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Graph-Based Dissimilarity Measurement for Cluster
Analysis of Any-Type-Attributed Data

Yiqun Zhang , Member, IEEE, and Yiu-Ming Cheung , Fellow, IEEE

Abstract— Heterogeneous attribute data composed of
attributes with different types of values are quite common
in a variety of real-world applications. As data annotation is
usually expensive, clustering has provided a promising way for
processing unlabeled data, where the adopted similarity measure
plays a key role in determining the clustering accuracy. However,
it is a very challenging task to appropriately define the similarity
between data objects with heterogeneous attributes because the
values from heterogeneous attributes are generally with very
different characteristics. Specifically, numerical attributes are
with quantitative values, while categorical attributes are with
qualitative values. Furthermore, categorical attributes can be
categorized into nominal and ordinal ones according to the
order information of their values. To circumvent the awkward
gap among the heterogeneous attributes, this article will
propose a new dissimilarity metric for cluster analysis of such
data. We first study the connections among the heterogeneous
attributes and build graph representations for them. Then,
a metric is proposed, which computes the dissimilarities between
attribute values under the guidance of the graph structures.
Finally, we develop a new k-means-type clustering algorithm
associated with this proposed metric. It turns out that the
proposed method is competent to perform cluster analysis of
datasets composed of an arbitrary combination of numerical,
nominal, and ordinal attributes. Experimental results show its
efficacy in comparison with its counterparts.

Index Terms— Cluster analysis, dissimilarity measure, graph
space, heterogeneous attributes, representation.

I. INTRODUCTION

CLUSTER analysis is one of the most common methods
for data analytics with a variety of applications, includ-

ing knowledge acquisition from medical databases [1], data
analysis of grading and evaluation systems [2], big data pre-
processing [3], and so on. Under such circumstances, datasets
are usually composed of different features that may have
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TABLE I

FRAGMENTS OF A MEDICAL DATASET (UPPER PART) AND A FINANCIAL
RISK EVALUATION DATASET (LOWER PART)

different types of values, e.g., numerical and categorical ones.
In general, features with numerical values and categorical val-
ues are called numerical attributes and categorical attributes,
respectively [4]. Compared with the numerical attributes with
well-defined distances in the Euclidean space, similarities
among the values of a categorical attribute are, however,
not well-defined because the different possible values are
more like divergent concepts which are hard to be explicitly
located in the space. Moreover, categorical attributes can
be further categorized into two subtypes, i.e., the nominal
type and the ordinal type, which have extra relative orders
between the attribute values [5], [6]. Datasets composed of
the above-mentioned heterogeneous attributes (i.e., numerical,
nominal, and ordinal attributes) are very common in real-world
unsupervised learning tasks. Table I demonstrates two frag-
ments of such datasets. The upper part is a fragment of
the medical dataset, which contains the numerical attribute
“SaO2,”1 nominal attribute “Gender,” and ordinal attribute
“GCS-E.”2 The lower part is a fragment of the financial risk
evaluation dataset, which also contains the three types of
heterogeneous attributes. Such datasets are widespread, and
the awkward gap among the heterogeneous attributes brings
complexities to cluster analysis.

Most existing attempts for heterogeneous attribute data clus-
tering focus on exploring more powerful similarity measures
or data representation strategies. Both these two orientations
have the same goal to achieve more reasonable similarity
measurement, which is the basis for the success of cluster
analysis. Early attempts usually conduct one-hot encoding
to the values of categorical attributes [7] and then process
the encoded data as numerical data. Similar attempts also

1SaO2 is the abbreviation of saturation of blood oxygen.
2GCS-E is the abbreviation of Glasgow coma scale—Eye-opening reaction.

Symptom severity of the four possible values {none, to_pain, to_speech,
spontaneous} descending successively.
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include the well-known k-prototypes clustering algorithm and
its variants [8], [9], which combine the Euclidean distances
measured on numerical attributes and Hamming distances
measured on categorical attributes using a tradeoff parame-
ter. However, both the one-hot encoding and the Hamming
distance uniformly assign distance “1” to any pair of dif-
ferent categorical values, which introduces an over-absolute
similarity assumption that all pairs of different values have
the identical dissimilarity degree. Furthermore, the similarity
measure proposed in [10] quantifies the similarity between a
data object and clusters in a unified probability framework
for numerical and categorical attributes. Lin [11]’s similarity
metric and entropy-based distance metric [12] further take
into account the orders between possible values of an ordi-
nal attribute and quantify the dissimilarity degrees between
different possible values from the perspective of information
theory. Both these two metrics apply to the datasets composed
of nominal and ordinal attributes, while their key difference
is that the latter unifies the similarity definitions for nominal
and ordinal attributes to avoid information loss. Since all the
above-mentioned measures treat attributes as independent of
each other, which is not always the case in real datasets,
the valuable information provided by the interdependence of
attributes is, thus, wasted during similarity measurement.

In the literature, some works have been made in an effort
to exploit the interdependence of attributes for categorical
data clustering. They adopt a common basic idea that two
possible values of an attribute are more similar if they have
more identical corresponding values on the other attributes.
For example, attribute context-based distance metric [16], [17],
[18] quantifies the interdependence degree between categorical
attributes and then selects attributes accordingly for providing
statistical information [i.e., conditional probability distribu-
tions (CPDs)] for indicating similarity between possible values
of an attribute. In the stream of data representation, approaches
have been proposed to encode possible values as the CPDs of
their corresponding values from different attributes [19], [20].
However, they have not discriminated against nominal and
ordinal attributes, which somewhat leads to information loss.
Recently, paper [13] has further studied the interdependence
effect between heterogeneous nominal and ordinal attributes
and proposed a unified distance metric together with an
interdependence measure. Most recently, more advanced solu-
tions, including Mix2Vec [14], homogeneous distance met-
ric [15], and Het2Hom [21], have been proposed. Mix2Vec and
Het2Hom represent numerical and categorical attribute values
by sufficiently preserving their intrinsic structural information.
However, their effectiveness still relies much on the adopted
encoding strategies of categorical attributes. In contrast, the
homogeneous distance metric [15] uniformly defines distances
for nominal and ordinal attributes, but is inapplicable to the
common numerical attributes.

In general, all the existing methods for heterogeneous
attribute clustering suffer from one or both of the following
two limitations: 1) datasets are composed of two specific types
of attributes only and 2) the interdependence among different
types of attributes has not been taken into account. Table II
sorts out the applicability of the existing methods in terms of
the types of heterogeneous attributes and the interdependence
of heterogeneous attributes. There are a total of four types
of heterogeneous attribute datasets, which are composed of:
1) nUmerical plus Nominal attributes (U+N); 2) nUmerical
plus Ordinal attributes (U+O); 3) Nominal plus Ordinal

TABLE II

APPLICABILITY OF THE EXISTING METHODS IN TERMS OF DIFFERENT
TYPES OF HETEROGENEOUS ATTRIBUTE DATA (INDICATED BY “�”)

AND THE CORRESPONDING INTERDEPENDENCE BETWEEN

HETEROGENEOUS ATTRIBUTES (INDICATED BY “‡”)

Fig. 1. Attribute types (upper part) and space structures (lower part).

attributes (N+O); and 4) all the three types of attributes
(U+N+O). Since datasets composed of heterogeneous and
interdependent attributes are common in the real world, it can
be seen from Table II that a new method applicable to any-
type-attributed data clustering (ADC) is still desired nowadays.

To this end, this article will study the structures of the
heterogeneous attributes and their connections, thereby treat-
ing them from a homogeneous perspective for clustering.
Since most real-world data come in the form of graphs,
constructing graph structures has been regarded as a rea-
sonable way of studying the complex relationships among
data objects by the recent related works [22], [23], [24]. Our
previous work [15] has also successfully applied graphs to
the modeling of intraattribute and interattribute relationships
(i.e., dissimilarities among attribute values and dependencies
among attributes) for ordinal attributes. This article further
develops the advantages of graphs for data representation in a
more challenging situation, where datasets are composed of an
arbitrary combination of heterogeneous attributes. To achieve
this, graphs are built for attributes, as shown in Fig. 1,
according to the intrinsic attribute types, where nodes with
different sizes stand for attribute values with different occur-
rence frequencies and edges reflect the similarity between
attribute values. Numerical and ordinal attributes have line-like
graph structures because their sortable values can be viewed as
linearly arranged in 1-D spaces, while the values of a nominal
attribute are nonlinearly arranged.

To use the constructed graphs, we represent a possible value
from an attribute Ar using the probability distribution of its
co-occurred values from the other attributes (e.g., As). Then,
the dissimilarity between two values from Ar is considered
as the length of the graph path between them, which is
quantified as the difference between the corresponding rep-
resentations computed according to As’s graph structure. As a
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result, the graph-based dissimilarity quantification processes
simultaneously preserve the information provided by the
intrinsic structures and interdependence of the heterogeneous
attributes. Subsequently, a new algorithm is presented for
ADC, following the graph structures. Extensive experiments
on the benchmark datasets have demonstrated the superiority
of the proposed approach. The main contributions of this
article are summarized in the following.

