} randomly (normal dis-

tribution); Set Z = zeros(I1, I2), P�(X) = P�(M),
P�c(X) = 0.

3: for k = 1, . . . , K do
4: Xr = X.
5: for r = 1, . . . , R̂ do
6: if wr �= 0 then
7: Update ur and vr by (15) and (16) respectively.
8: Update wr by (19).
9: Xr = Xr − wr ur v�

r .
10: end if
11: end for
12: Update X: Update Z = X − Xr and the missing entries

by: P�c (X) = P�c (Z).
13: If �P�(X − Z)�F /�P�(X)�F < tol or �Xk+1 −

Xk�F/�Xk+1�F < tol, break; otherwise, continue.
14: end for
15: Rank Estimation: Only keep the wr if wr > (10−3 ×

Sampling Ratio × sum(w)), and then R∗ = length(w),
and keep corresponding {ur }R∗

r=1 and {vr }R∗
r=1.

16: output: R∗, Z.

Algorithm 3 L1MC With Refinement
1: Input: Incomplete matrix P�(M), index matrix �,

regularization parameter μ, initial rank R̂, maximum iter-
ations K , and stopping tolerance tol.

2: Step 1: Obtain R∗ by Algorithm 2 L1MC.
3: Step 2: Feed the estimated rank R∗ into Algorithm 1

R1MC to further optimize factors and weights.
4: output: R∗, Z.

the recovery accuracy. Thus, after the rank estimation step,
we reformulate the L1MC model (12) as

min
X,{ur ,wr ,vr }R∗

r=1

1

2

�
�X −

R∗
�

r=1

wr ur v�
r

�
�2

F

s.t. P�(X) = P�(M)

�ur�2 = �vr�2 = 1, for r = 1, . . . , R∗. (22)

The formulation (22) is equivalent to the R1MC model (11).
Therefore, we can directly optimize the factors and weights by
R1MC to further refine the recovery results. Note that we also
can further refine the recovery results of L1MC by other fixed-
rank completion methods such as SVP [32], IHT [54], [65],
LRGeomCG [47], and so forth, while R1MC is simpler to
implement and use. We denote this integrated solution as
L1MC-RF, summarized in Algorithm 3.

In the following section, we evaluate the rank estimation
and recovery accuracy of the proposed methods on the syn-
thetic matrices and real-world images.

Fig. 1. Example of low-rank image. (a) Original Lenna image. (b) First
200 singular values of Lenna.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed methods
from three aspects: 1) parameter sensitivity and convergence;
2) importance of estimating the true rank; and 3) accuracy
of recovery and rank estimation over various SRs given
incomplete matrices. We sample 10%–90% entries from each
matrix uniformly at random for training and use “SR” for this
sampling ratio (training ratio). We implemented our methods
in MATLAB and all experiments were performed on a PC
[Intel Xeon(R) 3.40 GHz, 64 GB memory].

A. Experimental Settings

1) Data: Following [17], [19], [35], [43], we generate the
synthetic matrices: M ∈ R

I1×I2 with rank R from two random
matrices M1 ∈ R

I1×R and M2 ∈ R
I2×R with independent

identically distributed standard Gaussian entries, i.e., M =
M1M�

2 . In this paper, we report the results of five synthetic
matrices: {500 × 500(R = 5), 1000 × 1000(R = 25),
1000 × 1000(R = 50), 2000 × 2000(R = 50), 2000 ×
2000(R = 100)}.

Moreover, the minimum SRs for guaranteeing the exact
recovery of these five matrices are (O(N R log(N))/(I1 × I2)):
{O(6.21%), O(17.27%), O(34.54%), O(19%), O(38%)},
respectively, using nuclear norm minimization-based methods
according to [13] (decomposition-based methods may need
more observations [27]).

Real Data1: We also evaluate our methods on seven
real-world images: [Lenna (512 × 512), Boat (512 × 512),
Baboon (512×512), Peppers (512×512), Man (1024×1024),
Airplane (1024 × 1024), Airport (1024 × 1024)]. These
natural images are approximately low rank by observing
their singular values, as shown in Fig. 1. Following [35]
where the authors truncated the SVD of the Boat image
to obtain the rank-40 image, we examined the singular
value of these images and truncated their SVD to get
the images with exact low ranks: [29 (Lenna), 40 (Boat),
24 (Baboon), 30 (Peppers), 27 (Man), 23 (Airplane),
22 (Airport)], as shown in Fig. 2. Similarly, the minimum
SRs for guaranteeing the exact recovery of these low-rank
images are: [O(35.33%),O(48.74%),O(29.24%),O(36.55%),
O(18.28%), O(15.57%), O(14.89%)], respectively, using
nuclear norm minimization-based methods.

