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Abstract—Recently emerged label noise-resistant graph repre-
sentation learning (LNR-GRL) has received increasing attention,
which aims to enhance the generalization of graph neural
networks (GNNs) in semi-supervised node classification with
noisy and limited labels. Most of the existing LNR-GRL tend
to introduce more complex sample selection strategies developed
in nongraph areas to distinguish more noisy nodes to alleviate
their misguidance. However, these proposed methods neglect
the importance of inaccurate graph structure relationships
rectification, and information collaboration between inaccurate
graph structure relationships and noisy node label rectification in
improving the quality of noisy node identification and its rectified
node labels. To solve the above-mentioned issues, we propose
a novel multiplex experts governance collaboration (MEGC)
framework for LNR-GRL. Specifically, an unsupervised graph
structure governance expert is first designed to rectify inaccurate
graph structure relationships. Based on the rectified graph
structure, a simple label noise governance expert is proposed
to accurately identify noisy node labels and further improve
the quality of noisy nodes’ rectified labels and unlabeled nodes’
pseudo-labels. Finally, the above-proposed governance experts
can be effectively combined with GNNs to jointly guide their
training via the introduced cross-view graph contrastive loss and
cross-entropy loss, which can maximally limit the effect of noisy
node labels and discover more effective supervision guidance
from data itself for GNNs optimization. Extensive experiments
on three benchmarks, two label noise types, four noise rates,
and four training label rates demonstrate the superiority of
the proposed method in comparison to the existing LNR-GRL
methods.
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I. INTRODUCTION

ITH the development of technologies, such as the

Internet, cloud computing, and the Internet of Things,
the connection between things in real-world applications is
everywhere. As a kind of ubiquitous data structure, the
graph can more reasonably describe complex topological
structure relationships among objects owing to its powerful
expression ability [1]. In recent years, the emergence of
graph neural networks (GNNs) has provided a powerful
tool for semi-supervised node classification with complex
topological structure relationships [2], [3], [4]. Nevertheless,
GNNs’ generalization highly relies on the effective guidance
of the accurate training node labels. The node labels for
GNNs’ optimization are often noisy and limited due to some
unpredictable real-world factors. Misleading information prop-
agation between noisily labeled and unlabeled nodes caused
by the message-passing mechanism on the provided (original)
graph structure will seriously hurt their performance [5], [6].
Therefore, how to develop effective label noise-resistant and
label-efficient GNNs to improve the performance of semi-
supervised node classification with limited and noisy labels is
a very challenging and important issue in real-world applica-
tions.

The main challenge to addressing the above issue is how to
make the most of the clean node label supervision information
while maximum limiting the impact of noisy node labels.
To improve the robustness of the existing GNNs on graphs
with noisy and limited labels, label noise-resistant graph
representation learning (LNR-GRL) is proposed to address this
issue, which has recently received increasing research interest
across various graph-related tasks [7]. The existing LNR-GRL
can be divided into two groups: 1) loss correction-based LNR-
GRL and 2) sample selection-based LNR-GRL.

Loss correction-based LNR-GRL enhances the ability to
combat the label noise of GNNs on graphs with noisy and
limited labels by correcting the loss value of noisily labeled
training nodes. For example, D-GNN [6] simultaneously
introduced the label noise estimation and loss correction
modules to improve the tolerance of GNNs on graphs with
noisy and limited labels, where label noise estimation is
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introduced to generate an estimated correction matrix for
GNNs optimization. NCR [8] proposed an effective neighbor
consistency regularization to preserve the consistency of each
node and its neighbor nodes’ similarities in the feature and
predicted label spaces, which weakens the effect of noisily
labeled nodes.

Sample selection-based LNR-GRL introduces some strate-
gies to distinguish the noisily labeled nodes of the provided
training nodes, and then select the accurately labeled nodes
for GNNs optimization. For example, SSGs [9] generated
an affinity graph to regularize the distinguishing process of
noisily labeled nodes via entropy rate superpixel and adaptive
combination, i.e., the higher the similarity of a pixel, the more
similar its corresponding labels. RTGNN [10] trained two
GNNs and regarded the labeled nodes with small-loss values
at the same time in each GNNs as the cleanly labeled nodes.
After that, the selectively clean node labels, rectified noisy
node labels, and pseudo-labels of partially unlabeled nodes
are simultaneously used for GNNs optimization. CGNN [11]
identified noisily labeled nodes by calculating the consistency
score of each labeled node and its neighborhood nodes label,
where the pseudo-label of unlabeled nodes is generated by
the pretrained GNNs with the multiview graph contrastive loss
guidance. MTS-GNN [12] regarded the GNNs with the earlier
iterations as teacher models and guided the student model to
perform noisy node label correction via knowledge distillation.

Although many researchers have made abundant attempts to
improve the adaptability of GNNs on graphs with noisy and
limited labels, these proposed works independently consider
the noisy node identification process by simply introducing
more complex strategies proposed in nongraph-related tasks.
For example, NRGNN [7] introduced the edge prediction
module to generate the structure relationships between unla-
beled nodes and labeled nodes to alleviate the effect of the
noisy node labels. RTGNN [10] introduced the small-loss
criterion to identify the clean and noisy node labels. Owing
to the complex interactive relationships between nodes, the
message passing of GNNs will cause the propagation of
misleading information from noisily labeled nodes to their
neighbor nodes, which further exacerbates the influence of
noisy node labels for GNNs optimization. Simply improving
the quality of noisy node identification or inaccurate graph
structure relationships rectification cannot minimize the impact
of noisy node labels. Thus, how to enhance the information
collaboration between noisy node labels and inaccurate graph
structure relationships rectification for improving the quality
of noisy node identification and its rectified node labels is
very important and also has not been effectively explored
so far.

To solve the above-mentioned issue, we propose a simple
and effective LNR-GRL method to better enhance the gener-
alization of GNNs in semi-supervised node classification with
noisy and limited labels, termed multiplex experts governance
collaboration (MEGC). The main difference between the exist-
ing LNR-GRL and the proposed MEGC is that our proposed
MEGC simultaneously focuses on making the most of all
node label supervision information and maximum limiting the
impact of noisy node labels. Specifically,
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1) an effective unsupervised graph structure governance
expert, including graph structure learning and cross-
view graph contrastive learning module is proposed
to improve the accuracy of graph structure relation-
ships, which alleviates the effect of inaccurate graph
structure relationships in noise information propagation.
The graph structure learning module aims to adap-
tively generate an optimal graph structure for different
graph-structured data, which makes the rectified graph
structure better preserve the truly local geometric dis-
tribution between nodes. Cross-view graph contrastive
learning module regards the rectified graph structure
and the provided graph structure as different views of
the same input nodes, which aims to guide the graph
structure learning module’s optimization by maximizing
their mutual information.

