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Abstract— This work addresses unsupervised partial domain
adaptation (PDA), in which classes in the target domain are
a subset of the source domain. The key challenges of PDA
are how to leverage source samples in the shared classes to
promote positive transfer and filter out the irrelevant source
samples to mitigate negative transfer. Existing PDA methods
based on adversarial DA do not consider the loss of class
discriminative representation. To this end, this article proposes a
contrastive learning-assisted alignment (CLA) approach for PDA
to jointly align distributions across domains for better adaptation
and to reweight source instances to reduce the contribution
of outlier instances. A contrastive learning-assisted conditional
alignment (CLCA) strategy is presented for distribution align-
ment. CLCA first exploits contrastive losses to discover the class
discriminative information in both domains. It then employs a
contrastive loss to match the clusters across the two domains
based on adversarial domain learning. In this respect, CLCA
attempts to reduce the domain discrepancy by matching the
class-conditional and marginal distributions. Moreover, a new
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reweighting scheme is developed to improve the quality of weights
estimation, which explores information from both the source
and the target domains. Empirical results on several benchmark
datasets demonstrate that the proposed CLA outperforms the
existing state-of-the-art PDA methods.

Index Terms— Class-conditional alignment, contrastive learn-
ing, discriminative learning, partial domain adaptation (PDA),
transfer learning.

I. INTRODUCTION

SUPERVISED learning has achieved impressive perfor-
mance in numerous practical applications, such as image

classification and object detection [1]–[3]. However, the suc-
cess of many state-of-the-art methods often relies on the
scenario that a huge amount of labeled training data is avail-
able. From the practice perspective, acquiring data labels is
expensive, time-consuming, or even unrealistic in many real-
world applications. To relax the need for abundant labeled
data, domain adaptation (DA) has emerged as an alternative
approach to leverage the useful knowledge of a related labeled
source domain to the interested target domain. In general, the
source and the target domains are not identical and exist a
discrepancy, which is a fundamental problem in DA [4], [5].

Many DA methods have been developed to combat the
domain discrepancy by minimizing the distribution of the two
domains [6], such as marginal distribution [7], conditional
distribution [8], [9], and joint distribution [10], [11]. To this
end, one type of approach aims to match different statistic
moments, e.g., maximum mean discrepancy (MMD) [5] and
correlation alignment (CORAL) [12] by mapping features to
a new space. The other kind of approach employs generative
adversarial networks (GANs) [13] to generate domain con-
fusion features. With the learned domain-invariant features,
a classifier trained on the source domain is hopefully to
generalize well to the target domain under the hypothesis
that two domains have a shared label space [14]. However,
finding a source domain that has an identical label space to
the target domain is often difficult in real-world applications.
A more general scenario is that classes in target domains are a
subset of that in source domains, referred to as partial domain
adaptation (PDA) [15].

PDA challenges standard DA methods because of the
outlier classes in the source domain. Standard DA methods

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1997-1854
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0003-3735-0672
https://orcid.org/0000-0002-6802-2463
https://orcid.org/0000-0002-4865-8026
https://orcid.org/0000-0003-4463-9538


7622 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Fig. 1. Source domain involves three classes and the target domain has two
classes. The different structures in different domains of the same class cause
inaccurate classifier and error distribution alignment literately propagation.

aligning the whole distributions between domains are likely
to force outlier classes to match the target domain. Thus,
the trained source classifier would misclassify much of the
target data, potentially triggering negative transfer. Several
PDA approaches have been developed to overcome this issue
via jointly filtering out irrelevant source data and matching dis-
tributions of shared classes across the two domains [15]–[18].
Most of them remove source-only instances by decreasing
their weights in order to down-weight their importance on
the domain alignment. Existing PDA methods often estimate
weights by the probabilities of predicted target labels [16],
the prediction of domain discriminators [15], [17], or the
reconstruction error of source data [18], and do not use the
information possessed in the target domain.

In classification problems, different classes generally pre-
serve different characteristics, and structures of the same class
in different domains are not always similar. Meanwhile, some
class discriminability representation may lose in adversarial
DA because the domain discriminator is dominated by the
eigenvectors with the largest singular [19]. Subsequently,
existing methods that align distributions across domains while
neglecting discriminability representations would result in
class distribution mismatch. Furthermore, the predicted tar-
get label distribution by using the classifier trained in the
source domain is inaccurate if the class-conditional alignment
mismatches. Under this circumstance, the source-only classes
will get higher weights if only utilize source classifier in the
reweighting scheme. In this respect, the outlier classes will be
forced to align with the target data, in turn, thus increasing
the wrong distribution alignment. For instance, as shown in
Fig. 1, the source domain contains three classes, and the target
domain involves two classes. In the ground-truth alignment,
the source triangle class is the outlier and should be removed.
In contrast, the dot and rectangle classes across the two
domains should be matched, respectively. However, due to the
complex distribution of dot class in the target domain, some
dot samples are easily labeled to the triangle by the source
classifier, and thus, progressively aligned with the triangle
class. Therefore, previous methods that ignore class discrim-
inative representation and ignore target information in the

reweighting scheme are vulnerable, especially in challenging
cases.

To alleviate the above-mentioned issues, this article presents
a contrastive learning-assisted alignment (CLA) model incor-
porating a contrastive learning-assisted class-conditional align-
ment (CLCA) and a new reweighting scheme. Similar to the
existing PDA methods, CLA aims to address fundamental
problems in PDA, e.g., filtering out source-only instances and
reducing distribution mismatch of the shared classes. On the
one hand, CLA exploits CLCA to achieve a discriminative
class-conditional matching between the two domains based on
a marginal distribution alignment to perform a joint alignment.
Contrastive learning is a learning technique that extracts
general representations of a dataset without labels [20]. Thus,
CLCA first exploits contrastive learning to preserve discrim-
inative representations from both domains. Then, it formu-
lates the contrastive representations in the target domain into
discriminative clusters, where each cluster represents a class.
After that, CLCA deploys a supervised constructive loss to
match the classes associated with the same label in both
domains. The reweighting scheme explores both the source
and target information to improve the quality of recognizing
relevant source data. Specifically, it combines the predictions
from the target cluster and the source classifier together to
estimate the weight of source samples.