1Boat image is from http://lmafit.blogs.rice.edu/ and other images are
available at http://sipi.usc.edu/database/database.php?volume=misc&image.
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Fig. 2. Seven real images used for experiments. (a) Original images with
approximate low ranks. (b) Truncated images with exact low ranks.

2) Compared Methods: We compare the proposed methods
against the following 10 state-of-the-art matrix completion
methods.

1) Four nuclear norm minimization-based methods:
SVT2 [15], APGL3 [17], FPCA4 [19], and
AIS-Impute5 [21].

2) Three low-rank matrix decomposition-based meth-
ods with automatic rank estimation: LMaFit6 [35],
OptSpace7 [39], and MaCBetH8 [43].

3) Two Riemannian descent methods: GeomPursuit
[44] and LRGeomCG9 [47]. GeomPursuit combines
LRGeomCG with a rank-adaptive strategy.

4) One tensor completion method with automatic rank
estimation: FBCP10 [61] degenerated to 2-D.

We also tested R1MP [50], [51]. In this set of experi-
ments, however, R1MP performs poorly compared with these
methods, so its results are not reported here.

3) Evaluation Metrics: Given an incomplete matrix
P�(X) = P�(M) (input), and the recovered matrix Z (output),
we measure the recovery performance with ground truth M
(with rank R) using the following metrics:

1) Relative square error (RSE) [70]: �M − Z�F /�M�F ,
which refers to the reconstruction error. We use RSE to
measure the recovery accuracy and consider the matrix
M successfully recovered if RSE < 10−3 [1], [12], [19].

2) RSE on Training (RSEtrain) [15], [35]: �P�

(X − Z)�F /�P�(X)�F , which is used for convergence
study and stopping criterion.

3) Relative error of weight vector (Errw): �s − w�2/�s�2,
where s is the vector that consists of all singular values
of the ground truth M.

4) Estimated rank (Est. R).
5) Time cost.

4) Parameter Settings: In this paper, we set the maximum
iterations K = 500 for all methods based on our preliminary
studies, and set the regularization parameter μ = 50 and the
initial rank R̂ = round(1/8 × min (I1, I2)) for L1MC-RF by

2http://www.math.ust.hk/ jfcai/
3http://www.math.nus.edu.sg/ mattohkc/NNLS.html
4http://www1.se.cuhk.edu.hk/ sqma/softwares.html
5https://github.com/quanmingyao/AIS-impute
6http://lmafit.blogs.rice.edu/
7http://web.engr.illinois.edu/ swoh/software/optspace/
8 https://github.com/alaa-saade/macbeth_matlab
9http://www.unige.ch/math/vandereycken/matrix_completion.html
10http://www.bsp.brain.riken.jp/ qibin/homepage/Software.html

default (to be studied in Section IV-B). We use two stopping
criteria: RSEtrain and �Xk+1 − Xk�F/�Xk+1�F [19], [71], and
terminate the proposed methods if one of stopping criteria
is met. Since we found that tol = 1e − 14 is small enough
to obtain a very good recoverability and rank estimation,
we set the stopping tolerance tol = 1e − 14 for all methods.
Other parameters of the compared methods have followed the
original papers. We repeat the runs 10 times and report the
average results.

B. Parameter Sensitivity

First, we examine the parameter sensitivity of our methods,
including the regularization parameter μ and the initial rank R̂
used for rank estimation.

1) Sensitivity of Regularization Parameter μ: We evaluate
L1MC-RF with parameter μ ∈ [5 : 5 : 100] and μ ∈
[5 : 5 : 200] on two synthetic matrices: 500×500 (R = 5) and
1000 × 1000 (R = 50), respectively. Here we set the initial
rank R̂ = {50, 100} for these two matrices, respectively.