2) Based on the rectified graph structure, we utilize the
classic K-means to generate the cluster pseudo-label
of each labeled node and select the clean node labels
by preserving the consistency of the pseudo-label and
its true label, i.e., the nodes with the same pseudo-
label have similar true labels. To effectively utilize the
supervision information from the noisy labeled nodes
and unlabeled nodes, the label propagation algorithm is
introduced to generate their pseudo-label information via
the label propagation between the clean node labels and
other nodes on the rectified graph structure. Through the
above K-means and label propagation operation (termed
label noise governance expert), we can further alleviate
the effect of noisy node labels in noise information
propagation.

3) We jointly train the unsupervised graph structure gover-
nance expert, label noise governance expert, and GNNs
for semi-supervised node classification in an end-to-end
way via the introduced cross-view graph contrastive loss
and cross-entropy loss, where the clean node labels,
the pseudo-label of noisy nodes and unlabeled nodes
acquired by the above-proposed governance experts
can provide more effective supervision guidance for
GNNs optimization. By the information collaboration
between noisy node identification and inaccurate graph
structure relationships rectification, our proposed MEGC
can better improve the quality of noisy node identifica-
tion, noisy nodes rectified labels, and unlabeled nodes
generated pseudo-labels, which indirectly enhances the
robustness of GNNs on graphs with noisy and limited
labels.

The main contributions are summarized as follows.

1) We propose a novel MEGC framework for LNR-GRL
from a MEGC perspective. To the best of our knowledge,
we are the first attempt to reveal the importance of
information collaboration between noisy node labels and
inaccurate graph structure relationships rectification in
improving the quality of noisy node identification and
its rectified node labels.

2) To alleviate the effect of inaccurate graph structure rela-
tionships and noisy node labels for GNN optimization
during noise information propagation, an effective
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unsupervised graph structure governance expert and a
simple label noise governance expert are simultaneously
proposed to solve these issues. Through an end-to-
end training way, the proposed MEGC framework can
minimize the impact of noisy node labels and discover
more effective supervision guidance from the data itself
for GNNs optimization.

3) To demonstrate the effectiveness of the proposed
method, we conduct extensive experiments on three
benchmarks, two label noise types, four noise rates,
and four training label rates. These experimental results
show the superior performance of our proposed MEGC
framework.

II. RELATED WORKS
A. Graph Neural Networks

In the past few years, GNNs have become a domi-
nant method in graph representation learning [13], [14], [15].
Nowadays, a large number of GNNs variants have been
proposed and have also succeeded in their application
domains. These emerged GNNs-related works can mainly be
split into two categories: spatial-based GNNs and spectral-
based GNNs.

Spatial-based GNNs define the graph convolution operation
as the information aggregation process between nodes via
path convolution. For instance, GAT [16] stacked multi-
masked self-attentional layers to adaptively encode pairwise
connection relationships between given arbitrary node fea-
tures. LC-GAT [17] aimed to update the wrong/uncertain
connection relationships according to the label distribution
information generated on a pretrained two-layer GAT. In
single-image super-resolution, Yan et al. [18] utilized GAT
to fully mine similarity information between different patches
in low-resolution images for enhancing their texture details.
Zhou et al. [19] proposed a unified deep sparse GAT for
solving the expensive computational complexity and the inac-
curate pruning problem of the scene graph generation task,
where the multiview features, including the subject node,
object node, and the edge features from multiple subspaces are
introduced to jointly model complex connection relationships.
GATV2 [20] aimed to solve the unconditioned ranking problem
of the attention scores between different nodes in GAT by
modifying the order of internal operations.

Spectral-based GNNs regard the convolution operation on
graph-structured data as the information denoising process via
a graph Fourier filter from the graph signal processing aspect.
For instance, SGC [21] reduced the unnecessary complexity
and redundant computation of the spectral graph convolu-
tion operation by removing the nonlinearities of the hidden
layer. HGNN [22] utilized the hypergraph structure to encode
the beyond pairwise connection relationships between nodes.
EFGCN [23] given the definition of the spectral example-
feature graph from the existing spectral graph convolution,
which can better utilize the complementary information from
different graph structure types. GCN-RW [24] revealed the fea-
sibility of random features in improving the learning efficiency
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of GNNs from a mathematical theoretical aspect. It further
designed an effective GNNs training acceleration model by
introducing the graph convolutional layer with random filters
and least squares loss regularization constraint. PEGFAN [25]
proposed the Haar-type graph structure description method
with permutation equivariance property to extract multiscale
information of heterophilous graph, which avoids the over-
smoothing issue of the existing multihop aggregation methods.

While more and more GNNs variants have achieved exten-
sive application in various areas, their superior performance
seriously depends on an ideal training data hypothesis with
accurate training node labels. Owing to some unpredictable
real-world factors, this hypothesis is difficult to meet in most
cases, which limits its scope of application. Nevertheless,
the existing LNR-GRL independently improves the quality of
noisy node identification or inaccurate graph structure rela-
tionships rectification to enhance the robustness of GNNs on
graphs with noisy and limited labels, which cannot minimize
the impact of noisy node labels. This article first investigates
the importance of information collaboration between noisy
node labels and inaccurate graph structure relationship recti-
fication, and then designs a novel LNR-GRL model from a
MEGC perspective.

B. Deep Graph Structure Learning

The superior performance of GNNs depends on a fundamen-
tal assumption: the collected graph structure can accurately
describe the complex interaction relationships between nodes
for GNNss optimization. Unfortunately, real-world applications
are difficult to meet this assumption requirement owing to
some unpredictable factors, such as privacy policy, expensive
computational costs, human error, and so on. Thus, GNNs
cannot generate their robust feature representations for each
node via the message-passing mechanism on the collected
graph structure, which seriously hurts the generalization and
applicability of GNNs in various graph-related tasks [26]. To
alleviate the effect of inaccurate graph structure relationships
for GNNs optimization, a large number of deep graph structure
learning (DGSL) works are proposed to optimize the wrong,
missing, and uncertain interaction relationships of collected
graph structure [27]. Existing DGSL methods can mainly
be categorized into two groups: 1) supervised DGSL and
2) unsupervised DGSL.