To sum up, our contributions are threefold.
1) We propose a new strategy to enhance the discrimina-

tive representation of the target domain via contrastive
learning.

2) We introduce a discriminative class-conditional and a
marginal distribution alignment strategy by using con-
trastive learning, which can force samples with the same
label to concentrate together and the one with various
labels to be far away.

3) We incorporate the target information to estimate the
weight of source samples, which is more accurate to
estimate the importance of source data than only using
source information.

The rest of this article is organized as follows. Related
works consisting of DA, PDA, and contrastive learning
are introduced in Section II. The proposed CLA model is
described in detail in Section III. Experiments and analysis
are presented in Section IV. Finally, the conclusion is drawn
in Section V.

II. RELATED WORK

This section makes an overview of the related research
topics, i.e., DA, PDA, and contrastive learning.

A. Domain Adaptation

Over the past decades, many DA methods have been devel-
oped to reduce distribution discrepancies between domains,
in which domain-invariant feature representation learning is
a common method. This section focuses on homogeneous
unsupervised DA problems with a single-source domain.

Most early DA approaches align source and target dis-
tribution by minimizing different statistic moments, such as
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MMD [5], [21] and CORAL [22]. For example, transfer com-
ponent analysis (TCA) [5] bridges the marginal distribution
distance across two domains via minimizing MMD, which
maps data into a reproducing kernel Hilbert space (RKHS)
and measures the embedding probabilities. Domain trans-
fer multiple kernel learning (DTMKL) [21] extends TCA
by simultaneously minimizing structural risk functional and
the distribution distance. Meanwhile, it incorporates multiple
kernels into MMD to achieve robust performance. Transfer
joint matching (TJM) [23] introduces an instance reweighting
scheme into MMD, aiming at down-weighting the importance
of irrelevant instances when reducing the two marginal distri-
butions. Considering that MMD is the first-moment matching
approach, CORAL [22] is designed to compute both the first-
order (mean) and second-order (covariance) statistics of the
two latent features. Similar to CORAL, central moment match-
ing (CMD) [24] introduces a higher order central moments
matching strategy to align the domain-specific hidden repre-
sentations. Instead of aligning global marginal distribution,
joint distribution adaptation (JDA) [25] is an approach to
reducing marginal and class-conditional distributions between
two domains. Similar to JDA, stratified transfer learning
(STL) [26] and asymmetric tritraining [27] are proposed to
match the class-conditional distributions between different
domains, where pseudolabels of the target domain are pre-
dicted by majority voting techniques. Furthermore, balanced
distribution adaptation (BDA) [28] extends JDA by learning
the importance of marginal and conditional discrepancies to
tradeoff the two gaps. Recently, visual DA (VDA) [29] and
joint statistical alignment (JGSA) [30] take the distance of intr-
aclass and interclass into the training process, which minimizes
intraclass discrepancies while maximizing interclass margins.

Deep learning (DL) has drawn great attention in recent
years due to its powerful ability to learn rich representa-
tion. As a result, various DA approaches based on DL have
been proposed to extract expressive transferable knowledge
across domains. An early work of the deep DA approach
is introduced in [31], which conducts extensive experiments
to test the transferability of each layer. Similar to shallow
DA methods, many deep DA approaches employ discrepancy
measures to align hidden layers in order to achieve domain
invariant representations. For instance, in domain adaptive
neural networks (DANNs) [32], MMD is incorporated to
explicitly reduce the distribution of hidden representations
learned in the last layer. Deep adaptation network (DAN) [33]
extends DANN by employing a deeper neural network and
matching multiple task-specific layers. In an alternative way,
residual transfer networks (RTNs) [34] attributes domain
shifts to that the source classifier differs from the target
classifier with a residual function. Therefore, it plugs several
layers into the deep network to learn the residual function
in order to adapt the source classifier. In recent, contrastive
adaptation network (CAN) [35] develops a contrastive loss
to minimize class-conditional distributions across domains.
Except for MMD, CORAL is extended to learn a nonlinear
transformation by aligning correlations of layer activations in
DL [12]. In [36], the CORAL is further generalized to possibly
infinite-dimensional covariance matrices in an RKHS.

More recently, GANs [37] gain increasing popularity in
DA, referred to as domain adversarial networks, which learn
domain-invariant representations via GANs [13]. The GAN
is a structure that equips with a discriminator and a gener-
ator, where the two networks contest each other in a game.
Typically, the generator tries to generate a data distribution of
interest, while the discriminator aims to accurately evaluate
whether a candidate from the generator or the true data
distribution. In domain adversarial network [13], the generator
plays the role of feature extractor to learn the latent feature
of the source and the target domains, and the discriminator
is designed as a domain classifier to differentiate the two
distributions. Following this framework, in [38], the work
replaces the domain discriminator with a network to learn
an approximate Wasserstein distance. In [39], the loss of all
blocks is incorporated to enhance the domain informative
representations of lower blocks and uninformative represen-
tations from higher blocks. The adversarial discriminative DA
(ADDA) [40] incorporates a discriminative modeling and an
untied weight sharing technique into the domain adversarial
network to achieve robust performance. Similar to ADDA, the
work in [41] and [42] integrates a class-conditional distribution
alignment to achieve a better adaptation.

