APPENDIX A
GRADIENT DERIVATION FOR THE EMBEDDING NET-
WORK
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In this section, we present oW, the gradient of L, with

respect to Wy, Vg € [Q)], for a stochastic gradient de-

scent. To illustrate the gist, we consider the following sim-

plistic setting. With a K-th order affinity tensor T~ K) ¢
K

—_——~
Rmxm-~-><m

as an example, for a possible iteration ¢,

a given mini-batch sample X7,, and a fixed weight matrix

Wo(rtt), one can forward pass through TSC-Net to obtain H7 ,

for ¢ € [Q], with th, and construct a small part of the K-
K

th order affinity tensor 'Tg{) € RMb X M-+ + X 1M Gubse-
quently, using the chain rule, it follows that the gradient of

L qpj with respect to Wg) is:
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au%i) = —(HP ™) My, - W T osign(g(H ' W)))

, where o denotes Hardmard product and sign is the
element-wise sign function, i.e., sign(A; ;) = 1 when A; ; >
0 and sign(A; ;) = 0 when A;; < 0. The intermediate
matrix M;, € R"*¢ means only taking corresponding part
of M € R"*¢ on the basis of I;, and M is affinity-tensor-
dependent, where

o For second order affinity tensor T3 M=27%Y.

e For third order affinity tensor T(B) , Vs € ¢
M, = LT (Y ®Y)+ (In@Y, +Y,®
Im)T(TE?;)TY;75, where TE?; denotes the Mode-1
unfolding of T [44], and ® denotes the Kronecker
product.

o For fourth order affinity tensor TW ,Vse€e, M. s =
LT Y, 0Y.)+I,0Y..0Y. . +Y, @
(In ® Yoo + Yoo @ 1) (T(1) T Y.,o, where T(3)
denotes the Mode-1 unfolding of TW,

. . . . DLy
One can continue using the chain rule to obtain Z=% for

W,
qe[Q—1].

APPENDIX B
EXPERIMENTS ON Noisy CMU-PIE 1o DEMON-
STRATE NOISE-ROBUSTNESS
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Fig. B1: Noise contamination demonstration on CMU-PIE
dataset. The noise level increases from the left (5%) to the
right (20%). The noise is generated by random Gaussian
distribution with a mean of 0.5 and a variance of 0.25.

In practice, data usually suffer from noise contamina-
tion, which can be a leading factor that compromises the
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performance of most clustering methods. To test the noise-
robustness of TSC-Net, we conducted a noise experiment
on CMU-PIE data. CMU—PIEE] comprises 1632 face images
belonging to 68 individuals, where each image is repre-
sented by 4096 pixels. First, to simulate a real scenario, we
added random Gaussian noise with mean 0.5 and variance
0.25 to each CMU-PIE image, where a demonstration is
shown in Fig. To be specific, we added the noise random
Gaussian noise with varying levels ranging from 0% to 20%,
as can be seen from left to right in Fig. which mounts
to yielding five datasets. Then, we applied the methods
mentioned before to conduct experiments on the resultant
datasets under the same computational protocols as stated
in Section
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Fig. B2: ACC results of clustering methods on CMU-PIE
dataset with increasing noise levels. The figure shows the
ACC performance of each method as the noise level in-
creases, where different methods are denoted by different
lines.

In Fig.[B2} we reported the ACC performance of TSC-Net
as well as its competitors, as mentioned earlier, on noisy
CMU-PIE with varying noise levels. From the figure, we
underline the following observations:

o The curves corresponding to the proposed TSC-Net,
denoted by the solid blue line with circles, are located
at the top in Fig. indicating its best overall per-
formance. These results demonstrate that TSC-Net is
capable of dealing with data under different levels of
noise contamination.

e TSC-Net is more noise-robust than other methods.
Although all methods face a performance drop with
the increasing noise levels, as shown in Fig. B2}, TSC-
Net obtains a minor performance decline. For exam-
ple, with the noise level from 0% to 20%, the ACC
decrease of TSC-Net is 6.3%, whereas SpectralNet,
which is the second-best stable method, receives an
ACC decrease of 12.4%. This implies that TSC-Net is
relatively more stable against noise contamination in
comparison with other methods.

2. http:/ /www.cs.cmu.edu/afs/cs/project/PIE/MultiPie /Multi-
Pie/Home.html.
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o The representative TSC method, IPS2, receives a
smaller ACC decrease than the classic deep clus-
tering, DEC, with increasing noise levels. Notably,
as the noise increases from 0% to 20%, the ACC
decrease of IPS2 is 13.6%, while the one of DEC is
15.2%.

The superiority of the proposed TSC-Net with regard to
noise-robustness arises from the characterization of multi-
wise similarities. In detail, first, TSC-Net considers the mul-
tiple affinity tensor with various multi-wise similarities and
integrates them to estimate a consensus embedding. The
multiple affinity tensors integration enables us to alleviate
the underlying noise contamination. In contrast, classic deep
clustering methods, like DEC, consider the pairwise similar-
ities to partition data, which are sensitive to noise even with
a small level. Second, conducting the multiple affinity tensor
integration in a one-stage way, i.e., TSC-Net, enables a better
noise-robustness than the two-stage method, IPS2. To see
this, one can notice that the performance drop of TSC-Net is
much smaller than that of IPS2 (6.3% vs. 13.6%).
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