Supervised DGSL utilizes the label information from a
specific downstream task to guide the joint optimization of
graph structure relationships along with GNNs. For instance,
PGN [28] regarded the dynamic inference of connection rela-
tionships as the addition/deletion of connection relationships
at time ¢ via dot-product self-attention. GEN [26] inferred a
more precise graph structure by introducing the structure and
observation model to constrain the graph generation and multi-
faceted information fusion process, respectively. MRGCN [29]
introduced a manifold regularization term about predicted
label information to the objective function of GNNs for
enhancing graph signals’ smoothness between neighborhood
nodes. LSPE [30] made GNNs generate more expressive node
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features by decoupling positional and structural representa-
tions of given nodes to fully capture the global neighbor
relationships of each node.

Unsupervised DGSL aims to improve the accuracy of
graph structure relationships by designing some effective self-
supervised tasks to discover effective supervision information
from the data itself. For instance, SUBLIME [31] maxi-
mized the consistency of mutual information between the
provided graph-structured data and learned graph-structured
data to learn universal and edge-unbiased graph structure
relationships. FedSKA [32] generated a client graph that
facilitates to prediction of the client representations to improve
the effectiveness of personalization federated learning by
maximizing the similarity between structure-based features
and local features. BrainUSL [33] incorporated a topology-
aware encoding module into a graph generation module
to rectify the redundant and noise connections of func-
tional connectivity between brain regions, which can further
boost the performance of deep learning-based brain disease
diagnosis approaches. MCGMAE [34] trained robust graph-
masked autoencoders to learn an optimal graph structure
applied to arbitrary downstream tasks under the guidance of
self-supervised information from the feature-encoder, feature
reconstruction, and graph-structure reconstruction tasks.

Although DGSL has received increasing interest in various
graph-related tasks, no study has attempted to reveal the
insufficiency of DGSL technology in resisting the impact of
noisy node labels on graphs. At the same time, no study
also has attempted to enhance the information collaboration
between DGSL and noisy node label rectification technology
to improve the generalization of GNNs on graphs with noisy
and limited labels.

III. PROPOSED METHOD

In this section, we describe how to enhance information
collaboration between noisy node labels rectification and
inaccurate graph structure relationships rectification to train
a more robust LNR-GRL model in detail from a MEGC
perspective. The overview of the proposed MEGC framework
is shown in Fig. 1, which is composed of three components:
1) unsupervised graph structure governance expert; 2) label
noise governance expert; and 3) model training and testing.

A. Unsupervised Graph Structure Governance Expert

Mathematical Notations: G = (V, E,X) is introduced to
describe an undirected and unweighted graph, where V =
{v1, ..., vy} denotes the set of N nodes, £ € V x V represents
the set of node edges, and X = {x1,...,xy} € RNV*d ig the set
of N node features. N denotes the number of nodes, x) denotes
the feature vector of the node vy, and d denotes the dimension
of each node embedding. A = {Aq1,...,Any} € {0, I}V
represents the adjacency matrix of G, where A;; = 1 if node
v; and node v; exits a connected edge, otherwise A; = 0.
Y={1,...,8} € RN*C ig the set of N node labels, where
yn € {0, 1}€ denotes the one-hot label vector of node vy, and
C denotes the number of node classes.
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In this article, we focus on the robust training problem of
GNNs against noisy labels on semi-supervised node classifi-
cation, which aims to infer the label information of unlabeled
nodes V;; = V —V, under the guidance of a moderate amount
of labeled nodes V,. V, = {vi,...,vi} (I < N) denotes
the set of labeled nodes. Owing to some unpredictable factors
in real-world applications, the provided node labels can be
corrupted by various noises, where y[ = {le,..., le} IS
R™C and yﬁ“ = {yllv,...,yfv} € R™*C denote the true label
information and noisy label information of labeled nodes V.

Problem Definition 1: Given a graph G = (V, £, X) with
a set of noisy node labels J/é\/ , the main objective of the
proposed MEGC framework is to train a robust GNNs model
on graphs with noisy and limited labels, which can improve
the prediction accuracy of unlabeled nodes’ true labels, i.e.
f(G, ))/E\[ ) — y},. f is a robust classifier that we aim to learn,
and JJAM denotes the set of unlabeled nodes’ predicted labels.

Existing LNR-GRL assumes that the provided graph struc-
ture is credible enough to describe the local geometric
distribution between nodes correctly. Nevertheless, graph
structure collected from various real-world applications will
have some wrong, missing, and uncertain connection rela-
tionships [27], [34] due to some unpredictable factors, which
seriously hurt the generalization of the existing LNR-GRL. For
example, media users who share the same interests on social
networks will miss numerous potential friends owing to space
and time limitations.

To alleviate the effect of inaccurate graph structure relation-
ships for LNR-GRL, an effective unsupervised graph structure
governance expert is proposed to solve this issue. To be
concrete, we utilize a graph encoder—decoder-based graph
structure learning module to learn an optimal graph structure,
which can better preserve the truly local geometric distribution
between nodes, i.e.,

E=AoAXWHW, (1)
S = o (EE") )

where A’ = D=2 (A + 1y)D~/2. W) and W/ denote the
weight parameter matrix of each graph convolution layer. D
and Iy represent the degree matrix about A+/y and the identity
matrix. £ and S are the output node embedding matrix and
rectified graph structure. o and T denote a nonlinear function
and the transpose operation of the matrix.

To improve the computational efficiency of the proposed
unsupervised graph structure governance expert, a simple K-
nearest neighbors (KNN) sparsification operation is introduced
to refine the rectified graph structure into a sparse matrix S’

/ Sijv jE topK(i)
8 = {0, otherwise @)
where §' = {S},, ..., Syy} denotes the adjacency matrix after
a post-processor. topK(i) is the set of nearest neighbor nodes
that node v; with topK minimum non-negative values.
Although a large number of graph structure learning meth-
ods have shown competitive performance in semi-supervised
node classification, they cannot guarantee the accuracy of
the rectified graph structure when provided labeled nodes’
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Fig. 1.