B. Partial Domain Adaptation

PDA challenges standard DA methods due to source outlier
classes, which may cause negative transfer if these outliers
are aligned with the target domain. To mitigate negative
transfer, most existing PDA methods focus on reducing
contributions of unrelated source instances. For example,
selective adversarial network (SAN) [15] adopts reweighting
scheme to decrease the importance of outlier instances on
the domain discriminator. The reweighting scheme employs
multiple GANs to estimate the weights of source instances,
where the weights of irrelevant instances are reduced. Partial
adversarial DA (PADA) [16] adopts the trained classifier to
estimate weights and puts the estimated weights on both
the classifier and domain discriminator. In a similar way, the
importance weighted adversarial net (IWAN) [17] exploits the
prediction probability from a domain classifier to evaluate
the importance of source samples. While example transfer
network (ETN) [43] progressively quantifies the transferability
of the source samples by introducing an auxiliary classifier.
In a deep residual correction network (DRCN) [44], the impor-
tance of irrelevant source instances is weakened by plugging a
residual block into the source task-specific feature layer. Dual
Alignment for PDA (DAPDA) [45] proposes a reweighting
network to generate class-level weights for source data and
instance-level weights for target data. In contrast, the work
in [18] and [46] selects the shared and filter out source-only
samples via reinforced learning, where reconstruction errors
of source data are adopted to calculate rewards. In [47], the
PDA problem is treated as a class imbalance problem and the
balanced adversarial alignment (BAA) technique is presented
to reduce negative transfer. Instead of removing source outlier
samples, BAA randomly leverages a few source samples to
augment the target domain, which achieves state-of-the-art
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results on several benchmark datasets. Most of the above-
mentioned methods borrow adversarial domain networks to
learn domain-shared representation. However, they do not
mind discriminability representation which may lose as dis-
cussed in [19]. Meanwhile, they estimate source instance
weight only using source information and neglect the target
information.

C. Contrastive Learning

Even though deep supervised learning has achieved sig-
nificant success in many fields, it often suffers from relying
heavily on extensive labeled data, generalization error, spuri-
ous correlations, and adversarial attacks [20], [48]. Contrastive
learning provides a promising alternative to alleviate the above
drawbacks and enables learning underlying representation
from unlabeled data. It learns representations based on data
augmentation, which is the crop, resize, or recolor of the orig-
inal sample in image data. With the augmentation, contrastive
learning encourages encoding a sample (an anchor) and its
augmentation (also known as similar sample, positive sample)
be closer while the rest samples (different samples, negative
sample) are far from each other [20], [48]. For a given anchor
point x , suppose x+ and x− are the positive and negative points
of x , the optimization function is formulated to as

score
(

f (x), f
(
x+)) � score

(
f (x), f

(
x−))

(1)

where the score is a metric distance that measures the
similarity between two features.

Following this framework, one class of work focuses on
instance-based contrastive learning, where augmentations of
an anchor point are considered as positives and the reset
samples in the training data are negatives for every sample. For
example, deep infoMax (DIM) [49] exploits a local patch from
a global feature as a positive point and minimizes their mutual
information distance. The global feature indicates the output
of the final conventional layer, while the local patch is the
output of an intermediate layer. In this way, DIM encourages
the global feature vector to contain the information of the local
region. AMDIM [50] improves DIM by providing multiple
local patches, such as different locations, afferent modalities,
or the different views of an image. Instead of using the local
feature, contrastive multiview coding (CMC) [51] employs
different transformations of an image as positive samples. It is
known that the performance of contrastive learning often relies
on the number of negative samples, which is redistricted by
the batch size. To this end, momentum contrast (MoCo) [52]
maintains a dynamic queue, in which representations of the
current data are en-queued while the oldest are out-queued.
In addition, it periodically updates the negative encoder to
reduce the consistency of key representations. Most recently,
SimCLR [53] improves MoCo by introducing multiple aug-
mentation operations and dynamically learning the importance
of a hard positive sample strategy.

Another line is cluster-based methods, which not only
require representations of a pair of samples to be similar
but also samples in a category to be closer. For instance,
SwAV [54] simultaneously clusters the data and encourages
the different augmentations of images in the same cluster to

be closer in embedding space. In supervised learning, a con-
trastive loss instead of cross entropy loss is presented in [55].
It leverages label information to pull samples belonging to the
same class together and achieves a better performance than
cross entropy loss.

III. PROPOSED METHOD

A. Problem Definition and Overall Framework

Similar to the standard close-set unsupervised DA, an unsu-
pervised PDA task constitutes a labeled source domain Ds =
{(xs

i , ys
i )}ns

i=1 associated with Cs classes, and an unlabeled
target domain Dt = {xt

i }nt
i=1 drawn from Ct classes. ns and

nt are the number of source and target data, respectively. xs
i is

a feature vector of a source sample and ys
i is the corresponding

label, xt
i is a feature vector of a target sample. Suppose Xs ,

Xt , and Ys , Yt are feature and label spaces of Ds and Dt . The
feature spaces Xs and Xt are identical in PDA, while the target
label space Yt is a subset of the source label space Ys , that is
Yt ⊆ Ys and Ct < Cs . Due to the domain shift, the distributions
of shared classes between the two domains are different, i.e.,
P(X̄s) �= P(Xt ), where P(X̄s) denotes the distribution of
source data corresponding to Yt . The goal of PDA is to filter
out source outlier instances to mitigate negative knowledge
transfer and reduce the difference between P(X̄s) and P(Xt )
to boost positive knowledge transfer. With this in mind, the
proposed CLA introduces contrastive learning that attempts
to incorporate the discriminative class structure in distribution
matching for better adaptation. Meanwhile, a new reweighting
scheme involving the source and the target information is
proposed to estimate the transferability of source data.

The architecture of CLA is shown in Fig. 2, which cou-
ples three parts: a domain adversarial network, a contrastive
learning-based conditional alignment (CLCA), and a reweight-
ing scheme. The domain adversarial network, including the
feature exacter F , the domain discriminator D, and the
classifier G y, aims to learn domain invariant representations
across the source and the target domains, and the transferable
classifier. The CLCA involving a target cluster, Gt , exploits
discriminative representations and class-conditional alignment
between different domains to achieve better adaptation. In par-
ticular, the target cluster Gt is a fully connected layer that
explores rich representations of the target data and separates
them into Ct clusters via a contrastive loss. Subsequently,
clusters in the target domain and classes in the source domain
that corresponds to the sample class are separately aligned via
a supervised contrastive loss, aiming at reducing class-level
distribution mismatch. It is worth noting that the supervised
contrastive loss encourages a rich representation of the source
domain. In the proposed reweighting scheme, the information
of the classifier G y and the target cluster Gt are integrated
to estimate the weight of source instances. Thereafter, these
weights are fed back to the domain adversarial network, G y,
and Gt the source to reduce the effect of irrelevant source
instances on the classifier and domain discriminator.