• Graph is introduced to homogeneously reveal the value
space of numerical, nominal, and ordinal attributes. Based
on the graph space representation, the interdependence
effect of the heterogeneous attributes is studied to guide
forming dissimilarity measures.

• A dissimilarity computation scheme is designed based
on the graph structures to convert the dissimilarities
of heterogeneous attributes into homogeneous quantities.
Accordingly, a unified dissimilarity metric and an inter-
attribute dependence measure are formed.

• Following the graph-based dissimilarity definition, a new
k-means-type clustering algorithm is developed, which
can iteratively update the heterogeneous-valued cluster
prototypes in a unified way. The corresponding theoretical
analysis is provided as well.

The remainder of this article is organized as follows.
Section II makes an overview of the existing related tech-
niques. In Section III, the graph space, the proposed dissimilar-
ity metric, and the proposed clustering algorithm are presented
in detail, together with the analysis and discussions. Then,
extensive experiments are conducted in Section IV. Finally,
we draw a conclusion in Section V.

II. RELATED WORK

This section makes an overview of the existing related
works, focusing on similarity measurement and data
representation.

A. Similarity Measures
Euclidean distance and Hamming distance [25] are two

conventional distance metrics that have been widely used
for the cluster analysis of numerical and categorical data,
respectively. For a single numerical attribute, Euclidean dis-
tance can appropriately indicate the dissimilarity between
attribute values benefited from the well-defined Euclidean
space, while for a categorical attribute without a well-defined
space, Hamming distance that uniformly assigns distance
1 to any pair of different values demonstrates its limitations
in distinguishing the dissimilarities of different value pairs.
Therefore, more advanced categorical data similarity measures
have been developed in the literature.

Given a target categorical attribute, extracting statistical
information from its related attributes for reflecting the sim-
ilarities has been acknowledged as a feasible solution for
more reasonable similarity measurement. Different measures
in this stream, including association-based [26], Ahmad and
Dey’s [27], and context-based [16], [17] measures, have been
proposed. They adopt a similar idea to compute the dis-
tance between two CPDs obtained from the related attributes
giving two values from the target attribute to indicate their
dissimilarity. Among these measures, the context-based one
can be viewed as the improved version of the former two
because it further adopts a context selection module to filter
the attributes with lower dependence on the target one. The
recently proposed metrics [18], [28] can further reasonably

exploit both the intraattribute and interattribute information,
which avoids the failure of similarity measurement in the case
that all the attributes are independent of each other. However,
all the above-mentioned measures have not addressed the
heterogeneity of nominal attributes and ordinal attributes,
which are two subtypes of the categorical attribute.

Lin’s similarity metric is an early attempt to appropriately
define similarities for both nominal and ordinal attributes.
It computes the entropy of values to indicate their similar-
ity degree. By introducing the order of values for entropy
computation, it can preserve the order information of ordi-
nal attributes. The entropy-based distance metric [12], [29]
further unifies the distance definition of nominal and ordinal
attributes, and provides attributes weighting scheme for dis-
tance measurement. Since they have not exploited the infor-
mation provided by the interattribute relationship, the unified
distance metric [13] is proposed to extract useful relationship
information for measuring the distances of nominal and ordinal
attributes in a unified way. Most recently, homogeneous dis-
tance metric [15] is proposed based on the graph structure of
attribute values and achieves superior clustering performance
on the datasets composed of nominal and ordinal attributes.

However, for the widespread mixed data composed of
numerical and categorical attributes, the gap between numer-
ical and categorical attributes is more awkward than that
between nominal and ordinal attributes. The conventional way
for handling such mixed data is to compute the similarity
between data objects contributed by numerical and categorical
attributes using Euclidean distance and Hamming distance,
respectively, and then combine them using a trade-off parame-
ter [8]. However, the parameter cannot be easily decided and
the Hamming distance may introduce unreasonableness for
the distance measurement as discussed in the first paragraph
of this section. The similarity measure proposed in [10] is a
valuable attempt, which transforms the distances of numerical
and categorical attributes into the unified probability form
for measurement, and achieves better clustering performance
than the conventional approaches. However, such a measure
has not taken into account the relationship among attributes
and is incapable of exploiting the order information of ordi-
nal attributes, which limits its performance and application,
respectively.

B. Data Representation Methods

Data representation refers to the methods of encoding the
data values to represent the valuable data information and
make the data convenient to process. For the problem of
heterogeneous attribute data distance measurement, we can
encode nominal attributes using one-hot encoding, encode
ordinal attributes using the ranking of the possible values, and
then treat the encoded data as numerical one for distance mea-
surement. Such a straightforward and simple representation
strategy is called numerical coding (NC), and has been widely
adopted in real applications [7]. However, NC also suffers
several defects, including the lack of theoretical support, loss
of the interattribute relationship information, leading to the
curse of dimensionality of nominal attributes, and so on.
Some empirical studies [30] have already shown that the
performance of NC is generally worse than the specially
designed counterparts. Although it is a possible choice to ask
domain experts to complete the encoding task, for large-scale,
high-dimensional, and multivariate datasets, such an encoding
solution is extremely laborious and nontrivial.
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Therefore, automated representation methods have been pro-
posed to encode the datasets in an unsupervised environment.
Since numerical values already have well-defined distances,
most existing attempts related to the problem of heterogeneous
attribute data clustering focus on how to reasonably represent
the categorical attributes. The one proposed in [31] encodes
the attribute values according to the interobject dissimilarities
of the original dataset, and thus, the interattribute relationship
can be taken into account. Later, the representation method
proposed in [19] and [32] encodes the original dataset by
performing k-means clustering and PCA on intraattribute and
interattribute couplings to capture more abundant information
of categorical dataset. To ensure a more in-depth exploration
of the useful information, a more powerful representation
method proposed in [20] represents the dataset by using
different types of value couplings learned by multiple kernel
spaces and achieves superior clustering performance on cat-
egorical data. However, all the above-mentioned categorical
data representation methods are designed for nominal data
only.

Most recently, Mix2Vec [14] representation approach is
proposed for the dataset composed of numerical and cate-
gorical attributes. It utilizes a deep model to vectorize the
heterogeneous attribute values with sufficiently preserving the
structural distribution information of data objects and performs
better than the state-of-the-art deep [33] and statistical machine
learning [34] representation methods. However, Mix2Vec still
encodes categorical and numerical attributes in separate ways
and has not addressed the heterogeneous problem of nominal
and ordinal attributes. Moreover, although deep representation
models are powerful in improving clustering accuracy (CA),
their inherent weakness in terms of interpretability may some-
what limit their applications, especially for clustering-based
data understanding, knowledge acquisition, and so on.

III. PROPOSED METHOD

In this section, we first formulate notations of data com-
position, dissimilarity measure, interattribute dependence, and
objective function of heterogeneous attribute data clustering
in Section III-A. Then, the spatial structures of heterogeneous
attributes are constructed, based on which the dissimilarity
metric and interdependence measure of this article are pro-
posed and discussed in Section III-B. Following the new dis-
similarity definition, the clustering algorithm corresponding to
the objective function is derived and analyzed in Section III-C.

A. Problem Formulation

Table III sorts out the default notations and symbols used
in this article. A heterogeneous attribute dataset S can be
represented as a tuple S =< X, A, O >, where X =
{xi |i = 1, 2, . . . , n} is the object set with n objects. A =
{Ar |r = 1, 2, . . . , d} is the attribute set composed of d
attributes, including d �n� nominal, d �o� ordinal, and d �u� numer-
ical attributes, where d = d �n�+d �o�+d �u�. Here, “n,” “o,” and
“u” represent nominal, ordinal, and numerical, respectively.
For convenience but without loss of generality, we assume
that the attributes are concentrated by type in the order of
nominal, ordinal, and numerical attributes for all the datasets,
and we have

type(Ar ) =
⎧⎨
⎩

nominal, r ≤ d �n�

ordinal, d �n� < r ≤ d �n� + d �o�

numerical, d �n� + d �o� < r ≤ d
(1)

TABLE III

NOTATIONS AND SYMBOLS USED IN THIS ARTICLE

with r ∈ {1, 2, . . . , d}. Formally, we have A = A�n� ∪ A�o� ∪
A�u�, where A�n� = {Ar |r = 1, 2, . . . , d �n�}, A�o� = {Ar |r =
d �n� + 1, d �n� + 2, . . . , d �n� + d �o�}, and A�u� = {Ar |r = d �n� +
d �o� + 1, d �n� + d �o� + 2, . . . , d}. Corresponding to the attribute
set A, O = {Or |r = 1, 2, . . . , d} is the collection of unique
value sets of each attribute, where Or = {or

1, or
2, . . . , or

vr } is the
unique value set of Ar . For nominal and ordinal attributes, vr is
the number of unique values, which is usually a small integer
(i.e., 1 ≤ vr � n) because the attribute values fall in a limited
number of possible values, while vr is a relatively larger inter
(i.e., 1 ≤ vr ≤ n) for numerical attributes as they have infinite
possible values from the real space R. Moreover, compared
with nominal attributes, the values in Or of an ordinal or
numerical attribute have an additional order relationship or

1 �
or

2 � · · · � or
vr , where the symbol “�” indicates that the values

on its left rank higher than the values on its right. An intuitive
example can be found in Table I that the values of the GCS-E
attribute have order relationship: none � to_pain � to_speech
� spontaneous. The above-mentioned analysis of Or of the
three types of attributes once again reflects their heterogeneity.