As seen in Fig. 3, it is clear that L1MC-RF is not sensitive
to the values of parameter μ: with different values of μ,
L1MC-RF performs well on both rank estimation and matrix
completion on the whole. Specifically, there are two spe-
cial scenarios: 1) if we only observe very few entries
(e.g., SR = 10%) from a smaller matrix with lower rank
(e.g., 500 × 500, R = 5), a larger μ (e.g., μ = 80)
makes the L1-norm regularization dominate the whole objec-
tive function (12) and results in zero rank and fail-
ure of recovery, as observed in Fig. 3(a) and (c) and
2) Fig. 3(b) and (d) shows that we may need to choose a
good μ for L1MC-RF to recover a larger matrix with higher
rank (e.g., 1000 × 1000, R = 50) only if the observations are
much less than the sampling bound (e.g., SR < 30%), where
it is difficult to recover the matrix exactly. On the other hand,
a smaller μ (e.g., μ = 5) costs L1MC-RF more time as shown
in Fig. 4(a) and (b).

In short, we do not need to tune the parameter μ to estimate
a good rank and achieve a good recovery result. For simplicity,
we fix μ = 50 for the proposed methods by default.

2) Sensitivity of Parameter R̂ (Initial Rank): We test on
two synthetic matrices 500 × 500(R = 5) and 1000 × 1000
(R = 50) via L1MC-RF with initial rank R̂ ∈ [5 : 10 : 245]
and R̂ ∈ [10 : 20 : 490], respectively.

As observed in Fig. 5, it is obvious that L1MC-RF is also
not sensitive to the values of the initial rank R̂: with different
values of R̂, L1MC-RF has good stable performance in rank
estimation and matrix completion almost in all cases. Besides,
a higher initial rank R̂ increases computational cost, as shown
in Fig. 4(c) and (d). We set the initial rank R̂ = round
(1/8×min (I1, I2)) by default under the low-rank assumption.

C. Convergence Study

We demonstrate the convergence of our methods in Fig. 6
for recovering the synthetic matrix 1000 × 1000(R = 50).
Here, we set tol = eps (machine precision) to allow
L1MC-RF to pursue the best result until reaching the max-
imum iterations. Since L1MC-RF consists of L1MC (Step 1
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Fig. 3. Estimated ranks and RSE of recovering two synthetic matrices via L1MC-RF with (a) and (c) μ ∈ [5 : 5 : 100] and (b) and (d) μ ∈ [5 : 5 : 200],
respectively.

Fig. 4. Time costs of recovering two synthetic matrices via L1MC-RF with (a) μ ∈ [5 : 5 : 100] and (b) μ ∈ [5 : 5 : 200], respectively; via L1MC-RF with
initial rank (c) R̂ ∈ [5 : 10 : 245] and (d) R̂ ∈ [10 : 20 : 490], respectively.

Fig. 5. Estimated ranks and RSE of recovering two synthetic matrices via L1MC-RF with initial rank (a) and (c) R̂ ∈ [5 : 10 : 245] and (b) and (d)
R̂ ∈ [10 : 20 : 490], respectively.

Fig. 6. Convergence curves of recovering the synthetic matrix 1000 × 1000 (R = 50) with 10% − 90% observations via L1MC-RF. (a) RSEtrain for
L1MC (Step 1 of L1MC-RF). (b) RSEtrain for R1MC (Step 2 of L1MC-RF). (c) Rank estimation by L1MC.

of L1MC-RF) and R1MC (Step 2 of L1MC-RF), we study
their convergence in terms of training error as shown in
Fig. 6(a) and (b), respectively.

L1MC converges within 50 iterations as observed
from Fig. 6(a). Fig. 6(b) shows that R1MC converges
within 200 iterations for the easy problems (e.g., SR > 30%),
while it needs more iterations to achieve convergence if the
problem is harder (e.g., SR = 30%). For the two cases of

SR = {10%, 20%}, since the SRs are much less than the
sampling bound for this synthetic matrix, L1MC-RF (R1MC)
fails to find the solution within 1000 iterations.

Besides, Fig. 6(c) shows that L1MC successfully determines
the true rank within 50 iterations when observing enough
entries (SR ≥ 30%). In short, L1MC converges faster than
R1MC and we set the maximum iterations K = 500 for the
proposed methods by default.
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Fig. 7. RSE of recovering 500 × 500(R = 5) and Lenna image (R = 29) via completion methods as given manually fixed rank in (a) and (c), and estimated
rank by L1MC with the different values of μ in (b) and (d).