B. Domain Adversarial Learning Revisited

Domain adversarial learning introduces GANs to overcome
the gap between two domains so that a classifier trained on the
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Fig. 2. Architecture of the proposed CAL, where F , D, G y , and Gt are the feature extractor, the domain discriminator, the source classifier, and the target
cluster, respectively.

source domain generalizes well to the target domain. As shown
in Fig. 2, GANs achieve this goal by two procedures: a domain
discriminator D is trained to distinguish the feature represen-
tation between the source and target domain, and a feature
extractor F is trained to fool D. These two procedures are
trained in a minimax optimization process, where D is learned
by minimizing the loss of the domain discriminator, and F is
learned by maximizing the loss of the domain discriminator.
With the learned domain-invariant feature, a classifier G y is
trained on the source domain. Theoretically, by optimizing
the above-mentioned three objectives, the domain shifts can
be reduced on close-set domain adaption problems. However,
due to the outlier classes, the pure domain adversarial learning
network would cause performance degeneration or even induce
negative transfer in addressing PDA. A popular method to
alleviate this issue is reducing the importance of source-
only instances by weighting source instances. The estimated
weigh is put on the domain discriminator and the classifier.
Following [43], we also implement the prediction uncertainty
of target data into the training process, which is quantified
by the entropy criterion H (h) = − ∑Ch

i=1 hi log(hi), where
Ch is the cardinality of h. Suppose the weight of source
instances is w = (w1, w2, . . . , wns ), the optimization objective
of adversarial learning for PDA can be formally represented as

min
θ f ,θy

max
θd

Ladv
(
θ f , θd

) + L y
(
θ f , θy

)

Ladv
(
θ f , θd

) = 1

ns

ns∑
i=1

wi log
[
D

(
F

(
xs

i

))]

+ 1

nt

nt∑
j=1

log
[
1 − D

(
F

(
xt

j

))]

L y
(
θ f , θy

) = 1

ns

ns∑
i=1

wi lceG y
(
F

(
xs

i

))

+ γ

nt

nt∑
j=1

H
(
G y

(
F

(
xt

i

)))
(2)

where lce is a predefined supervised loss, such as cross
entropy loss; Ladv(θ f , θd) is the domain adversarial loss,

γ is a hyperparameter to tradeoff the supervised loss and the
target prediction uncertain.

C. Contrastive Learning-Assisted Conditional Alignment

Contrastive learning aims to learn a embedding space, where
similar samples are pulled together and diverse samples are
pushed away in order to achieve robust representations for
samples that semantic closer and discriminative representa-
tions between instances with dissimilar semantic [20], [48].
By using contrastive learning, the proposed CLCA is expected
to benefit DA from two perspectives, enhancing the representa-
tion discriminability between different classes and the invariant
representation corresponding to the same class across the two
domains. To achieve this goal, we deploy two contrastive
losses Lt and Lc to train the target cluster Gt and the
class-conditional distribution alignment, respectively. Thus,
the optimization objective of CLCA can be summarized as

Lclca = min Lt
(
θ f , θt

) + Lc
(
θ f , θt , θy

)
. (3)

We detail the two contrastive losses as follows:
1) Contrastive Loss for the Target Cluster: The purpose

of the target cluster Gt is to group target samples into Ct

clusters, where Ct is the number of classes in the target
domain. We expect samples in a single cluster to associate
with the same label, while those in diverse clusters to different
labels. Due to the lack of labels, we here adopt instance-based
contrastive loss to train Gt . The instance-based contrastive
loss considers an augmentation of a sample as a positive
sample (similar samples), and the reset samples in a mini-
batch as negatives (diverse samples). In this case, the common
representation between original images and their correspond-
ing augmentations are likely to be captured while specific
details can be discarded, thus helpful to robust representation
learning.

Let Xt = {xt
1, xt

2, . . . , xt
N } be N original samples in a mini-

batch. For the image sample in this work, we generate the
augmentation of X via a crop and recolor [20], denoted as
Xt � = {xt �

1 , xt �
2 , . . . , xt �

N }, via color transformation, jigsaw puz-
zle, Chen et al. [53]. After performing the feature extractor F
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and the target cluster Gt , an image sample can be mapped to
a Ct -dimension assignment feature. We refer the assignment
features of original and augmentation samples in a mini-
batch to as Zt = {zt

1, zt
2, . . . , zt

N } and Zt � = {zt �
1 , zt �

2 , . . . , zt �
N },

respectively. Based on assignment features, we train Gt by
the contrastive loss proposed in InfoNCE [56], which is
formulated to as

Lt = −
N∑

i=1

log
exp

(
zt

i · zt �
i /τ

)
∑

k∈A(i) exp
(
zt

i · zt
k/τ

) (4)

where zt
i is an anchor instance, zt �

i is the positive point of zt
i ,

A(i) are negative points, including the rest 2(N − 1) samples,
· denotes the inner product of two vectors, and τ > 0 is a
temperature parameter. By minimizing (4), the representations
of paired instances zt

i and zt �
i , i = 1, 2, . . . , N , are forced

closer.
2) Contrastive Loss for Class-Conditional Alignment:

As pointed out in [42], the discriminative representation of
source domains is important in DA, because the confusion
distribution between diverse classes may lead to a target
class aligning to a wrong source class, which further results
in class-conditional distributions mismatch. To alleviate this
issue, we employ a contrastive loss to align class-conditional
distributions across the two domains. Previous close-set DA
approaches often use predicted pseudolabels in the target
domain and true labels in the source domain to achieve the
class-conditional matching, where samples associated with the
same label are aligned. Nevertheless, the target pseudolabels
often exist noise because of the domain shit. Consequently,
we select partial confident pseudolabels as the guidance to
match classes across domains. Simply, we set confidence
threshold ς to be the mean value of a mini-batch. Suppose
Pt = {pt

1, pt
2, . . . , pt

N } is assignment probabilities of the target
data, ς is defined as

ς = 1

N

N∑
i=1

max
(
pt

i

)
. (5)

The pseudolabel set U is accordingly defined as

U = {(
xt

i , ŷt
i = argmax

(
pt

i

)); if max
(
pt

i

)
> τ

}
,

i = 1, 2, . . . , N. (6)

Since labels are available, we make full use of label infor-
mation and employ the supervised contrastive loss [55] for
conditional alignment. Different from the target cluster con-
trastive loss, where only a single-positive sample for an
anchor, samples with the same label are considered as posi-
tives, while items with various labels and their augmentations
are treated as negative samples. In this way, the invariant
features of samples in the same class can be extracted,
and the discriminate characters between different classes
are caught. As contrastive losses of the target cluster use
assignment features, we employ the assignment probabili-
ties to compute Lc to enhance the robust representation.
Let Ps = {ps

1, ps
2, . . . , ps

N } and Ps� = {ps�
1 , ps�

2 , . . . , ps�
N } be

assignment probabilities of original samples in the source
domain and its augmentations, Pt = {pt

1, pt
2, . . . , pt

|U |} and
Pt � = {pt �

1 , pt �
2 , . . . , pt �

|U |} denote assignment probabilities of

target samples in U and its augmentations, where |U | is the
cardinality of U . We further let P = Ps ∪Pt , and P� = P∪Ps�∪
Pt �, that is P = {p1, p2, . . . , pN , pN+1, pN+2, . . . , pN+|U |}, and
P� = {p1, . . . , pN+|U |, p�

1, . . . , p�
N+|U |}. The contrastive loss

for class-conditional alignment can be formulated as

Lc =−
2(N+|U |)∑

i=1

1

2Ni −1

∑
j∈C(i)

log
exp

(
pi · p�

j/τ
)

∑
k∈A(i) exp

(
pi · p�

k/τ
) (7)

where C(i) and A(i) are picked from P�, C(i)contains posi-
tives that are with the same pseudolabel of the anchor pi , Ni

is the number of samples in P having the same label with pi ,
and A(i) consists of the negatives, which have different labels
with ps

i .

D. Reweighting Scheme

As discussed earlier, the weight w aims to estimate the
importance of source data so that to remove source specific
data, which plays a key role to mitigate negative transfer.
In our proposed new reweighting scheme, the estimated w
incorporates two parts, ws and wt , which are generated by
using source information and target information, respectively,
but both of them predict the weight of source data. In par-
ticular, ws is a class-level weight predicted via classifier G y.
Similar to [16], we first employ G y to predict target data and
get the outputs

ŷt
i = G y

(
F

(
xt

i

))
, i = 1, 2, . . . , nt (8)

where ŷt
i is a Cs -dimensional assignment feature of xt

i , denotes
the probabilities assigned to each of the Cs classes. Then,
we calculate the class-level weights by averaging all assign-
ment features, that is,

ws = 1

nt

nt∑
i=1

ŷt
i (9)

ws is further normalized via

ws
i = ws

i /

Cs∑
i=1

ws
i . (10)

Since the target data does not belong to the source outlier
label space, the assignment feature values corresponding to
the source outlier classes are sufficiently small. Therefore, the
weight of source-only samples is also significantly smaller
than that of the shared samples.

Different from ws , wt is an instance-level weight estimated
by the target cluster Gt . It is reasonable that a source data is
likely to get a higher probability to one of target classes if
it belongs to the shared classes. On the contrary, an outlier
source data is hardly recognized by the target cluster Gt , and
thus, probabilities to any class are much smaller. Inspired by
the above-mentioned findings, we apply Gt to predict source
data and obtain their assignment features

ŷs
i = Gt

(
F

(
xs

i

))
, i = 1, 2, . . . , ns (11)

where ŷs
i is a Ct -dimensional assignment feature of xs

i , denotes
probabilities assigned to the Ct classes. These assignment
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features ŷs
i , i = 1, 2, . . . , ns are further passed through a

softmax activation to get assignment probabilities, which are
denoted as ŷs

p,i , i = 1, 2, . . . , ns . Thereafter, we calculate the
instance-level weight wt according to

wt
i = 1 + e

−H
(

ŷs
p,i

)
, i = 1, 2, . . . , N (12)

where H (ŷs
p,i) is the entropy criterion of the i th instance, and

N is the mini-batch size.
Once ws and wt are obtained, we simply combine them as

the final weight w via

wi = ws
d(i)w

t
i , i = 1, 2, . . . , nb (13)

where d(i) is the class index of the i th instance.

E. Overall Objective and Training

As the aforementioned description, the proposed CLA aligns
discriminative class-conditional distributions and the marginal
distribution across the source and the target domains in the
shared class space. Meanwhile, it applies the trained classifier
and the target cluster to estimate the weight of source data in
order to rule out the source outlier instances. By incorporating
(3) and (2), the overall objective of CLA is summarized as

min Ladv
(
θ f , θd

)+L y
(
θ f , θy

)+β
(
Lt

(
θ f , θt

)+Lc
(
θ f , θy, θt

))

(14)

where β is a hyperparameter to tradeoff the losses. We opti-
mize (14) by the standard backpropagation training approach
with two stages. In the first stage, it jointly minimizes the
class-conditional distribution and the marginal distribution
alignment losses by Ladv, Lt , and Lc. Meanwhile, it optimizes
the classification loss via L y and calculates the instance-level
weight wt . In the second stage, the class-level weight wt is
estimated using the information from the source domain. Then,
the final weight is applied to (14). The training process of the
CLA is summarized in Algorithm 1.