The i th object of X is a vector xi = [x1
i , x2

i , . . . , xd
i ]	

consists of d values from the d attributes. In partitional
clustering task, X should be divided into k clusters C =
{Cl |l = 1, 2, . . . , k}, which are expressed as a collection of k
disjoint subsets of X , where Cl is the set of objects in the lth
cluster, and we have X =�k

l=1 Cl . To represent each cluster,
a k ×d matrix B is maintained during clustering, and each row
bl of B is a d value vector bl = [b1

l , b2
l , . . . , bd

l ]	 representing
the lth cluster Cl . An n × k matrix Q indicating which of the
k cluster the n objects belong to is usually maintained for
clustering. The (i, l)th entry of Q is denoted as qil , and its
value is computed by

qil =
�

1, if l = arg min
y

dissim(xi ,by)

0, otherwise
(2)

if dissimilar function dissim(·, ·) is adopted to evaluate which
cluster an object should be assigned to. According to (2),
we have

�k
l=1 qil = 1, qil ∈ {0, 1}. For heterogeneous attribute

data, how to define appropriate dissim(xi ,bl) for computing
the dissimilarities between objects and clusters composed of
heterogeneous attribute values is a more challenging problem,
which has attracted much more attention than clustering algo-
rithm. As discussed in the penultimate paragraph of Section I,
our goal is to define an appropriate dissimilar metric that can
exploit interattribute relationship information for quantifying
the dissimilarities of any type of attribute in a homogeneous
way. Following the conventional dissimilar definitions that
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considers the interattribute relationship, dissim(xi ,bl) can be
written as

dissim(xi ,bl) =
d�

r=1

d�
s=1

dissimrs	xr
i , br

l


 ·wrs (3)

where dissimrs(xr
i , br

l ) denotes dissimilarity between xr
i and hr

l
measured according to the information provided by attribute
As . The weight wrs [i.e., the (r, s)th entry of weight matrix
W] here is used to control the contributions of different
attributes (i.e., As) in forming dissimrs(xr

i , br
l ). Most existing

works [15], [16], and [17] hold that if two attributes are
more interdependent, then one attribute can provide a more
reliable indication in computing the dissimilarities of the other
attribute and vice versa. Therefore, wrs is quantified as the
interdependence degree of Ar and As , which will be discussed
in detail in Section III-B.

Then, we define the clustering problem following the k-
means-type algorithm as minimizing

z =
n�

i=1

k�
l=1

qil

d�
r=1

d�
s=1

dissimrs	xr
i , br

l


 · wrs. (4)

Similar to most k-means-type algorithms, the minimization
problem of (4) can be solved by iteratively: 1) computing
the minimizer Q with fixing B = B̂ and 2) computing the
minimizer B with fixing Q = Q̂, until convergence or a certain
stopping criterion is satisfied. For such optimization processes,
correctly defined dissimilarities are the vital prerequisite for
computing the minimizers Q and B. Therefore, how to appro-
priately define the dissimilarities dissimrs(xr

i , br
l ), the contri-

bution weights W and how to compute the two minimizers
B and Q are two focuses of this article. In the following,
exact definition of dissimrs(xr

i , br
l ) is given in Section III-B,

and in Section III-C, details about how to compute the two
minimizers are rigorously provided.

B. Dissimilarity Metric
Since both the values of xr

i and br
l in dissimrs(xr

i , br
l ) are

from Or , we should first understand the space structures cor-
responding to different Or s before defining dissimrs(xr

i , br
l ).

As discussed in Section III-A, if Ar is a nominal attribute,
all its n values are taken from a finite number of possible
values, which can be viewed as a discrete space Cr�n�. If Ar is
a numerical attribute, the corresponding value space is surely
a 1-D real space Rr�u�. However, an ordinal attribute has the
characteristics of both nominal and numerical attributes, i.e.,
ordinal attribute values fall in a limited number of possible
values as a nominal attribute, but these values are comparable
in the direction of their order, which is similar to the values of
a numerical attribute. Thus, the possible values of an ordinal
attribute Ar can be viewed as a 1-D discrete space, which is
denoted as Cr�o�. We first discuss the connections of these three
types of attributes in the following and then present detailed
dissimilarity definitions accordingly.

Remark 1: Connection of ordinal and numerical attributes:
for an ordinal attribute, if we increase its number of possible
values to approach infinity, then this ordinal attribute approxi-
mates a numerical attribute. From such a perspective, the pos-
sible values of an ordinal attribute can be viewed as a certain
number of numerical values with unknown dissimilarities, and
thus, these dissimilarities can be reflected by the numerical
attributes correlated with the ordinal one.

Remark 2: Connection of nominal and ordinal attributes:
possible values of an ordinal attribute are the grades
between two contradicted concepts, e.g., the four grades
{none, to_pain, to_speech, spontaneous} between the most
severe “none” and the most normal “spontaneous” of “GCS-E”
attribute in Table I. When considering any pair of intraattribute
nominal possible values, they can be viewed as an ordinal
attribute Ar with only two grades describing the two con-
tradicted concepts. Therefore, each pair of nominal possible
values can be viewed as a pair of concept-contradicted values
(CCVs) during dissimilarity measurement.

Definition 1: Any pair of possible values in Or when r <
d �n� (i.e., Ar is a nominal attribute), and the two values on the
two ends of Or when d �n� + 1 < r < d �n� + d �o� (i.e., Ar is
an ordinal attribute), are defined as a pair of CCVs. All the
CCVs from Or are denoted as Or�∗�. Accordingly, there are
vr (vr − 1)/2 pairs of CCVs for a nominal attribute, and only
one pair of CCVs for an ordinal attribute when vr > 1.

Remark 3: Connection of nominal and numerical attributes:
according to Remark 2, the dissimilarity between any pair of
nominal possible values can be viewed as the dissimilarity
between two possible values of an ordinal attribute with vr =
2, and thus, the dissimilarity can be indicated by numerical
attributes according to Remark 1.

To appropriately represent the dissimilarity spaces of het-
erogeneous attributes, we construct graphs for the attributes
according to the above-mentioned connections and the intrinsic
characteristics of heterogeneous attributes. Then, the spaces of
the heterogeneous attributes in A are mapped into homoge-
neous spaces G = {G1,G2, . . . ,Gd } described by nodes and
edges.

Remark 4: Graph construction details: the graph Gr =
{Or , Er } corresponding to Ar is constructed by treating values
in Or as the nodes and then linking them using edges Er .
As shown in Fig. 1, different diameters of nodes indicate the
occurrence frequency of the values. For the nominal case (i.e.,
r ≤ d �n�), vr (vr −1)/2 edges fully connect the possible values.
For the ordinal (or numerical) case (i.e., r > d �n�), all the vr

values are linearly arranged and are successively connected by
vr − 1 edges.

A universal definition of dissimilarity is that the higher
the cost of transforming two subjects into each other, the
more dissimilar the two subjects are. From the perspective
of the constructed graph structure, the transformation can be
viewed as transporting values falling from a possible value to
another possible value along the edge between them. Conse-
quently, our goal of dissimilarity measurement is converted
to estimating the transformation cost between two nodes
or

m and or
h according to the graph structures, which can be

written as

�r (or
m, or

h) =
d�

s=1

ψ rs
	
or

m, or
h


 ·wrs (5)

where ψ rs(·, ·) is a function that quantifies the transformation
cost between two nodes or

m and or
h of Gr reflected by Gs .

The weight wrs controls the contribution of Gs in forming
�r (or

m, or
h), which can be quantified as the interdependence

of Ar and As as discussed in Section III-A. Moreover, r and s
should satisfy r ∈ {1, 2, . . . , d �n� +d �o�} and s ∈ {1, 2, . . . , d},
respectively, which is discussed in Remark 5.

Remark 5: The role of numerical attributes: as numerical
attributes are with well-defined Euclidean dissimilarity space,
they are only represented by the graphs to reflect dissimilarities
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of nominal and ordinal attributes. Accordingly, we have r ∈
{1, 2, . . . , d �n� + d �o�} and s ∈ {1, 2, . . . , d} in (5).