Fig. 8. Time costs of recovering 500 × 500(R = 5) and Lenna image (R = 29) via completion methods as given manually fixed rank in (a) and (c), and
estimated rank by L1MC with the different values of μ in (b) and (d).

D. Effects of Rank Value on Matrix Completion Performance
Here, we present studies that investigate the effects of rank

estimation accuracy on matrix completion performance of
four methods: R1MC, LMaFit, MaCBetH, and LRGeomCG.
Besides, we also studied OptSpace: it can achieve good recov-
ery results given true or higher than true ranks on synthetic
matrices while it fails to recover real-world image even given
true ranks. Here we dot not report its results for simplicity.

We compare their matrix completion performance with two
ways of rank determination: 1) setting the rank manually and
2) setting μ in L1MC to estimate the rank. We show the
following results of recovering both synthetic and real matrices
with SR = {30%, 50%, 70%} in Figs. 7 and 8.

1) As seen in Fig. 7(a) and (c), the recovery perfor-
mance (in RSE) of all four methods is highly sensitive
to the manually set rank value. Even a slight error in the
rank value can lead to serious performance degradation.
Only given the true ranks, all the four methods can
achieve their best completion results in all cases.

2) In contrast, Fig. 7(b) and (d) shows the corresponding
results with L1MC rank estimation by setting μ to a
range of values. We can see a wide range of μ values
lead to their best performance of all methods. Such range
of μ is wider for data with a larger rank (or dimension)
as seen in Fig. 7(d) [also refers to Fig. 3(b) and (d)].

3) Fig. 8(a) and (c) shows that these four methods cost
less time the given true ranks in most cases, com-
pared to the cases of given lower/higher than true
ranks. With estimated ranks by L1MC with different
values of μ, the computational costs are stable with
respect to different μ on the whole, as observed in
Fig. 8(b) and (d).

This paper shows the advantage of L1MC in automatic
rank estimation, compared to manually fixing the rank. L1MC

greatly simplifies the parameter tuning, where a simple setting
of μ from a wide range of feasible values works for a
wide range of methods and data. This not only improves
the recovery performance but also reduces the time cost in
parameter tuning.

Moreover, these results demonstrate the importance of esti-
mating the true rank for matrix completion methods requiring
a rank a priori. In the following, we will compare the recovery
performance and rank estimation of our methods against the
competing algorithms in detail.

E. Completion Performance and Rank
Estimation Comparison

We compare recovery accuracy (RSE), time cost (seconds),
and rank estimation of the proposed methods against the night
existing competing algorithms on the five synthetic matrices
and seven real-world images. We tested all the methods on
these matrices with 10%–90% observed entries, and report
here the results of SR = {30%, 50%, 70%} (total 36 cases)
in Tables I and II for simplicity. We use “**” and “–” to
indicate that the method diverges (i.e., SVT) and does not
terminate in 48 hours (i.e., FBCP) in some cases, respectively.

1) Recovery Accuracy: We report the recovery accu-
racy (RSE) and time cost in Table I, where we highlight
the best results (smallest RSE) in bold fonts and the second
best (second smallest RSE) results in underline in each row
for easy comparison. In Table I, we have the following
observations:

In terms of recovery accuracy on the synthetic matrices
(total 15 cases), L1MC-RF consistently recovers these matrices
successfully (RSE < 10−3) and obtains very small reconstruc-
tion errors of order 10−14 in all 15 cases. In fact, L1MC-RF
can achieve better results with smaller reconstruction errors
of order 10−15 if we relax the tol = 1e − 15. In addition,
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TABLE I

RECOVERY ACCURACY (RSE) AND TIME COST (SECONDS) OF DIFFERENT COMPLETION METHODS ON SYNTHETIC AND REAL DATA
(SR = Sample Ratio = 30%, 50%, 70%). WE HIGHLIGHT THE BEST RESULTS IN BOLD FONTS AND SECOND BEST RESULTS IN UNDERLINE

OptSpace and MaCBetH are among the top two recovery
results on three small synthetic matrices (500 ×500 with R =
5, 1000×1000 with R = 25, and 1000×1000 with R = 50),
though L1MC-RF gives results of one order lower only.
LMaFit obtains similar results as L1MC-RF on these smaller
matrices. However, LMaFit, OptSpace, and MaCBetH do not
keep their good performance on the larger matrices (2000 ×
2000, R = {50, 100}), where L1MC-RF is still the winner
and outperforms the second best (GeomPursuit and FBCP)
by several orders of magnitude. Moreover, on these large
matrices, GeomPursuit costs more than 10 h in a few cases
and FBCP fails to recover them within 48 h in most cases.