IV. EXPERIMENTS AND ANALYSES

In this section, we first compare the proposed method with
several competitive unsupervised PDA approaches on real-
world datasets to evaluate the performance of CLA. We fur-
ther conduct several empirical experiments to examine the
flexibility and effectiveness of CLA. Code is available at:
https://github.com/Peacefulyang/HE-CDTL.

A. Experimental Settings

1) Datasets: We verify the performance of our approach on
three cross-domain recognition tasks: Office-31 [57], Office-
Caltech [58], and Office-Home [59]. Fig. 3 visualizes sample
images in per dataset.

The Office-31 dataset is a widely used benchmark for DA,
where each image is downloaded from amazon.com, or an
Office environment picture picked up by a webcam or a DSLR
camera. The dataset has around 4652 images collected from
three real-world object domains: Amazon (A), DSLR (D),
and Webcam (W), and each domain includes 31 classes.

Algorithm 1 CLA
1: Input: Ds : The source domain; Dt : The target domain; N :

the size of minibatch; F : The feature extractor; D: The
domain classifier; G y : The classifier; Gs : The cluster in
the source domain; T : The validation interval.

2: Output: F : The trained feature extractor; Dy : The trained
classifier.

3: Pre-train the feature extractor F ;
4: while not converge do
5: Compute the class-level weight ws by Eq. (10);
6: for t = 1 : T do
7: Sample minibatch {(xs

i , ys
i )}N

i=1 from Ds ;
8: Get the argumentation of {(xs

i , ys
i )}N

i=1;
9: Sample minibatch {xt

i }N
i=1 from Dt ;

10: Get the argumentation of {xt
i }N

i=1;
11: Compute the instance-level weight wt by Eq. (12);
12: Compute the final weight w by Eq. (13);
13: Compute the adversarial learning loss by Eq. (2);
14: Select target confident pseudo-label data according to

Eq. (6);
15: Compute the CLCA loss by Eq. (3);
16: Update parameters in θ f , θg, θy, θs , and θt ;
17: end for
18: end while

Fig. 3. Images examples of datasets Office-31, Office-Caltech, and Office-
Home.

Similar to [15], in the PDA scenario, a source domain contains
31 classes, and a target domain involves ten classes that
Office-31 and Caltech-256 share. Take one domain as the
source domain and another as the target domain. Therefore, six
PDA tasks across three domains are conducted: A31 → W10,
A31 → D10, D31 → A10, D31 → W10, W31 → A10, and
W31 → D10.

The Office-Caltech dataset is constructed by Office-31
and Caltech-256 datasets, which share ten common classes.
The Caltech-256 (C) dataset [60] is a standard dataset for
object recognition and consists of 30 607 images collected
from 256 classes. Following to [17], we take one domain
with ten shared classes as a source domain and one domain
with the first five common classes (in alphabetical order)
as a target domain, and thus, 12 across tasks can be built:
A10 → C5, A10 → D5, A10 → W5, C10 → A5, C10 → D5,
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TABLE I

ACCURACY % ON OFFICE-CALTECH FOR PDA VIA ALEXNET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

C10 → W5, D10 → A5, D10 → C5, D10 → W5,
W10 → A5, W10 → C5, and W10 → D5.

The Office-Home dataset is an object recognition dataset
that contains 15 500 images from four domains, Artistic (A),
Clipart (C), Product (P), and Real-World (R), where each
domain includes 65 object classes. We follow [16] to build
PDA tasks, where a target domain is made of the first
25 classes (in alphabetical order) in that domain. In these four
domains, we take one domain as the source domain and each
of the rest domains as the target domain. Thus, 12 cross-
domain PDA tasks can be constructed: A → C, A → P,
A → R, C → A, C → P, C → R, P → A, P → C, P → R,
R → A, R → C, and R → P.

2) Baseline Methods: We compare the proposed CLA
with representative or state-of-the-art PDA and DA base-
lines, including two baseline convolutional neural networks:
AlexNet [61] and ResNet-50 [62], eight PDA methods:
SAN [15], IWAN [17], PADA [16], ETN [43], DRCN [44],
DAPDA [45], DARL [46], and BA3US [47], and three stan-
dard close-set DA methods, i.e., RTN [34], ADDA [40],
DANN [63], and SHOT [64].

3) Implementation Details: We follow standard protocols
and use all labeled source data and unlabeled target data
for unsupervised PDA. For all the experiments, AlexNet and
ResNet-50 are employed as two baselines. The proposed CLA
and other compared models are implemented with PyTorch
using NVIDIA Tesla V100. Similar to [43] and [47], we fine-
tune the PyTorch-provided AlexNet and ResNet-50 that are
pretrained on the ImageNet dataset for a fair comparison.
Especially, we obtain the feature extractor F by replacing
the last fully connected layer in the two pretrained models
with a bottleneck layer (containing 256 units). The model
is trained through backpropagation, and we set the learning
rate of the residual layer to be one-tenth that of the other
layers. We adopt minibatch stochastic gradient descent (SGD)
with momentum of 0.9 and a learning rate annealing strategy
as [63]: the learning rate is dynamically adjusted in the
training process using ηp = η0(1 + α̂ p)−β̂ , where p refers
to the training progress changing from 0 to 1, η0 = 0.001,
α̂ p = 10, and β̂ = 0.75. As suggested in [15], the penalty
of the adversarial discriminator layer is gradually changing
from 0 to 1 to achieve stable performance. We set the bal-
ancing coefficient of contrastive learning-based conditional
alignment β to 0.1 for Office-Home and 0.5 for Office-31 and

Office-Caltech. Following to [47] and [55], γ is set to 0.1, τ is
set to 0.09. Besides, we set the batch size of each domain for
each method to be 36. Furthermore, the number of validation
intervals is set to 200, 200, and 500 for Office-31, Office-
Caltech, and Office-Home, respectively.