Definitions of ψ rs(·, ·) and wrs in (5) are as follows. We first
define

urs
m = �p

	
os

1

��or
m



, p
	
os

2

��or
m



, . . . , p

	
os
vs

��or
m


	
which is the CPD of the values in Os as given or

m . Note that

p
	
os

g

��or
m


 = σ(Xs
g ∩ Xr

m)

σ (Xr
m)

where Xr
m = {xi |xr

i = or
m, i = 1, 2, . . . , n} is a subset of

X with the r th values of all its objects equal to or
m , and

the function σ(·) counts the cardinality of a set. By further
considering the case r = s, urs

m can be rewritten as

urs
m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎣0, 0, . . .� �� �

m−1

, 1, . . . , 0, 0� �� �
vr −m

⎤
⎦	

, if r = s

�
p
	
os

1

��or
m



, p
	
os

2

��or
m



, . . . , p

	
os
vs

��or
m


	
. if r �= s.

Actually, urs
m describes the situation of Gs as given or

m , and
we denote such situation as Grs

m . Then, we will discuss how to
define the cost ψ rs(or

m, or
h) based on urs

m .
The cost quantification function ψ rs(·, ·) should sufficiently

exploit the homogeneity brought by the graph space struc-
tures. Inspired by the earth mover’s distance (EMD) [35],
[36], which is originally proposed for computing the cost of
transforming one signature into another, we compute the cost
of transforming Grs

m and Grs
h into each other by

ψ rs(or
m, or

h) =
vr

mh−1�
g=1

��urs
g − urs

t

�� · trs
gt (6)

where t = g + 1. urs
g and urs

t are the CPDs of the values
in Os as given the gth and tth values in Or

mh , which is a
set containing all the vr

mh intermediate values (including or
m

and or
h themselves) on the shortest path between or

m and or
h .

More specifically, if Ar is a nominal attribute, every two nodes
in the corresponding graph Gr are directly linked, and thus,
we have Or

mh ≡ {or
m, or

h} and vr
mh ≡ 2. If Ar is an ordinal

or numerical attribute, all the values in Or ordered between
or

m to or
h (including themselves) are the nodes on the shortest

path from or
m to or

h in the corresponding graph Gr , and thus,
we have vr

mh = |m − h| + 1, and Or
mh = {or

m, or
m+1, . . . , or

h}
if m < h, or Or

mh = {or
h, or

h+1, . . . , or
m} if m > h. In (6),

the vr
mh − 1 subtransformation costs on the path through the

vr
mh nodes are successively accumulated. The CPD difference

urs
g − urs

t describes the differences between the corresponding
nodes of Grs

g and Grs
t that should be transported for offsetting

in the graph transformation. Vector trs
gt = [t rs

gt1, t rs
gt2, . . . , t rs

gtvs ]	
stores the minimum total edge lengths that should be taken to
transport each of the differences. Given graph structures with
edge lengths, obtaining trs

gt will become a very simple opti-
mization problem in operations research. The determination
of the edge lengths is discussed in the following.

Remark 6: Edge length: a prior knowledge we have is that
each pair of CCVs represent two different concepts. Similar to
the one-hot encoding, we set the total length of the edges on
the shortest path between each pair of CCVs to an identical
value θ . Another prior knowledge is that ordinal attribute
values have relative order, and thus, θ for an ordinal attribute
with only one pair of CCVs is equally allocated to the edges.

Fig. 2. Pipeline of dissimilarity calculation (taking the data fragment in
the lower part of Table I as an example). In Step 1, we first normalize
the numerical attribute A1 and then construct graphs for the three attributes
according to Remark 4. Since values of A1 are normalized into [0, 1], which
yields θ = 1, we set θ = 1 for all the graphs. Steps 2 and 3 are demonstrated
by taking the computation of �3(o3

1, o3
2) as an example. In Step 2, we first

prepare u31
1 = [0, 1, 0, 0, 0], u31

2 = [0.33, 0, 0.33, 0.33, 0], and u31
3 =

[0, 0, 0, 0, 1], then we successively compute ψ31(o3
1, o3

2) and w31 according
to (6) and (7). In the same way, we obtain ψ32(o3

1, o3
2), w

32, ψ33(o3
1, o3

2), and
w33. Finally, in Step 3, the subdissimilarities and the corresponding weights
are combined according to (5) to form �3(o3

1, o3
2).

Then, we discuss how to quantify the weight wrs in (5)
based on the interdependence between Ar and As . Note that
the transformation cost ψ rs(or

m, or
h) is the degree of dissim-

ilarity between the two different values or
m and or

h reflected
by As , which partially reflects the dependence of As on Ar .
More intuitively, if the dissimilarities between different values
of Ar reflected by As are always higher than the dissimilarities
reflected by the other attributes, Ar and As are considered to
have a stronger interdependence. Accordingly, we derived the
definition of wrs as

wrs =
�vr�∗�−1

q=1

�vr�∗�
c=q+1 ψ

rs(or
q, or

c)

vr�∗�(vr�∗� − 1)

2
· 	vr

qc − 1

 (7)

where or
q and or

c are the qth and cth nodes in the set Or�∗�,
respectively, and Or�∗� is the set contains vr�∗� concept-
contradicted nodes of Gr . vr

qc is the number of intermedi-
ate nodes (including or

q and or
c themselves) on the shortest

path between or
q and or

c. Equation (7) actually quantifies
the averaged transformation cost between every pair of the
concept-contradicted nodes in Or�∗� reflected by Gs . Dissim-
ilarity of heterogeneous attributes are uniformly quantified as
transformation cost by (5)–(7). A pipeline and a toy example
are provided in Fig. 2 to further demonstrate the calculation
process.

Based on the dissimilarity between two attribute values
defined by (5), the overall dissimilarity between two data
objects xi and x j can be computed by

�(xi , x j ) =
���� d�

r=1

�r
�

xr
i , xr

j

�2
. (8)

Based on (6)–(8), graph-based unified dissimilarity (GUD)
suitable for ADC is, thus, formed. We prove that GUD is a
metric in the following.

Lemma 1: Transformation cost defined in (6) satisfies
ψ rs(or

m, or
h) ≤ ψ rs(or

m, or
t ) + ψ rs(or

t , or
h) for any m, h, t ∈

{1, 2, . . . , vr }, r ∈ {1, 2, . . . , d �n�+d �o�}, and s ∈ {1, 2, . . . , d}.
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Proof: We prove Lemma 1 in the following two cases.
Case 1: Ar is a nominal attribute (i.e., r ∈ {1, 2, . . . , d �n�}).

In this case, Or
mh only contains or

m and or
h themselves accord-

ing to the graph structure because there is no intermediate
nodes between or

m and or
h and we have vr

mh ≡ 2 in (6). Since
the lengths of all the edges in Gs are identical, we set them
to 1 without affecting the analysis, and we have

ψ rs
	
or

m, or
h


 =
����urs

m − urs
h

����
1

2
. (9)

Since urs
m and urs

h satisfy |urs
m( f ) − urs

h ( f )| ≤ |urs
m( f ) −

urs
t ( f )| + |urs

t ( f )− urs
h ( f )| for any f ∈ {1, 2, . . . , vs}, where

the operation urs
m( f ) takes the value of the f th digit of urs

m .
Then, we have����urs

m − urs
h

����
1

2
≤
����urs

m − urs
t

����
1

2
+
����urs

t − urs
h

����
1

2
⇒ ψ rs

	
or

m, or
h


 ≤ ψ rs
	
or

m, or
t


+ ψ rs
	
or

t , or
h



.

Case 2: Ar is an ordinal attribute (i.e., r ∈ {d �n� + 1, d �n� +
2, . . . , d �n� + d �o�, }). In this case, when g and t satisfy |g −
t| = 1, there is no intermediate nodes between or

g and or
t , and

thus, the transformation cost between two nodes of an ordinal
attribute’s graph structure degenerates to (9). Accordingly,
(6) can be transformed into

ψ rs
	
or

m, or
h


 =
max(m,h)−1�

g=min(m,h),t=g+1

����urs
g − urs

t

����
1

2
.

Then, we have

ψ rs	or
m, or

h


 = ψ rs	or
m, or

t


+ ψ rs	or
t , or

h



if m ≤ t ≤ h or m ≥ t ≥ h , and

ψ rs
	
or

m, or
h



< ψ rs

	
or

m, or
t


+ ψ rs
	
or

t , or
h



if t < min

	
m, h



or t > max

	
m, h



.

�
Theorem 1: Dissimilarity measure defined in (5)–(8) is a

metric.
Proof: According to (5)–(7) and Lemma 1, it is clear

that the defined intraattribute dissimilarity �r (or
m, or

h) =�d
s=1 ψ

rs(or
m, or

h) · wrs satisfies the following properties for
any m, h, t ∈ {1, 2, . . . , vr } and r ∈ {1, 2, . . . , d �n� + d �o�}.