On the real-world images (total 21 cases), only L1MC-RF
consistently achieves the top two results in all cases except
one (Boat image with SR = 30%), where GeomPursuit obtains
the best result. GeomPursuit and FBCP achieve the second
best results following L1MC-RF in 16 out of 21 cases, while
they are more time consuming (about 10 and 45 times slower

than L1MC-RF on average, respectively). Moreover, FBCP
needs more memory. OptSpace and MaCBetH fail to recover
these real-world images and estimate wrong ranks (as shown
in Table II). LMaFit also does not work well in the 21 cases
except one (Airplane image with 70% observations) where it
achieves the smallest reconstruction error. In addition, SVT,
APGL, and AIS-Impute take the second place in a few cases,
while SVT often fails to converge if the observed entries are
fewer (e.g., SR ≤ 30%).

In a nutshell, L1MC-RF has shown good recoverability: it
outperforms the three decomposition-based methods as well as
GeomPursuit and FBCP on average, and also achieves smaller
reconstruction errors than the four nuclear norm minimization-
based methods in all cases. For illustration, we show two
examples of recovering the Boat and Lenna images with 50%
observations in Fig. 9.

2) Time Cost: In terms of computational cost, L1MC-RF
is not the fastest while our focus here is accuracy and our
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TABLE II

ESTIMATED RANK (EST. R) AND RELATIVE ERROR OF SINGULAR VALUES OF DIFFERENT METHODS ON SYNTHETIC
AND REAL DATA. WE HIGHLIGHT THE CORRECT ESTIMATED RANK IN BOLD AND ITALIC FONTS,

SMALLEST ERRw RESULTS IN BOLD FONTS AND SECOND SMALLEST ERRw IN UNDERLINE

Fig. 9. Recovery results of the proposed L1MC, L1MC-RF, and the existing nine methods on Lenna (R = 29) and Boat (R = 40) image with 50%
observations (best viewed on screen).

implementation is not optimized for efficiency. It is worth
noting that AIS-Impute is the fastest algorithm due to its
C-mex programming. LMaFit and MaCBetH are faster than
L1MC-RF since they use an efficient nonlinear successive
over relaxation scheme and employ the minFunc software
for acceleration, respectively. On the other hand, FBCP is
the slowest among these completion methods. GeomPursuit is
much slower than L1MC-RF in each case although it takes
the most second best results, i.e., L1MC-RF is more than

89 times and 10 times faster than GeomPursuit on average on
the synthetic and real matrices, respectively. Moreover, SVT
and OptSpace are also slower than L1MC-RF especially in
some cases (e.g., on 1000 × 1000 with R = 50), which is
probably due to their heavy SVD computation.

3) Rank Estimation: We also report the corresponding esti-
mated rank (Est.R) and relative error of singular values (Errw)
in Table II, where we highlighted the correct estimated rank in
bold and italic fonts, smallest Errw in bold fonts, and second
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TABLE III

COMPARISON RESULTS OF RECOVERING SYNTHETIC MATRIX (R = 20)
WITH MODERATE EXPONENTIALLY DECAYING SINGULAR

VALUES VIA GEOMPURSUIT AND L1MC-RF

smallest Errw in underline in each row. For the methods
without the rank estimation step, we compute the estimated
ranks by SVD of the recovered matrices.

In Table II, we observe that: L1MC-RF (L1MC) success-
fully determines the true ranks of the given incomplete images
in all 36 cases excepting one (Boat image with SR = 30%),
where L1MC does not have enough observations. GeomPursuit
performs best with the smallest Errw in this case, which results
in the best recovery result. L1MC can determine the true rank,
while its weight vector (singular values) is far from the ground
truth (Errw > 10−3), resulting in poor recovery performance.
This demonstrates the significance of our refinement strategy
in L1MC-RF: with the refinement strategy, L1MC-RF further
refines the factors and weights via R1MC to pursue an optimal
solution for matrix completion. In other words, L1MC-RF not
only can automatically estimate the true rank exactly but also
obtain the true singular values. On the other hand, though
GeomPursuit cannot obtain exact true ranks, it consistently
learns the singular values with small errors (Errw of order
less than 10−7), which leads to good recovery performance.
Moreover, FBCP does not always successfully determine the
true rank but it also obtains the singular values with very small
errors, which helps it achieve the second best recovery results
in 7 out of 36 cases.