Basic framework of the proposed MEGC model. There are a total of 6 steps: (1) Send original node embeddings X to an unsupervised graph structure

governance expert to alleviate the effect of inaccurate graph structure relationships from A. Graph structure learning module is introduced to adaptively
generate an optimal graph structure S’ for the given X; (2) Graph data with the above different graph structure is sent to the same GCN encoder and MLP
projector to learn their low-dimensional node embeddings in turn; (3) Cross-view graph contrastive loss Lg5) with feature masking scheme MYV aims to guide
the optimization of S by the self-supervised information from the data itself; (4) The S’ can be effectively combined with label noise governance expert to

further alleviate the effect of noisy node labels from ))/C\[ K-means module aims to identify clean node labels from yﬁf
introduced to generate the rectified-label of noisy nodes or pseudo-label of unlabeled nodes from y

(5) Label propagation module is
; (6) The above-proposed governance experts and GNNs

are integrated into an end-to-end framework via Lclean + Lip + ¢ Lother + BLgs1, Which can l’Illl’lll’IllZC the 1mpact of noisy node labels and discover more
effective supervision guidance for GNNs. These operations effectively improve the generalization of GNNs in semi-supervised node classification with noisy

and limited labels.

supervision information is noisily and sparsely. Inspired by
multiview contrastive learning, we propose to cross-view
graph contrastive learning framework to discover the effective
supervision information from the data itself, which can guide
the training of the above-adopted graph structure learning
module. The provided graph G; = (A, X) and the rectified
graph G, = (5, X) are regarded as the different graph views
of the same nodes, where G| = (A, X) plays a teacher role
that provides stable and correct guidance for the training
of the graph structure learning module. To enhance the fast
adaptation of the graph structure learning module in different
graph-structured data, we utilize the feature masking scheme
to increase the challenges of training tasks, i.e.,

, XN @mvN]T 4

where X’ and © denote the augmented node features matrix
and the Hadamard product. MV = {mv', ..., mvN} € {0, 1}¢
is the feature masking matrix. After that, two augmented
graphs G| = (A,X’) and G) = (5, X’) are sent to a graph
encoder module, including the GCN-based encoder [35] and
MLP-based projector f to simultaneously learn the feature
representations of all input nodes

= [x; O mv!,

Hy =AoAXWHw! 5)
Hy, =8"o(S"X'WHW)
Z, = fy(H1)

{Zz = Fy (H2) ©

where " = D-W2( + \)D~YD, Hy € RV H, €
RV*di 7, € RN*% and Z, € RV*%. d| and d, denote the
output feature dimension of the encoder and projector. W? and
Wl1 are the weight parameter matrix of the first and second
graph convolution layers of the encoder module under the Gj
view. Wg and W21 are the weight parameter matrix of the first
and second graph convolution layers of the encoder module
under the G} view. ¥ denotes the weight parameter matrix
of projector fy. The graph convolution layers number of the

encoder and projector is all set to 2. The target of the projector
fy 1is to alleviate the influence of inconsistent measurement
scale problems in H; and Hj.

After obtaining the node embedding Z; and Z,, a symmetric
normalized temperature-scaled cross-entropy loss Lg (cross-
view graph contrastive loss) is introduced to maximize the
mutual information between node embedding based on the
provided graph structure A and rectified graph structure ',
which can guide the optimization of the graph structure
learning module

51m(Z1 i»Zni)/t

e

£(21 i» ZZ l) = IOg (7)

sim(Zy,;,22,j)/t

N
1
Log = N X;[E(Zl,i, Z2,0) + L(Z2,i. Z1,)]
=
where ¢ and sim(Z; ;, Z»,;) denote the temperature parameter
and the cosine similarity between node embedding Z;; and
Zy i, respectively. L£(Z1,;,Z»,;) and L(Z2;, Z1 ;) are two Sym-
metric graph contrastive losses.

®)

B. Label Noise Governance Expert

Apart from the governance of graph structure, how to
reduce the impact of noisy node labels for LNR-GRL is
equally important. Recently, some works have incorporated
the effective sample selection strategies developed in computer
vision into GNNs, which aim to remove the noisy node
labels during GNNs optimization [36]. These emerging works
assume that the loss distribution of clean labeled nodes is
different from noisily labeled nodes. Nevertheless, such an
assumption is often violated in real-world applications, which
seriously reduces the effectiveness of LNR-GRL [37].

To improve the accuracy of noisy node identification and its
rectified node labels, a simple label noise governance expert is
proposed to solve this issue. Specifically, we send the rectified
graph structure S’ to the above-designed cross-view graph
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contrastive learning framework to learn feature embedding of
labeled nodes V.. And then, the classic K-means algorithm is
introduced to generate their cluster pseudo-labels, where the
number of K is equal to the class number of the corresponding
dataset. The selected nodes V" that belong to the same
class label (yé‘f ) and cluster pseudo-label are regarded as
clean nodes. For example, the set of randomly selected 8
nodes that belong to class 1 according to their noisy label
information yﬁf is V,} = {v1, w2, v3, W4, V5, Vg, v7, vg}. The set
of cluster pseudo-labels of these selected nodes Vz is yg]uswr =
{1,7,4,1,5,6, 1, 1}. Finally, we regard nodes {vy, v4, v7, vg}
with cluster pseudo-label 1 as the clean nodes in yﬁf . More
importantly, the effectiveness of the introduced K-means-based
sample selection strategy has been demonstrated by [36] from
a theoretical analysis perspective.

Theorem 1: The majority of labeled nodes have true label
information. The set of all noisy nodes that belong to class
c is denoted as Vi and ||Vi|| = m, according to their
noisy labels yﬁf . We assume the cluster accuracy of these
selected nodes as A and their label noise rate p < 0.5.
According to the above-mentioned sample selection example,
100 x [(1—=p) x Axm)/((1 —p) x Axm+ t)] nodes
have correct labels, if 7 < (1 —p) X A xm and A >
(1/12 - 2p)).