1) �r (or
m, or

h) ≥ 0.
2) or

m = or
h ⇔ �r (or

m, or
h) = 0.

3) �r (or
m, or

h) = �r (or
h, or

m).
4) �r (or

m, or
h) ≤ �r (or

m, or
t )+ �r(or

t , or
h).

According to (8), it is clear that the following properties hold
for any i, j, l ∈ {1, 2, . . . , n}.

1) �(xi , x j ) ≥ 0.
2) xi = x j ⇔ �(xi , x j ) = 0.
3) �(xi , x j ) = �(x j , xi ).
4) �(xi , x j ) ≤ �(xi , xl)+�(xl, x j).

The defined dissimilarity measure satisfies all the metric
properties. �

In practice, a set of dissimilarity matrices D = {D1,
D2, . . . ,Dd�n�+d�o� }, where Dr is a vr × vr symmetric matrix
storing intraattribute dissimilarities of Ar , can be computed
before clustering. Value of the (m, h)th entry of Dr is
�r (or

m, or
h) computed by (5). With D, dissimilarities can be

directly read off during clustering. However, for the case that

As is a numerical attribute (i.e., s ∈ {d �n�+d �o�+1, d �n�+d �o�+
2, . . . , d}), a large vs may make the computation laborious.
A fast approximation way for the computation is to discretize
the value range of As into a small number of intervals, and
then As can be treated in the same way as ordinal attributes for
indicating the dissimilarities of the other attributes. Note that
such a discretization process is optional, and exact Euclidean
distances between the values of numerical attributes are still
utilized for the object level dissimilarity computation in (8).
Then, we analyze the time and space complexity of GUD as
follows.

Theorem 2: The time complexity for computing the dis-
similarity matrices in D using GUD is O(nd �n�d + nd �o�d +
ϑ3d �n�d + ϑ3d �o�d).

Proof: For convenience, we adopt ϑ = max(v1, v2, . . . ,
vd�n�+d�o�

) in all subsequent time and space complexity analy-
ses. Since the number of intraattribute dissimilarities that
should be computed for a nominal attribute is ϑ(ϑ − 1)/2,
which is larger than ϑ − 1 of an ordinal attribute, we treat
Ar as a nominal attribute in the following analysis.

CPDs should be first computed for the (d �n�+d �o�)×d pairs
of attributes. Since for each pair of attributes, the n values of
As should be scanned once, time complexity for preparing all
the CPDs is O(n(d �n� + d �o�)d).

Then, transformation costs ψ rs(or
m, or

h) in (6) should be
computed for the ϑ(ϑ−1)/2 pairs of possible values of d �n�+
d �o� attributes indicated by d attributes. If As is a nominal
attribute, subtraction and sum operations should be performed
to the ϑ digits of urs

m and urs
h , in turn, in (6). If As is an

ordinal attribute, subtraction and digit-by-digit sum operations
should be performed to the ϑ digits of urs

m and urs
h , in turn,

in (6). That is, the nominal and ordinal cases of As have the
same complexity. Therefore, time complexity for computing
all the transformation costs is O(ϑ3(d �n� + d �o�)d).

After that, (d �n� + d �o�) × d weights wrs in W should be
computed according to (7). Each component (i.e., transfor-
mation cost) involved in the sum operation in the numerator
has already been computed, and only the sum operation is
needed. There are ϑ(ϑ−1)/2 and 1 sum operations for the case
that Ar is a nominal attribute and Ar is an ordinal attribute,
respectively. The value of the denominator is a constant given
Ar . Therefore, time complexity for computing the weights is
O(d �n�ϑ2d + d �o�d).

Finally, transformation costs computed by (6) and weights
computed by (7) are concatenated by (5) to form ϑ(ϑ −
1)/2 intraattribute dissimilarities of the d �n� + d �o� nominal
and ordinal attributes. Since each dissimilarity is indicated by
d − 1 attributes, time complexity for computing the intraat-
tribute dissimilarities is O(ϑ2(d �n� + d �o�)d).

The overall time complexity for computing D is the sum-
mation of the above-analyzed time complexities, which is
O(nd �n�d + nd �o�d + ϑ3d �n�d + ϑ3d �o�d). �

Theorem 3: The space complexity for computing the dis-
similarity matrices in D using GUD is O(nd+ϑ2d �n�+ϑ2d �o�).

Proof: The space for storing the dataset X and the
dissimilarity matrices D is n × d and ϑ2 × (d �n� + d �o�),
respectively. All the values in each ϑ × ϑ space for storing
each Dr in D are initialized to 0. Then, we analyze the space
complexity for computing D in the following.

CPDs of As’s values given each of the ϑ values of Ar

should be stored for the computation of cost ψ rs(or
m, or

h).
Since each CPD is a ϑ-bit vector, the space taken for storing
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CPDs is ϑ × ϑ , and this space is used by different attribute
pairs.

There are a total of ϑ×(ϑ−1)/2 costs for different Ar and
As , and the required space is ϑ × ϑ , which can be denoted
as a matrix Drs. Accordingly, the weight wrs can be obtained
through Drs. Then, we multiply all the costs in Drs with wrs to
form the weighted costs ψ rs(or

m, or
h)·wrs to replace the original

costs ψ rs(or
m, or

h) in Drs. When considering the next As for a
given Ar , the current weighted costs in Drs are added to the
space for storing Dr , and then the new weighted costs are
computed and stored in Drs. The above-mentioned processes
are repeated until the weighted costs contributed by each As

(s = {1, 2, . . . , d}) have been added to the space for Dr . At this
time, we obtain the final Dr . Since the ϑ × ϑ space Drs is
utilized for storing the costs and weighted costs for different
attribute pairs, space taken for the computation of D is ϑ×ϑ .

The overall space complexity for computing D is O(nd +
ϑ2(d �n� + d �o�) + 2ϑ2), which can be simplified to O(nd +
ϑ2d �n� + ϑ2d �o�). �

Since the existing distance metrics are either for categorical
data or numerical data, we compare their complexity of them
and the proposed GUD in the following two cases: 1) given a
numerical dataset, GUD has the same time and space complex-
ity as the commonly used Euclidean distance because GUD
directly adopts Euclidean distances for numerical attributes.
2) Given a categorical dataset, we have d �n� + d �o� = d ,
and thus, the time and space complexity of GUD becomes
O(nd2 + ϑ3d2) and O(nd + ϑ2d), respectively, which is the
same as that of mainstream [17], [18], [26], [27] and the state-
of-the-art [13], [15], [28] distance metrics.

C. Clustering Algorithm

In this section, a new clustering algorithm is proposed to
unify the processing of heterogeneous attributes in clustering,
and thus, provide an elegant solution for ADC. Furthermore,
the derivation of the algorithm also ensures the consistency of
the optimization process and the objective under the premise of
using the newly defined GUD dissimilarity metric. We reform
the objective function defined in (4) based on GUD as

z =
n�

i=1

k�
l=1

qil�(xi ,bl) (10)

and the updating strategies of Q and B are given in the
following.

Theorem 4: Let B be fixed, z is minimized iff Q is com-
puted by

qil =
�

1, if l = arg min
y
�(xi ,by)

0, otherwise.
(11)

Proof: Since all the inner sums of (10) are nonnegative
and independent, the inner sum contributed by xi can be
written as

z�xi � =
k�

l=1

qil z
�xi ,Cl �, z�xi ,Cl � = �(xi ,bl)

where z�xi ,Cl � is the inner sum contributed by xi in the lth
cluster Cl . Since

�k
l=1 qil = 1 and qil ∈ {0, 1}, it is clear

that z�xi � is minimized if the minimum z�xi ,Cl � is assigned with
qil = 1 and the other z�xi ,Cl �s are assigned with qil = 0. The
result follows (11). �

Theorem 5: Let Q be fixed, z is minimized iff B is com-
puted by

br
l = arg min

br
t

����σ (Cl )�
g=1

�r
�

cr
lg, br

t

�2
(12)

where br
t is a possible value of Ar , cr

lg is the gth value of Cr
l ,

and Cr
l is the set of r th values of the objects in cluster Cl .

Proof: Since all the inner sums contributed by different
clusters in C = {C1,C2, . . . ,Ck} are nonnegative and inde-
pendent of (10), the inner sum contributed by cluster Cl can
be written as

z�Cl � =
n�
i

qil

���� d�
r=1

�r
	
xr

i , br
l


2 =
σ (Cl )�
g=1

���� d�
r=1

�r
�

cr
lg, br

l

�2
.

Since all the inner sums of z�Cl � are nonnegative and indepen-
dent, the inner sum contributed by Cr

l can be written as

z�Cr
l � =

σ (Cl )�
g=1

�r
	
cr

lg, br
l


2
.