B. Experimental Results on Partial Domain Adaptation

1) Results on Office-Caltech Dataset: Table I reports classi-
fication accuracies of all compared approaches on the Office-
Caltech dataset using AlexNet as the baseline, where the
best results are highlighted in bold. From Table I, we can
make the following observations. First, some standard DA
methods that assume the source and the target domain sharing
the same label space achieve worse performances on PDA
tasks. For example, DANN and RTN perform worse than
AlexNet on most tasks, implying that only aligned distrib-
utions across domains are likely to cause negative transfer
due to outlier instances. Whereas ADDA beats AlexNet by
an average accuracy improvement of 5.17%, the underlying
reason may be that incorporating source class discriminative
information into domain distribution alignment can signifi-
cantly reduce mismatch on PDA problems. Second, the PDA
methods achieve much better performances than standard DA
methods. For instance, the average classification accuracy
of IWAN is 6.17% higher than AlexNet, and DAPDA, the
state-of-the-art PDA method, is 9.83% higher than AlexNet.
This observation shows that detecting and removing irrele-
vant samples is essential in alleviating negative transfer on
PDA tasks. Third, CLA outperforms all the other comparison
methods on most tasks and obtains the best performance on
10 out of 12 tasks. It is worth noting that CLA significantly
enhances the accuracy on several tasks, e.g., A10 → D5,
A10 → W5, and C10 → D5. For the average results, CLA
outperforms DAPDA and achieves the highest accuracy among
the compared methods. The promising performance of CLA
can be attributed to the proposed strategies, the reweighting
scheme, and the contrastive learning-assisted class-conditional
distribution alignment.

2) Results on Office-31 Dataset: Table II shows comparison
results of different methods on the Office-31 dataset with
ResNet-50 as the baseline. Similar to Table I, CLA consis-
tently outperforms the best PDA method BA3US and achieves
the highest average accuracy among the compared methods.
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TABLE II

ACCURACY % ON OFFICE-31 FOR PDA VIA RESNET-50. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE III

ACCURACY % ON OFFICE-HOME FOR PDA VIA RESNET-50. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Specifically, it obtains the best results on five out of six
tasks and no notable worse results on the other three tasks
compared with the other methods. Besides, BA3US and CLA
dramatically improve the classification accuracy than the other
methods on some tasks, such as A31 → W10 and A31 → D10.
A possible reason is that both BA3US and CLA encourage
the source and the target class discriminability, which can
increase the margin between different classes and improve the
robustness of a classifier. This further implies the importance
of discriminative representation learning in DA.

3) Results on Office-Home Dataset: Table III shows clas-
sification results of CLA and other compared methods on
the Office-Home dataset with ResNet-50 as the baseline. The
Office-Home dataset is a more complex dataset with 40 outlier
classes, which is easier to cause negative transfer than Office-
31. In this situation, the standard DA methods perform not
much better than ResNet-50, again validating that they suffer
from negative transfer in addressing PDA tasks. The proposed
CLA continuously outperforms other compared methods and
enhances an average improvement of 0.18% over the state-
of-the-art method SHOT. In particular, CLA obtains the best
performance on seven out of 12 tasks and is slightly worse

than SHOT on the rest three tasks. The results in Table III
further demonstrate the effectiveness of CLA in handling more
challenging PDA problems.

In summary, the results in Tables I–III reveal that the
standard DA methods achieve overall comparable performance
with the baselines on PDA tasks. The early PDA meth-
ods, e.g., IWAN, SAN, and PADA, with considering source-
only instance detection, significantly increase classification
accuracy on the Office-Caltech and Office-31 datasets. This
validates that the outlier instances in PDA tasks easily lead
to negative transfer, which can be reduced by appropriately
removing these outliers. Besides, the recent PDA methods
with carefully designed outlier instance detection strategies,
such as ETN and DARL, further enhance the performance
of PDA tasks. The phenomenon also indicates the signif-
icance of outlier detection in reducing negative knowledge
transfer. Furthermore, DAPDA that incorporates discrimi-
native class-conditional distribution alignment and BA3US
that applies domain entropy minimization strategy, achieve
much better performance on the Office-Home and Office-31
datasets, implying that the discriminative representation plays
an essential role in enhancing positive knowledge transfer.
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TABLE IV

ACCURACY % ON OFFICE-HOME FOR CLOSE-SET DOMAIN ADAPTATION VIA RESNET-50. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE V

ACCURACY % OF CLA AND ITS VARIANTS FOR PDA ON OFFICE-HOME VIA RESNET-50. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Moreover, the proposed CLA achieves the best results on
the three datasets, indicating the effectiveness of the proposed
reweighting scheme and CLCA strategies in CLA in promoting
transferable knowledge for PDA.

C. Experimental Results on Close-Set Domain Adaptation

To verify the generalization ability of our proposed CLA
method on closed-set DA, we further conduct experiments
to compare CLA with both of state-of-the-art DA and PDA
approaches, including BA3US [28], DRCN [44], CDAN [63],
SHOT [64], JAN [65], and on the Office-Home dataset.
The average classification accuracies using ResNet-50 as the
baseline are reported in Table IV. As shown in Table IV,
CLA outperforms the best DA method, CDAN + E, which
considers class-conditional distribution across domains on all
the tasks. Meanwhile, it surpasses the best PDA approach,
SHOT, by improving the average accuracy by 0.4%. This is
because the designed CLCA in CLA preserves class-invariant
knowledge across the two domains and the discriminability
between different classes. The superior performance of CLA
suggests that it can be successfully extended to address close-
set DA problems.

D. Discussions and Analyses

1) Ablation Studies: To further examine the effectiveness
of the proposed CLCA and reweighting scheme, we compare
CLA with two variations: CLA/CLCA is a variant without
contrastive learning-assisted class-condition alignment, and
CLA/wt is a variant that removes the target instance-level
weight in the reweighting scheme. We show the comparison
results of CLA, CLA/CLCA, and CLA/wt on the Office-
Home dataset in Table V. It can be observed that our CLA
outperforms CLA/CLCA on all tasks and significantly pro-
motes accuracies on several tasks, i.e., A → P and A → R.