Then, the clean nodes selected by the introduced K-
means-based sample selection strategy can be used for GNNs
optimization in semi-supervised node classification. Owing
to the sparsity of cleanly labeled nodes after sample selec-
tion, only a small fraction of nodes would receive effective
supervision signals. Such an imbalance phenomenon will
seriously hurt the generalization of GNNs for semi-supervised
node classification. In recent years, graph self-supervised
learning that aims to discover supervision information from
data itself has shown impressive performance in improving the
generalization of GNNs on graphs with scarce labels. Inspired
by those, we introduce a simple label propagation method to
generate noisy nodes’ rectified labels and unlabeled nodes’
pseudo-labels, i.e.,

Fr=AS"Fr1 + Uy — 1Y €))

where F;_1 € RV*C represents the predicted labels at the
timestamp ¢ — 1. Fp = V' = [Velean; Vnoise; Vunlabeled] €
RN*C denotes the label set of clean nodes Vﬁdea", noisy nodes

Vﬁnoisy’ and unlabeled nodes Vyy, where yz// = 1 if node v;

is from the set of clean nodes V,/** and y; = j, otherwise

y;j = 0. 1 € (0, 1) is the control coefficient of the information
propagation range. The closed-form solution F* of F; can be
written as follows:

F*=(Iy—ArSH71Y. (10

To guarantee the quality of noisy node identification, noisy
nodes’ rectified labels, and unlabeled nodes’ pseudo-labels, the
cross-entropy loss Ly, is introduced to compute the loss values
between the true labels y;j and predicted scores }";‘* of clean
nodes for all parameter optimization

exp(F)

Fi* = SoftMax(F) = ——— 1~
! / ch=1 exp(F)

Y
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12)

C
= ¥ Ve

l’EVﬁ clean j=1

Here, 7** denotes the normalized probabilistic score of F*
via the SoftMax function. .7-'1}“ is the jth element of F;".

C. Model Training and Testing

With the above-proposed unsupervised graph structure gov-
ernance expert and label noise governance expert, the rectified
graph structure S”, the true labels V! (i € V%) of clean
nodes, and the pseudo-labels F* (i € VY U V) of
noisy nodes and unlabeled nodes all can be used to guide
the optimization process of GNNs from semi-supervised node
classification, i.e.,

H=S"o(S"XW)w! (13)

where H denotes the output feature embedding matrix of
all nodes. W° and W' are the weight parameter matrix of
GNN:gs. In this article, we utilize an end-to-end training way to
jointly optimize the unsupervised graph structure governance
expert, label noise governance expert, and GNNs for semi-
supervised node classification, which can maximally improve
the generalization of GNNs on graphs with noisy and limited
labels. The overall objection function £ of the proposed
MEGC framework can be written as follows:

L = Lelean + Elp + o Lother + ,Bﬁgsl

C
= Y > —YjlogHj+ Ly

iEVC clean j:l

C
to Y Y —FtlogHj+ BLer  (14)
ieVrsyyyy, =1

where « and S denote the parameters to balance the con-
tribution of different constraints for guiding the optimization
process of GNNs from semi-supervised node classification. H’
is the normalized probabilistic score of H via the SoftMax
function. By minimizing verall objection function values £ of
the proposed MEGC framework, all trainable parameters W,
W&, W?, Wll, Wg, W21, v, A, WO and W! can be updated
via gradient descent. After multiple iterations, GNNs with the
optimal parameters (W°, W!) trained on graphs with noisy
and limited labels can be used to predict the label information
of unlabeled nodes V.

Interaction Between Two Governance Experts: First, if we
remove the unsupervised graph structure governance expert,
the label noise governance expert will utilize the original
graph structure to identify noisy node labels. Owing to the
inaccuracy of the original graph structure relationships, the
quality of noisy nodes’ rectified labels and unlabeled nodes’
pseudo-labels will be seriously influenced. The supervision
information from clean node labels, noisy nodes’ rectified
labels, and unlabeled nodes’ pseudo-labels will mislead GNNs
optimization. Second, if we remove the label noise gover-
nance expert, we will utilize the rectified graph structure and
noisy node labels without rectification for GNNs optimization.
Owing to the inaccuracy of noisy node label supervision
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Fig. 2. Convergence analysis of MEGC on node classification task with 20%
pair noise rate and 5% training label rate. (a) Cora. (b) Citeseer.

information and invalid utilization of unlabeled node self-
supervision information, the generalization of GNNs will
be seriously damaged. Thus, these two governance experts
interact with each other. Simply improving the quality of noisy
node identification or inaccurate graph structure relationships
rectification cannot minimize the impact of noisy node labels.

D. Time Complexity Analysis and Convergence Analysis

In this part, we analyze the time complexity of each module
of the proposed MEGC framework in detail. Specifically,
for unsupervised graph structure governance expert, its corre-
sponding graph structure learning, KNN sparsification, feature
masking, GCN encoder and MLP projector is O(2md + 2nd?),
O(ndb), O(d), O(2md, + 2nd?}), O(2nd5) in turns, where m
represents the number of edges and b denotes the number of
the batch size. In the label noise governance expert, the time
complexity of K-means and label propagation is O(nd>K),
O(nd"), respectively. d’ is the average degree of nodes. In
the proposed MEGC framework, its total time complexity
is mainly related to the KNN sparsification, GCN encoder,
MLP projector, K-means, and label propagation modules, i.e.
O(ndb + 2md; + 2nd; + 2nd5 + nd2K + nd'). To improve the
computational efficiency of the proposed MEGC framework
for practical implementation and application in real-world
scenarios, the sky is to avoid O(n?) time complexity. Thus,
we introduce a mini-batch data load strategy and KNN
sparsification post-processing. Owing to the small batch size
(b), feature dimensions (di, d»), category number (K) and
average degree (d'), the total time complexity of the proposed
MEGC framework is acceptable on the Tesla-V100 GPU. It
indirectly reveals that the proposed MEGC framework can
effectively scale to very large graphs. The change of node
numbers only increases the data load time caused by the
small batch size, when applying MEGC to very large graphs.
To make a balance between efficiency and accuracy, we can
utilize the widely used distributed training strategy for training
acceleration of MEGC in very large graphs with millions of
nodes. Fig. 2 further reports the training loss versus various
epochs on the node classification task with 20% pair noise rate
and 5% training label rate. As shown in Fig. 2, we can find
that the value of the training loss eventually stabilizes within a
certain stable threshold, as the number of iterations increases.
In addition, graph datasets with more nodes require more
convergence epochs. But generally speaking, MEGC can reach
a stable convergence stage with only a relatively small number
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of epochs, which indirectly demonstrates the effectiveness of
the proposed framework.