Then, we prove Theorem 5 in the following two cases.
Case 1: r ∈ {1, 2, . . . , d �n� + d �o�}, since the values cr

lg
and br

l are categorical values, which cannot participate in
mathematical operations themselves, the optimal br

l can only
be obtained by comparing the values of z�Cr

l � with different
br

l s among all the possible values of Ar . Then, it is clear that
the optimal br

l is the one producing the minimum z�Cr
l �. The

result follows (12).
Case 2: r ∈ {d �n�+d �o�+1, d �n�+d �o�+2, . . . , d}, since the

values cr
lg and br

l can participate in mathematical operations
and br

l can be any possible values in the value range of Ar ,
we have

z�Cr
l � =

σ (Cl )�
g=1

�r
	
cr

lg, br
l


2 =
σ (Cl )�
g=1

	
cr

lg − br
l


2
∂z�Cr

l �

∂br
l

= 2

⎛
⎝σ (Cl )�

g=1

br
l −

σ (Cl )�
g=1

cr
lg

⎞
⎠.

Let ((∂z�Cr
l �)/(∂br

l )) = 0, we then have

σ (Cl )�
g=1

br
l =

σ (Cl )�
g=1

cr
lg ⇒ σ(Cl)b

r
l =

σ (Cl )�
g=1

cr
lg

⇒ br
l =

⎛
⎝σ (Cl )�

g=1

cr
lg

⎞
⎠!σ(Cl). (13)

Equation (13) actually computes the mean of the values in Cr
l .

Then, it is clear that z�Cr
l � is minimized iff the mean of the

values in Cr
l is assigned to br

l , and (13) is equivalent to (12)
for the case r ∈ {d �n� + d �o� + 1, d �n� + d �o� + 2, . . . , d}. The
result follows (12). �

Based on the above-mentioned analysis, we iteratively
update Q and B in two steps as follows: 1) fix Q, update
the former d �n� + d �o� columns of B according to (12) and
2) fix B, update Q according to (11). Since infinite number of
possible values of numerical attributes make the value of br

l
unobtainable according to (12), the latter d �u� columns of B
are obtained according to (13). These two steps repeat until



6538 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 9, SEPTEMBER 2023

Algorithm 1 ADC Clustering Algorithm
Input: Data set S, number of clusters k.
Output: Partition Q.
Step 0: Compute dissimilarity matrices D by (5);

Initialize the time-step by τ = 0; Randomly initialize each
row of B(τ ), and compute Q(τ ) and z�τ � accordingly;

Step 1: Fix Q = Q(τ ), compute B by (12) and (13),
obtain B(τ+1), and compute z�B(τ+1)� based on Q(τ ) and
B(τ+1); If z�B(τ+1)� �= z�τ �, go to Step 2; Otherwise, stop
and Output Q(τ );

Step 2: Fix B(τ+1), compute Q(τ ) by (11), obtain
Q(τ+1), and compute z�τ+1� based on Q�τ+1� and B�τ+1�;
If z�τ+1� �= z�B(τ+1)�, update the time-step by τ = τ + 1,
go to Step 1; Otherwise, stop and Output Q(τ );

the value of z remains unchanged. The corresponding clus-
tering algorithm is summarized in Algorithm 1. Meanwhile,
its convergence, time, and space complexity are analyzed as
follows.

Theorem 6: ADC algorithm converges to a local minimal
solution in a finite number of iterations.

Proof: We show that a possible partition Q appears at
most once by implementing the ADC algorithm before it
stops. To prove this, we first assume that this is not true and
then provide contradiction proof in the following. Assume
Q(τ1) = Q(τ2), where τ1 �= τ2. Note that given Q(τ1) and
Q(τ2), we can compute the minimizers B(τ1+1) and B(τ2+1),
respectively, according to Step 1 of Algorithm 1. Since Q(τ1) =
Q(τ2), it is clear that B(τ1+1) = B(τ2+1). Therefore, we have

z�B(τ1+1)� = z�B(τ2+1)�. (14)

However, the values of z generated by the algorithm are strictly
decreasing, which has been proven in Theorems 4 and 5.
Hence, (14) is not true. Since there are only a finite number
of possible partitions of the dataset S, then the algorithm will
reach a local minimal solution in a finite number of iterations.
The result follows. �

Theorem 7: Given D, the time complexity of ADC algo-
rithm is O(η(k(d �n� + d �o�)ϑn + kd �u�n + kdn)).

Proof: We still adopt ϑ = max(v1, v2, . . . , vd�n�+d�o�
) for

the analysis. In Step 1 of Algorithm 1, there are k × d values
in B to be computed. For the r th column of B, there are k
values to be computed. Then, we analyze the time complexity
of Step 1 in the following two cases.

Case 1: r ∈ {1, 2, . . . , d �n� + d �o�}, br
l s in the r th column

of B are computed according to (12). For each br
l , there

are vr candidates Or = {or
1, or

2, . . . , or
vr } to be considered.

For each candidate or
m , total dissimilarity between or

m and

Cr
l with σ(Cl) values, i.e., (

�σ (Cl )
g=1 �r (cr

lg, or
m)

2)1/2, should be
computed. Then, the value in Or producing the minimum total
dissimilarity is assigned to br

l . Since we have
�k

l=1 σ(Cl) = n,
the time complexity is O(k(d �n� + d �o�)ϑn).

Case 2: r ∈ {d �n� + d �o� + 1, d �n� + d �o� + 2, . . . , d}, br
l s in

the r th column of B are computed according to (13), where
σ(Cl) values in Cr

l are involved to obtain their mean and is
assigned to br

l . Hence, the time complexity is O(kd �u�n).
In Step 2 of Algorithm 1, for each data object xi , dissimi-

larity between it and each row bl of B should be computed.
Since dissimilarity matrices of nominal and ordinal attributes
(i.e., D) has been computed, overall dissimilarity �(xi ,bl)

reflected by the d �n� nominal attributes and d �o� ordinal
attributes can be directly read off, and �(xi ,bl) reflected
by the d �u� numerical attributes can be obtained directly
by subtracting corresponding values in xi and bl . After the
above-mentioned computation, bl that yields the minimum
dissimilarity is selected, then the (i, l)th value (i.e., qil) in
Q is set at 1, and the other values in the i th row of Q are set
at 0. Since there are n objects and k rows in B in total, the
time complexity is O(kdn).

We use η to indicate the total number of iterations required
to make Step 1 and Step 2 converge. Then, the time complexity
of ADC algorithm is O(η(k(d �n� + d �o�)ϑn + kd �u�n + kdn)).

�
Theorem 8: Given D, the space complexity of ADC algo-

rithm is O(nd + nk + kd).
Proof: During the computation of ADC, an n × d space,

an n × k space, and a k × d space are required to store X , Q,
and B, respectively. �

Since ϑ is usually a very small value (ϑ � n) for real
datasets, the time complexity of ADC can be simplified to
O(ηkdn), which has the same order of magnitude as that of
conventional k-means-type clustering algorithms. As for space
complexity, ADC does not introduce or generate additional
values that need to be stored compared to the conventional
k-means-type algorithms. Consequently, they have the same
space complexity O(nd + nk + kd).

IV. EXPERIMENTS

A. Experimental Settings

Five types of experiments have been conducted to compre-
hensively evaluate the proposed method. Experimental designs
are introduced in the following.

• Comparative Study of the Clustering Performance: to
demonstrate the superiority of the proposed clustering
approach, we compare it with the conventional, repre-
sentative, and state-of-the-art counterparts, respectively,
on different types of datasets using different validity
indices.

• Ablation Study of the Proposed Method: to more specif-
ically show the effectiveness of the proposed ADC clus-
tering approach, we compare different ablated versions
of ADC formed corresponding to its components and the
ways it handles different types of attributes.

• Significance study of the comparative results: To sta-
tistically illustrate the superiority of the proposed clus-
tering approach, we implement significance tests to the
clustering performance produced in the first experiment
“Comparative study of the clustering performance.”

• Intuitive Performance Comparison: To intuitively show
the effectiveness of the proposed GUD metric, we encode
the datasets using the GUD measured dissimilarities,
conduct dimensionality reduction and visualize the rep-
resented data and the measured dissimilarities to provide
an impression of GUD.

• Convergence and Efficiency Evaluation: Values of the
objective function and execution time per iteration are
recorded to illustrate the convergence and efficiency of
ADC. We also evaluate the efficiency of a large-scale
synthetic dataset with the different sampling rates and
numbers of possible values. The results of the conver-
gence and efficiency evaluation can be found in the
supplementary material.
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For all the experiments involving the comparison of clustering
performance, each compared approach is executed 50 times
and the averaged performance is reported.