Fig. 4. Accuracy of four tasks with different β.

This observation demonstrates that the contrastive learning-
assisted class-condition alignment enhances positive knowl-
edge transfer by learning class discriminative representation.
Compared with CLA/wt , CLA also performs better in a large
margin, which verifies that the target instance-level weight can
enhance the performance of filtering out outlier instances, thus
reducing negative transfer.

2) Parameter Analysis: We study the sensitivity of parame-
ter β of CLA on four tasks: C → A, A → R, A31 → D10,
and W31 → A10. The experimental results by varying β =
{0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are shown
in Fig. 4. We can see that the C → A and A → R tasks achieve
the best accuracy around 0.1, while the best accuracy of A31
→ D10 and W31 → A10 is obtained at about 0.5. This result
is desirable because the CLCA cannot well exploit discrimi-
native representation and align class-conditional distributions
across the two domains when β is smaller. On the contrary,
CLCA plays a major role in the performance of CLA if β is
too large. In this scenario, the wrongly selected pseudolabels
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Fig. 5. Estimated class weights on two different transfer tasks. Blue and
orange bins indicate the weights of source-only classes estimated by CLA
without wt and CLA, and green and red bins represent the weights of shared
classes estimated by CLA without wt and CLA.

in class-conditional alignment will lead to an error increase in
the training process, thus resulting in performance derogation.
Compare with tasks in the Office-Home dataset, tasks in
the Office-31 dataset use a larger β. The underlying reason
is that tasks in the Office-31 dataset are much easier and
can obtain a lot of high-quality pseudolabels. Thus, a larger
weight of CLCA can greatly increase the performance of this
dataset. From the above-mentioned analysis, we can generally
set β according to the complexity of tasks, where the value
decreases with the complexity increasing.

3) Weight Visualization: Since the weighting scheme is
essential to filter out outlier instances in PDA, we verify
the statistical weights of source instances estimated by CLA.
Fig. 5 presents the weights calculated per class on two specific
tasks: A31 → W10 of Office-31 and A → C of Office-Home.
In Fig. 5, blue and orange bins indicate the weights of source-
only classes estimated by CLA without wt and CLA, and green
and red bins represent the weights of shared classes estimated
by CLA without wt and CLA. On the easy task A31 → W10,
the weights predicted by CLA and CLA without wt of source-
only classes are significantly smaller than that of the shared
classes. Even though the smallest weight of shared classes,
it is about 45 times larger than the largest source-only weight,

Fig. 6. Convergence analysis of proposed methods on two different transfer
tasks, including domain adversarial loss (Ladv), cross entropy loss of the
classifier (L y ), CLCA loss (Lclca), and the test accuracy.

indicating the weight estimation is accurate. Accordingly, the
prediction is close to the ground truth, as shown in Table II.
On the more difficult task A → C, the weight estimation is
relatively inaccurate and several shared-class weights are lower
than the irrelevant-class weights. Meanwhile, the classification
accuracy of A → C is much smaller than A31 → W10, which
may result from the existence of a wrong class distribution
match. Take a closer observation, it can be found that the
orange bins are generally lower than the blue ones on both of
the two tasks, indicating that wt is able to help CLA to filter
out outlier classes more accurately.

4) Convergence Analysis: We investigate the convergence
performance of the proposed CLA on the A31 → W10 task
and A → C task. Fig. 6 plots the domain adversarial loss
(Ladv), cross entropy loss of the classifier (L y), contrastive
learning-based class-conditional alignment loss (Lclca), and
the test accuracy with respect to training iterations. We can
observe that the three losses in CLA gradually converge to the
lowest test error, and its three losses are quickly converged to
their lowest values. We can also can find that Ladv in the
A31 → W10 quickly converges, while Lclca still decreases
with the increase of test accuracy. This observation further
implies that discriminative class-distribution alignment plays
an important role in enhancing positive transfer.

5) Feature Visualization: Fig. 7 visualizes the t-SNE [66]
of the feature using ResNet-50 as the baseline learned
from four methods, PADA, ETN, BA3US, and our CLA on
A31 → W10. In Fig. 7, the gray, red, and blue dots indicate
source samples in outlier classes, source samples in the shared
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Fig. 7. t-SNE visualization of features learned from PADA, ETN, BA3US, and CLA on task A31 → W10, where gray, red, and blue dots represent source
data in the source-only classes, source data in the shared classes, and target data, respectively.

classes, and target data, respectively. In PADA, the data struc-
tures are more scattered as many outlier samples are close to
the shared classes. ETN significantly improves the distribution
alignment, but some target classes are mixed. By using domain
entropy minimization strategy in both the source and the
target domain, BA3US separates the categories very well.
However, many target data are aligned with the source-only
samples. Unlike them, CLA can not only successfully match
the shared data between the two domains but also preserve
good structures of classes. These results reveal the superior
performance of CLA in comparison with the other methods.

V. CONCLUSION

This article has introduced CLA to address PDA problems,
where the label space of the source domain is a subset of the
target domain. CLA exploits contrastive learning to cluster
data in both domains, aiming to learn the class-conditional
structures. Meanwhile, it matches the distributions of clusters
in different domains but corresponds to the same class to
match class-conditional distribution based on the marginal
distribution alignment, which proposes to enhance positive
knowledge transfer. Furthermore, CLA utilizes the predictions
of the classier and the target cluster to estimate the weight of
source data. In this way, the importance of irrelevant instances
can be effectively decreased, thus reducing negative transfer.
The effectiveness of the proposed CLA has been demonstrated
on several benchmarks by comparing with existing methods.

In the reweighting scheme, we multiply the class-level and
instance-level weights as the final weight. In reality, another
simple way to combine these two weights is a summation.
Thus, we prefer to investigate the performance of adding class-
level and instance-level weights.
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