IV. EXPERIMENTS

In this section, we conduct extensive experiments on three
benchmarks, two label noise types, four noise rates and four
training label rates, which aim to demonstrate the effectiveness
of the proposed MEGC framework in improving the gen-
eralization of GNNs for semi-supervised node classification
with noisy and limited labels. We first show the used datasets
in Section IV-A, followed by the experiment setting of the
proposed MEGC framework in Section IV-B. Sections IV-C—
IV-E give a detailed experiment analysis for the reported
experimental results.

A. Datasets

Citeseer, Cora [35] and BlogCatalog [38] are all graph data,
which belong to the citation network and social network type,
respectively. Specifically, Citeseer [35] contains 3327 machine
learning papers. All nodes are categorized into 6 classes with
a size of 3703 unique words, including Information Retrieval,
Artificial Intelligence, Database, Agents, Human-Computer
Interaction, and Machine Language. Cora [35] consists of
2708 papers collected from machine learning publications. It
belongs to seven classes, such as rule learning, genetic algo-
rithms, reinforcement learning, case-based, neural networks,
theory, and probabilistic methods. Each paper is described by
0/1 with a size of 1433. BlogCatalog [38] is composed of a
total of 10312 media users about 39 media users’ interests.
Each edge denotes the interest relationships between different
media users.

B. Experimental Setup

In the semi-supervised node classification task, we randomly
select 10%, 10%, and 80% nodes from each dataset as training
samples, validation samples, and test samples, where p%
(p < 10) nodes are further chosen from training samples
as the labeled nodes. In this study, we introduce two classic
label noise types to corrupt true label information of labeled
training samples and validation samples, i.e., uniform noise
and pair noise. For uniform noise, the true label information
of labeled training samples and validation samples has a
specific probability o/(C — 1) to be uniformly flipped to
other categories. For pair noise, the true label information of
labeled training samples and validation samples has a specific
probability o to flip to their very similar pair categories.

For the proposed MEGC model, the feature dimension
of the hidden units and output layer of the graph structure
learning module, GCN-based encoder, and MLP-based pro-
jector fy, are searched in {8, 16, 32, 64, 128, 256, 512, 1024}.
Feature masking rate MYV, balance parameter o and f
are selected from 0.1 to 0.9. The neighbor numbers K’
of the KNN sparsification operation is tuned amongst
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. All model parameters
are initialized by the Adam optimizer with a total of 200 or
500 epochs, a dropout rate of 0.5, a learning rate of 0.001,
and a weight decay of 5¢ — 4. To avoid any bias introduced
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TABLE I
EXPERIMENT COMPARISON WITH THE STATE-OF-THE-ART LNR-GRL METHODS ON NODE CLASSIFICATION TASK WITH
VARIOUS NOISE RATES AND 5% TRAINING LABEL RATE. THE BEST RESULTS ARE MARKED IN BLACK

Dataset Noise Type Uniform Noise Pair Noise
Noise Rate (o) 10% 20% 30% 40% 10% 20% 30% 40%

GCN [35] 78.1£14 746435 693+1.2 61.6+6.1 | 775422 735439 66.6+2.3  60.3£1.9

GIN [39] - 72.3+0.9 - - - 74.7+1.4 - -
Adaptive Layer [40] 78.1+1.3 747435 69.8+£1.6 62.1+£25 | 77.1£19 734439 672£1.7 62.1£25
Label Smoothing [41] | 78.7+1.2 74.7+3.4 70.0£1.4 614473 | 78.1£2.2 73.5£42 66.242.8 61.742.7

Forward [42] - 73.7£0.7 - - - 76.0+0.7 - -
GCE [43] 78.5£13 743434 69.7+£1.7 61.2+6.1 | 782+1.8 73.64+3.1 66.2+2.1 60.7£1.9
Co-teaching [44] 782+15 747430 688+14 626139 | 77.3£1.0 722441 644+22 599442
SCE [45] 789404  77.0+£0.8 69.8409 60.0£3.4 | 80.5+0.2 77.4+£1.0 67.8£24 57.8+13
Cora JoCoR [46] 79.3+0.2 769403 729414 68.2+25 | 80.7+£03 77.6£03 69.2+£1.4 63.8+£0.9
APL [47] 794403 744406 69.2+1.4 59.5+£3.2 | 80.0+0.5 752423 67.4£09 59.8+£2.2
Co-teaching+ [48] 764+£12 73.6+1.7 644413 5484+3.6 | 782412 73.8+14 63.6+£3.9 594425

Self-Training [49] - 75.6+1.8 - - - 76.4+1.4 - -
D-GNN [6] 78.1£14 747435 693+1.1  61.5+6.1 | 775422 735438 66.5+£2.4  61.5+6.1
NRGNN [7] 81.5+£1.5 79.0£23 77.0£2.0 70.54+2.5 | 80.5£14 76.1£33 722425 63.74+2.0
CP [50] 76.0+0.6 74.8+13 673+£1.0 61.4+£27 | 782407 752414 63.1£1.3 58.6£1.0
RTGNN [10] 78.6+1.5 758409 743421 679482 | 78.14+22 70.7£4.0 69.0£2.7 59.2+5.8
MEGC (ours) 84.3+0.3 82.1+04 81.1+0.7 79.0+0.4 | 83.6+0.5 81.2+0.2 78.6+0.4 72.7+0.3
GCN [35] 69.2+1.7 65.8£23 613432 57.14+45 | 68.1£24 649424 60.6+2.5 545455

GIN [39] - 65.7£2.1 - - - 61.6£1.0 - -
Adaptive Layer [40] 69.3+2.1 65.7£25 61.543.5 57.8+£3.8 | 68.0£2.2 65.0+£2.2 612425 57.3+44
Label Smoothing [41] | 69.04+2.1 65.7£2.4 61.8+£3.6 57.3£3.5 | 67.2£2.1 64.9+£27 59.54£3.0 56.0+6.9