In the experiments, the proposed ADC is compared with
15 counterparts, including eight representative approaches
in the literature and seven variants of ADC. Conventional
approaches, including k-means [37] + NC, k-modes [38] clus-
tering algorithm for pure categorical data, and k-prototypes [8]
clustering algorithm for datasets composed of both numer-
ical and categorical attributes are selected as the bench-
mark counterparts. Representative approaches, including the
entropy-based LSM [11] and context-based distance metric
(CBDM) [17], which are two representative similarity mea-
sures proposed for categorical data, are both selected as
counterparts. Both of them are combined with k-modes to
form two clustering approaches for comparison. The state-
of-the-art clustering approaches, includes iterative clustering
learning based on object-cluster similarity metric (OCIL) [10]
proposed for dataset composed of numerical and categorical
attributes, and unified distance metric (UDM)-based clustering
(UDMC) [13] and HD-based clustering (HDC) [15] proposed
for dataset composed of nominal and ordinal attributes, have
also been chosen as counterparts. Note that we set the
parameters (if any) of the above-mentioned counterparts at
the values suggested by the corresponding papers. In addi-
tion, seven variations of ADC, called ADCI, ADCII, ADCIII,
ADCIV, O2N, O2U, and ON2U are generated for the ablation
studies. Details of the seven ADC variants are provided in
Section IV-C.

Three validity indices are chosen for evaluating the per-
formance. CA [39] is a conventional and popular validity
index, which computes the matching rate based on the best
permutation mapping between the obtained clusters and the
true classes. Thus, the value range of CA is [0, 1]. Adjusted
rand index (ARI) [40], [41], [42] is a powerful and popular
index, which is a random labeling independent version of the
RI, where RI quantifies the agreement between the obtained
clusters and the true classes as the percentage of object pairs
that are assigned in the same or different clusters in the
obtained clusters and the clusters obtained according to the
true data label. ARI has a value close to 0 for random labeling,
and thus, the value range of ARI is [−1, 1]. The maximum
value of 1 indicates a perfect label matching and vice versa.
We also conduct the Bonferroni–Dunn (BD) test [43] to
the clustering performance of the compared approaches and
compute the critical difference (CD) interval to statistically
illustrate the superiority of the proposed approach.

To ensure a more comprehensive evaluation, various real
datasets from different domains (including medicine, finance,
biology, sociology, and so on) have been chosen for the exper-
iments. Statistics of the datasets are summarized in Table IV.
Datasets 1–14, 16–19, and 22–25 are public datasets col-
lected from the University of California, Irvine (UCI) machine
learning repository3. Datasets 20, 21, and 30 are collected
from Shenzhen University, Shenzhen, China, an advertising
company, and the Education University of Hong Kong, Hong
Kong, respectively. Dataset 20 has 72 data objects corre-
sponding to the questionnaire answers of 72 students. The
four attributes are nominal “gender” and “language,” and
ordinal “professional” and “helpful.” The label describes the
course the student is taking. Dataset 21 has 100 data objects
corresponding to the business survey records of fruit advertise-

3https://archive.ics.uci.edu/ml/datasets.php

TABLE IV

STATISTICS OF THE 30 DATASETS. d�u� , d�n� , AND d�o� INDICATE THE
NUMBER OF NUMERICAL, NOMINAL, AND ORDINAL ATTRIBUTES,

RESPECTIVELY. n AND k∗ INDICATE THE NUMBER

OF DATA OBJECTS AND THE TRUE NUMBER

OF CLUSTERS, RESPECTIVELY

ment (abbreviated as “ad” hereinafter). The five attributes are
nominal “fruit type” and “ad type,” and ordinal “ad volume,”
“vendor level,” and “fruit price.” The label describes the over-
all evaluation results of the ads. Both datasets 20 and 21 are
collected to study the cluster effect of data objects reflected
by the heterogeneous attributes, while dataset 30 is collected
to study the cluster effect reflected by ordinal attributes.
The 90 objects in dataset 30 correspond to the questionnaire
answers of 90 intern students. The three ordinal attributes
are “recognition,” “willingness,” and “education level.” The
label describes the student’s final internship mode. Dataset
15 collected from the PhysioNet4 and datasets 26–29 collected
from the Weka website5 are all public real datasets. For dataset
15, the six numerical attributes are “heart rate,” “respiration
rate,” “systolic blood pressure,” “diastolic blood pressure,”
“Sao2,” and “age,” the nominal attribute is “gender,” and the
label is the “overall GCS score.” See Table I for the meaning
of “Sao2” and “GCS.” All the datasets are preprocessed by
removing objects with missing value(s). In all the experiments,
the number of clusters k is set to k = k∗.

B. Clustering Performance Evaluation
It is well acknowledged that the heterogeneity between

numerical and categorical attributes is more awkward than
that between the two subtypes of categorical attributes, i.e.,
nominal and ordinal attributes. Therefore, we first evaluate the
performance of ADC on the heterogeneous attribute datasets
composed of numerical and categorical attributes (i.e., datasets
1–15 in Table IV). Among the 15 datasets, datasets 4–15 are
more challenging because datasets 4–11 are composed of all
three types of attributes, i.e., numerical, nominal, and ordinal
attributes, and datasets 11–15 are large-scale datasets. The

4https://physionet.org/content/mimiciii/1.4/
5https://waikato.github.io/weka-wiki/datasets/
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TABLE V

CA PERFORMANCE ON 15 MIXED DATASETS COMPOSED OF NUMERICAL
AND CATEGORICAL ATTRIBUTES

TABLE VI

ARI PERFORMANCE ON 15 MIXED DATASETS COMPOSED OF NUMERICAL

AND CATEGORICAL ATTRIBUTES

clustering performance of ADC and all the counterparts that
apply to datasets 1–15 are evaluated by CA and ARI, and
the corresponding results are compared in Tables V and VI.
The best and the second-best results on each dataset are
highlighted using boldface and underline, respectively. The
row of “Ave. Rank” in Tables V and VI computes the average
rank of the performance of the compared approaches on all the
datasets and will be utilized to conduct the BD significance
test. For the case that two approaches are with the same rank,
we follow the common way to add 0.5 to their ranks. Since
most of the existing clustering approaches are inapplicable
to the challenging case that both numerical and categorical
attributes exist in a dataset, we compare the other counterparts
on datasets 16–30 in Section IV-E for completeness.

It can be observed from Tables V and VI that, except
for the TF, FC, KC, and MC datasets, ADC outperforms all
the counterparts. Even on TF, FC, KC, and MC, ADC still
performs the second best, with only a tiny gap compared with
the best-performing one. Another interesting finding is that the
clustering performance of the compared methods on the four
large-scale datasets with a larger number of true clusters, i.e.,
FC, CI, KC, and MC, is not worse than their performance on
the other datasets. It is because a larger number of samples
may provide richer statistical information to more clearly
describe the distribution of clusters.

To further demonstrate the superiority of ADC, BD tests
are conducted on the CA and ARI performance of the com-

Fig. 3. BD test in (a) and (b) are based on the average performance ranks of
counterparts shown in Tables V and VI. (a) BD Test on the CA performance
in Table V. (b) BD Test on the ARI performance in Table VI.

pared approaches. To make the test results easy to observe,
we compute the CD interval for the two-tailed BD test and
visualize the test results in Fig. 3. CD intervals for the
two-tailed BD tests at 0.95 confidence interval (α = 0.05)
and 0.90 confidence interval (α = 0.1) are 1.1285 and 1.0031,
respectively, for comparing four approaches on 15 datasets.
In Fig. 3, a counterpart that ranks outside the right boundary
of a CD interval is believed to perform significantly worse
than ADC. Therefore, the BD test results in Fig. 3 show that
ADC outperforms all its counterparts.

C. Ablation Study
We conduct ablation studies based on the clustering perfor-

mance evaluated by the discriminative ARI index. To eval-
uate the effectiveness of the unified updating scheme of B
derived in Theorem 5, we compare ADC with its variation
ADCI, which adopts the prototype selection strategy of the
conventional k-prototypes clustering algorithm. To evaluate the
effectiveness of the interattribute dependence-based attributes
weighting in (5) and (7), we further set all the values in W
to 1 for the GUD-based dissimilarity measurement of ADCI,
and form the variation ADCII. To evaluate the reasonableness
of exploiting interattribute relationship for computing the
dissimilarities, we also generate ADCIII based on ADCII by
setting s = r in (5), which makes that the dissimilarities of
an attribute Ar can only be indicated by Ar itself. For com-
pleteness, we further make ADCIII use only the conventional
Euclidean and Hamming distances, thus forming ADCIV. The
clustering performance of ADC and its four variations are
compared in Fig. 4.

It can be observed that ADC outperforms its four variations
in general, which illustrates the effectiveness of ADC. More
specifically, ADC outperforms ADCI on seven datasets and
has a similar performance as ADCI on the rest. This indi-
cates that the updating of B is effective. ADCI outperforms
ADCII on nine out of the 15 datasets illustrating that the
attributes weighing scheme is effective for the dissimilarity
measurement of GUD. ADCII outperforms ADCIII on ten out
of the 15 datasets illustrating that GUD can effectively exploit
the information provided by the interattribute relationship
for reasonable dissimilarity measurement. Moreover, ADCIII

performs no worse than ADCIV on 14 out of the 15 datasets,
which justifies the use of graph-based dissimilarities.