4) Limitation on Matrices With Exponentially Decaying
Singular Values: Although L1MC-RF can outperform others
in results presented so far, it has limitation on matrices
with exponentially decaying singular values, which can be
found in certain real-world applications [72]. Such singular
value distribution makes truncation in L1MC-RF more difficult
while GeomPursuit performs much better by design. We gen-
erated three types of such matrices with slow, moderate,
and fast exponentially decaying singular values following
the setting in [44]. The rank was fixed at 20. Table III
shows that GeomPursuit gives much better results than
L1MC-RF on the moderate exponentially decaying scenario.
The experiments on the other two (slow and fast) scenarios
show similar results. An interesting future work could be to
extend L1MC-RF to handle such cases better, e.g., with more
adaptive thresholding or ideas in GeomPursuit.

F. Summary of Experimental Results

The experimental results are summarized below:
1) The proposed L1MC -RF is simple to implement and not

sensitive to its parameters (the regularization parameter
μ and the initial rank R̂). It has fast convergence in rank
estimation and good efficiency.

2) Estimating the true rank is important for matrix com-
pletion methods requiring a prespecified rank to achieve
good results. L1MC-RF has good stable performance in
both matrix completion and rank estimation. L1MC-RF
consistently recovers all the synthetic matrices exactly
with very small reconstruction errors and efficiently
achieves the top two results almost in all cases on the
real-world images.

3) The four nuclear norm minimization-based meth-
ods (SVT, APGL, FPCA, and AIS-Impute) successfully
recover the matrices (RSE < 10−3) in about half of
the total cases but obtain much lower accuracies than
L1MC-RF on average.

4) The three low-rank matrix decomposition-based meth-
ods (LMaFit, OptSpace, and MaCBetH) have shown
their good recoverability on most synthetic matrices
while fail to estimate the true ranks and predict the
missing entries on the real-world images overall. More-
over, Optspace is the slowest among the compared
decomposition-based methods (including L1MC-RF)
due to its SVD computation, which also makes SVT
slower than L1MC-RF.

5) GeomPursuit consistently recovers the matrices success-
fully and take the most second places (15 cases). It even
achieves the best result in one case where Boat image
with 70% missing entries. However, GeomPursuit can-
not estimate the exact true ranks. Besides, GeomPursuit
is also very time-consuming: it is more than 57 times
slower than L1MC-RF on the whole.

6) FBCP obtains true ranks correctly in half of the total
cases and achieves the second best recovery results
in seven cases. However, it is the slowest among the
compared methods: it is more than 64 times slower than
L1MC-RF on average and even costs more than 48 h
on large matrices (e.g., 2000 × 2000, R = 100) in most
cases.

7) Although our methods can outperform the competing
methods on the whole, it cannot obtain good results
on the matrices with exponentially decaying singular
values. In this special scenario, GeomPursuit works
much better.

V. CONCLUSION

In this paper, we have proposed a novel low-rank matrix
completion method with automatic rank estimation, based
on rank-one approximation. We have first presented R1MC
that minimizes the reconstruction error given a fixed rank to
predict the missing entries. Here, if the given rank is the true
rank of the target incomplete matrix, R1MC can achieve the
optimal solution for the matrix completion problems under
moderate conditions. We then solved the challenging rank
estimation problem by developing L1MC method that simul-
taneously minimizes the L1-norm of weight vector and the
reconstruction error. Once the rank is automatically estimated
by L1MC, we have further proposed a refinement strategy:
we remove the L1-norm regularization and then obtain the
refined results by directly optimizing the rank-one approx-
imation model (e.g., using R1MC). This whole process is
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named as L1MC-RF. With the experiments on synthetic and
real-world data, we have demonstrated that the proposed
L1MC-RF is easy to implement and not sensitive to its para-
meters. More importantly, L1MC-RF can efficiently estimate
the true rank and recover the incomplete matrix exactly under
certain conditions, which outperforms the competing methods
on the whole. Nonetheless, our methods cannot work well
on the special matrices with exponentially decaying singular
values, which will be an interesting future work.
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