Forward [42] - 65.0£1.5 - - - 61.61+0.4 - -
GCE [43] 70.0£1.6 66.8424 62.143.2 58943.7 | 682423 66.44+24 62.0+19 56.7+6.7
Co-teaching [44] 69.9+1.5 67.8£25 63.4£26 617422 | 684+2.1 663+£19 634429 57.64+24
SCE [45] 70.2£04  69.44+0.7 6494+1.6 562+14 | 71.1+£02 67.840.8 59.840.6 57.9+1.0
Citeseer JoCoR [46] 722403 713407 69.1+£0.3  58.14+2.3 | 72.1+0.6 69.6+04 644425 58.1£1.6
APL [47] 70.5+£0.6  69.6+0.6 65.6+1.6 56.7£2.0 | 71.3+£04 68.1+0.5 59.7£0.6 57.1£1.5
Co-teaching+ [48] 66.9+23 66.4£13 60.5£5.8 53.0+4.0 | 66.5£2.2 65.1£2.1 60.0+£5.0 50.5+3.3

Self-Training [49] - 67.8+1.4 - - - 62.0+1.6 - -
D-GNN [6] 69.5+1.9 66.0£2.7 61.3£32 57.14+45 | 679+£2.6 64.9+24 60.7+2.5 547453
NRGNN [7] 70.5£1.0 68.0£1.5 652435 57.6+5.8 | 69.44+0.8 672422 642451 57.6+5.8
CP [50] 68.3+0.8 66.0£1.6 65.0£1.8 57.0+1.7 | 649+09 62.0£1.0 6034+0.7 53.0+1.0
RTGNN [10] 69.5+2.2 67.7£0.8 65.0£1.5 615429 | 68.8£1.5 65.5+£3.8 61.1+£59 59.04+3.2
MEGC (ours) 732401 727402 714406 70.0+£0.8 | 72.840.2 70.7+0.6 68.0+£0.3 65.7+2.7
GCN [35] 69.9+1.0 67.5£23 654+£1.8 63.6x£1.7 | 699+£1.2 65.1£09 60.5+£2.5 52.74+33
Adaptive Layer [40] 703£14 684+1.8 655+1.5 629425 | 70.8+1.1 663+1.1 62.6+2.0 544432
Label Smoothing [41] | 69.7£1.5 67.3£22 653420 62343.1 | 70.6£1.6 649+1.3 60.6+1.8 51.8+2.7
GCE [43] 714£15 704416 69.74£0.7 66.6+2.7 | 70.4+1.1 69.4+1.1 652429 58.3+2.0
Co-teaching [44] 714+1.7 683422 66.5+£3.0 63.5£2.6 | 71.9+1.3 67.7£0.8 60.3£59 52.2+1.3
BlogCatalog SCE [45] 70.7+£0.5 68.7+£0.8 67.5£09 66.5£1.0 | 69.44+0.7 643+1.4 60.6£1.0 57.0£0.9
JoCoR [46] 70.9+04 69.6+£04 69.3+1.1 663+1.1 | 70.5+£0.7 66.3+1.1 59.5+1.1 58.3+2.2
APL [47] 70.9+0.5 69.2+04 68.7£0.6 658+09 | 70.3+0.6 68.4+0.8 61.5£1.3 584+£1.6
D-GNN [6] 69.9+1.1 67.5£23 65.0£1.7 63.8409 | 70.1£1.0 652408 60.1+£2.0 52.543.3
NRGNN [7] 714£15 704416 69.74£0.7 66.6+2.7 | 71.841.1 69.44+1.1 652429 58.3+2.0
RTGNN [10] 71.1+£0.8 709413 70.5£1.0 70.3+£2.0 | 70.8+41.0 71.4+0.8 70.3£2.0 60.8+3.4
MEGC (ours) 71.9+0.9 71.34+0.7 71.0+03 69.3+04 | 714404 71.6+03 69.5£0.2 62.5+1.1

by the random partitioning of data, we carried out many
times independently to report the average accuracy of all
modes. During the model testing phase, we utilize the optimal
parameters of GNNs (13) to validate the accuracy of semi-
supervised node classification. All hyperparameters are tuned
based on the accuracy of the validation samples via the popular
grid search technique.

C. Comparison With State-of-the-Art Methods

In this article, we compare the proposed MEGC frame-
work with three types of methods, including two GNNs
without label noise limitation methods [35], [39], nine
label noise-resistant nongraph representation learning methods
(LNR-NGRL) [40], [41], [42], [43], [44], [45], [46], [47],
[48], and five LNR-GRL methods [6], [7], [10], [49], [50].

Table I reports the classification accuracy of all models on
node classification tasks with various noise rates. From these
results, we can acquire the following observations.

1) As the label noise rate increases, the classification
performance of both GCN [35] and GIN [39] methods
is getting worse and worse, and these GNNs with-
out label noise limitation methods also perform even
worse than other models in most cases. These results
powerfully reveal the serious influence of noisy node
label information on GNNs optimization. Compared
with  GCN and GIN, LNR-NGRL achieves better
performance, especially under low noise rates. This
implies that sample selection or loss correction can
alleviate the negative effect of label noise on GNNs
optimization, which also indirectly demonstrates the
inevitability of noisy node label information limitation.
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TABLE II
EXPERIMENT COMPARISON WITH THE STATE-OF-THE-ART LNR-GRL METHODS ON NODE CLASSIFICATION TASK WITH
20% NOISE RATE AND VARIOUS TRAINING LABEL RATES. THE BEST RESULTS ARE MARKED IN BLACK
Dataset Noise Type Uniform Noise Pair Noise
Label Rate (p) 3% 5% 7% 9% 3% 5% 7% 9%
Co-teaching+ [48] | 64.9+1.0 73.6£1.7 740+1.6 752+1.6 | 68.4+1.0 73.8414 749£1.6 76.0£2.3
D-GNN [6] 67.94+0.8 747435 76.1£0.8 77.0+1.9 | 70.8+t1.1 73.5+3.8 739408 754+1.9
Cora NRGNN [7] 73.840.7 79.0£2.3 80.2+0.6 80.5+1.6 | 73.4+£1.6 76.1+£3.3 78941.1 79.4+£1.3
CP [50] 669+1.0 748+13 757+£0.8 77.240.6 | 70.2+£1.8 752+14 758408 76.8+0.6
RTGNN [10] 742413 758409 78.5+09 81.24+1.5 | 67.8£1.2 70.7+4.0 75.1+£1.0 81.9£0.5
MEGC (ours) 75.3+04 82.1+04 82.6+0.2 83.7+0.6 | 77.1+0.1 81.2+0.2 81.94+0.5 83.0+0.4
TABLE III
ABLATION STUDY ON NODE CLASSIFICATION TASK WITH VARIOUS NOISE RATES AND 5% TRAINING LABEL RATE
Dataset Noise Type Uniform Noise Pair Noise
Noise Rate (o) 10% 20% 30% 40% 10% 20% 30% 40%
MEGC (w/o UGSGE, w/o LNGE) | 80.1£0.4 782+02 66.6+1.0 64.9+0.5 | 79.8£0.7 755+£0.8 72.840.6 65.7£1.2
MEGC (w/o UGSGE) 82.4+0.2 789406 743+1.0 70.0+£0.7 | 81.3+04 78.1+0.6 76.1£0.8 67.3£1.0
Cora MEGC (w/o LNGE) 82.3+£04 79.240.3 78.24+0.8 70.9+1.1 81.6+£0.7 79.840.8 74.94+0.5 69.64+0.8
MEGC (w/o Lother, w/o Lyp) 81.3+0.2  79.0+£04 743403 70.34+04 | 81.1£0.3 77.24+1.5 74.04+0.5 67.4+09
MEGC (w/0 Lother) 83.740.3 814403 79.5+04 77.6+0.5 82.5+0.6 80.7£04 77.840.5 71.9+1.6
MEGC 84.3+0.3 82.1+04 81.1+0.7 79.0+04 | 83.6+0.5 81.2+0.2 78.6+04 72.7+0.3
2) Although these LNR-NGRL models improve the 4) As shown in Table I, a common phenomenon is that