To validate the reasonableness of ADC in dealing with het-
erogeneous attributes, we compare the clustering performance
of ADC and three different versions of it that treat ordinal
and nominal attributes in different ways. The version that
treats ordinal attributes as nominal ones is denoted as O2N.
The two versions that adopt NC to treat ordinal attributes as
Numerical ones, and both ordinal and nominal attributes as
numerical ones, are denoted as O2U and ON2U, respectively.
Corresponding results are demonstrated in Fig. 5.

On the former three and the latter four datasets, i.e., DS,
HF, AA, FC, CI, KC, and MC, the performance of ADC is



ZHANG AND CHEUNG: GRAPH-BASED DISSIMILARITY MEASUREMENT FOR CLUSTER ANALYSIS OF ANY-TYPE-ATTRIBUTED DATA 6541

Fig. 4. Comparison of the clustering performance of ADC and its four
ablated versions (i.e., ADCI, ADCII, ADCIII, and ADCIV).

the same as O2N and O2U, because ADC is equivalent to
them when there is no ordinal attribute in datasets. On the
remaining eight datasets, ADC performs better than O2N and
O2U in general, which demonstrates the reasonableness of
considering the orders of possible values, and the correctness
of the dissimilarities defined for ordinal attributes, respectively.
Moreover, the results show that ON2U performs worse than
O2N and O2U in general. This is because ON2U involves
more imprudent conversions between heterogeneous attributes.

D. Intuitive Results
To provide an intuitive impression of the dissimilarities

defined by the proposed GUD metric, Fig. 6 shows the
dissimilarities between attribute values of the MM dataset
composed of two nominal, two ordinal, and one numerical
attribute. As discussed in Remarks 1–3 and demonstrated
in Fig. 1, all the vr (vr )/2 dissimilarities among vr values
of a nominal attribute Ar cannot be exactly visualize in a
plane like the linearly arranged dissimilarities of ordinal and
numerical attributes. Therefore, we visualize the dissimilarities
from the perspective of each nominal attribute value. Since
A1 and A2 have four and five possible values, respectively,
the visualization of A1 and A2 are separated into four and

Fig. 5. Comparison of the clustering performance of ADC and its three
versions that treat ordinal and nominal attributes in different ways.

Fig. 6. Dissimilarities among the values of the attributes of MM dataset,
which is composed of two nominal attributes (i.e., A1 and A2), two ordinal
attributes (i.e., A3 and A4), and one numerical attribute (i.e., A5).

five subfigures, i.e., {A1 : o1
1, A1 : o1

2, . . . , A1 : o1
4} and

{A2 : o2
1, A2 : o2

2, . . . , A2 : o2
5}, respectively. The center points

of these nine subfigures are o1
1, o1

2, . . . , o1
4, o2

1, o2
2, . . . , o2

5,
respectively. The diameters of the points indicate the frequency
of such value in the attribute, and the lengths of the links
indicate the value of the dissimilarity.

T-distributed stochastic neighbor embedding (T-SNE) [44]
dimensionality reduction is also adopted for intuitively illus-
trating the effectiveness of GUD. We first compute the dissim-
ilarities among values of each nonnumerical attribute using
GUD and then encode the attribute values by vectorizing
them using the dissimilarities. Then, the encoded dataset is
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TABLE VII

CA PERFORMANCE ON SIX MIXED CATEGORICAL DATASETS COMPOSED OF NOMINAL AND ORDINAL ATTRIBUTES

TABLE VIII

ARI PERFORMANCE ON SIX MIXED CATEGORICAL DATASETS COMPOSED OF NOMINAL AND ORDINAL ATTRIBUTES

TABLE IX

CA PERFORMANCE ON FOUR PURE NOMINAL AND FIVE PURE ORDINAL DATASETS

Fig. 7. t-SNE visualization of the DT dataset represented by HE, NC, and
GUD. Different markers indicate true clusters of data objects. (a) HE@DT.
(b) NC@DT. (c) GUD@DT.

processed by t-SNE for dimensionality reduction and visual-
ization. The NC encoding strategy and the metric formed by
combining the Hamming and Euclidean (HE) distance metrics
are compared as they are commonly used for mixed data.
The visualization results on the DT dataset are shown in
Fig. 7(a)–(c), and the data objects belonging to different true
clusters are annotated with different markers.

From Fig. 7(a), it can be seen that the true clusters 1, 2, 4,
and 5 of the DT dataset are not well-separated by HE. The
reason may be that HE cannot exploit the order information
of the 32 ordinal attributes of DT. Since NC encodes such

information, the true clusters are more separable in Fig. 7(b).
However, the true clusters 2 and 4 are still overlapped. For
GUD, it can be observed from Fig. 7(c) that the true clusters
are more separable. Although the true clusters 2 and 4 overlap
heavily in Fig. 7(a) and (b), they can still be well separated by
GUD. The reason why GUD outperforms NC is that GUD not
only exploits the order information of ordinal attributes but can
also reasonably extract and exploit the information provided
by the interdependence relationship among the attributes, even
if the attributes are heterogeneous.

E. Clustering Performance on Categorical Datasets
Although ADC is proposed for heterogeneous attribute data,

we claim that ADC is also competent for categorical data,
including mixed categorical data composed of both nominal
and ordinal attributes (datasets 16–21), pure nominal data
(datasets 22–25), and pure ordinal data (datasets 26–30).

Comparative results on the mixed categorical datasets are
shown in Tables VII and VIII. It can be observed that ADC
outperforms all its counterparts in general, which proves
the effectiveness of ADC in processing the heterogeneity of
nominal and ordinal attributes. HDC also has a competitive
clustering performance. It is because HDC and ADC adopt
a similar graph-based dissimilarity modeling idea. However,
HDC is only proposed for categorical data, which does not
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TABLE X

ARI PERFORMANCE ON FOUR PURE NOMINAL AND FIVE PURE ORDINAL DATASETS

Fig. 8. BD test in (a) and (b) are based on the average performance ranks
of counterparts shown in Tables VII and X. (a) BD Test on the results in
Tables VII and IX. (b) BD Test on the results in Tables VIII and X.

apply to the case where there are numerical attributes. More-
over, the reason why ADC still outperforms HDC is that ADC
adopts the rigorously derived updating strategy of B, while
HDC does not. For completeness, clustering performance
on pure nominal and ordinal attributes are also reported in
Tables IX and X. For the datasets composed of only one type
of categorical attribute, the efficacy of ADC is suppressed as
ADC focuses on the processing of heterogeneous attributes.
This is the reason why the superiority of ADC in the pure
datasets is not as significant as its superiority in the mixed
categorical datasets. Nevertheless, ADC is still very competi-
tive compared with its counterparts on the nine pure datasets.
The clustering performance of k-modes + CBDM on the
lenses (LS) dataset is not reported because the attributes of
LS are independent of each other, which makes CBDM fail
in dissimilarity measurement.

We also conduct BD significance test to the results shown
in Tables VII–X, and visualize the test results in Fig. 8.
CD intervals for the two-tailed BD tests at 0.95 (α = 0.05)
and 0.90 (α = 0.1) confidence intervals are 2.0809 and 1.8884,
respectively, for comparing seven approaches on 15 datasets.
It can be observed that all the counterparts excepting HDC
rank outside the right boundaries of CD intervals centered on
ADC, which proves the effectiveness of ADC in categorical
data clustering.

V. CONCLUSION

In this article, we have proposed the GUD dissimilar-
ity metric and ADC clustering algorithm for heterogeneous
attribute data clustering. Based on the graph structures that
homogeneously represent the value spaces of heterogeneous
attributes, GUD is formed to reasonably quantify the dis-
similarities between attribute values by sufficiently exploiting
the heterogeneous information. ADC clustering algorithm,
adopting GUD as its dissimilarity metric, has also been
rigorously derived with a convergence guarantee. Since the
GUD metric and ADC algorithm are both proposed under
the guidance of the homogeneous graph space, awkward gaps
among heterogeneous attributes have been novelly circum-

vented throughout the clustering process, thereby ensuring
more accurate cluster detection. It turns out that ADC is
capable of conducting cluster analysis of any-type-attributed
data. Moreover, ADC is parameter-free, easy to implement,
and efficient. Given dissimilarities computed by GUD, the
time complexity of ADC is in the same order of magnitude as
the time complexity of the conventional k-means-type cluster-
ing algorithms. Comprehensive experimental evaluations have
illustrated the promising efficacy of ADC. This article has
currently addressed the clustering of data objects described
by the values from heterogeneous attributes. Our future work
will focus on the heterogeneity issue in more complex data,
including multimodal data and data with concept drifts.
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