3)

classification performance of semi-supervised node clas-
sification with noisy and limited labels to some extent,
they only achieve limited improvements and even per-
form worse than GCN [35] in some cases, such as
APL [47] and Co-teaching+ [48]. The main reason is
that neglecting the graph structure relationships between
nodes during noisy node label information limitation
cannot more accurately identify more noisy nodes.
Besides, the noisy node labels have a serious influence
on GNNs optimization owing to the semi-supervised
learning setting. To improve the quality of noisy node
identification, LNR-GRL is proposed to effectively uti-
lize the underlying graph structure relationships between
nodes. Compared with LNR-NGRL, LNR-GRL achieves
competitive results, especially under higher noise rates,
which demonstrates the benefit of graph structure rela-
tionship utilization in noisy node identification.

Our proposed MEGC framework achieves the best and
runner-up classification performance on all benchmarks,
noise rates, and label noise types than all models.
Specifically, MEGC obtains the 2.8%, 3.1%, 4.1%,
8.5%, 1.0%, 1.4%, 2.3%, and 8.3% improvements in
comparison to the state-of-the-art methods on the Cora
and Citesee datasets with various uniform noise rates,
respectively. [i.e., NRGNN (10%, 20%, 30%, and 40%),
JoCoR (10%, 20%, and 30%) and Co-teaching (40%)].
On the one hand, it demonstrates the superiority of the
proposed MEGC framework in semi-supervised node
classification with noisy and limited labels; on the other
hand, it also reveals the benefit of information collabo-
ration between noisy node labels and inaccurate graph
structure relationships rectification in improving the
quality of noisy node identification and its rectified node
labels in comparison to graph structure optimization-
based LNR-GRL method [7] and sample selection-based
LNR-GRL methods [10], [49], [50].

the classification accuracy of all comparison methods
drops dramatically when the label noise rate increases
from 10% to 40% in sequence. On the contrary, our
proposed MEGC has stable performance and lower
performance dropping rates in most cases, for example,
on the Citeseer dataset with various noise rates and
types. These results imply that our MEGC is more
resistant to alleviating the negative effect of label noise.

To further demonstrate the effectiveness of the proposed
MEGC under various training label rates, we report the
classification performance of the proposed MEGC and other
comparison methods in Table II. From these results, we can
see the following.

1y

2)

Our MEGC outperforms all comparison methods by a
large margin, especially when the training label rate is
very small. The main reason is that our method can
more accurately discriminate noisy nodes and further
provide more effective self-supervision information for
GNNs optimization via the information collaboration
between noisy node labels and inaccurate graph structure
relationships rectification.

As the training label rate increases, the performance
between the proposed MEGC and the state-of-the-art
methods decreases, especially under high training label
rates. When the training label rate is high, the labeled
samples for GNNs optimization are sufficient, which
will reduce the sensitivity and importance of GNNs for
noisy nodes and their rectified node labels.

D. Ablation Experiments

In Table III, we conduct extensive experiments to analyze
the influence of each component. w/o denotes without a spe-
cific module. UGSGE and LNGE represent the unsupervised
graph structure governance expert and label noise governance
expert modules, respectively. MEGC (w/o UGSGE) represents
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utilizing the original graph structure for noisy node labels
recognition and GNNs optimization. MEGC (w/o LNGE)
represents utilizing the rectified graph structure and noisy node
labels without rectification for GNNs optimization. MEGC
(W/0 Lother, w/0 Lyy) denotes only utilizing the selected clean
nodes’ label for GNNs optimization. MEGC (W/o Lother)
denotes without introducing Lj, to guarantee their quality
when MEGC utilizes the noisy nodes’ rectified labels and
unlabeled nodes’ pseudo-labels for GNNs optimization. From
the first, second and third columns of Table III, we can observe
that MEGC (w/o UGSGE) and MEGC (w/o LNGE) all
outperform MEGC (w/o UGSGE, w/o LNGE), which implies
LNGE and UGSGE are helpful to alleviate the negative effect
of label noise for GNNs optimization. For example, MEGC
(w/o UGSGE) and MEGC (w/o LNGE) achieve gains of
2.3%, 0.7%, 7.7%, 5.1%, 2.2%, 1%, 11.6%, 6% than MEGC
(w/o UGSGE, w/o LNGE) under 10%, 20%, 30%, and 40%
uniform noise rates, respectively. On the one hand, these
results indicate that the LNGE module plays a significant
role in alleviating the negative effect of label noise than the
UGSGE module; on the other hand, they indirectly indicate
the insufficient of the existing graph structure relationships
rectification constraint and the importance of a unified and
effective standard for direct constraint the inaccurate graph
structure relationships optimization. From the second, third,
and sixth columns of Table III, we can see that MEGC
acquires large performance improvements in comparison to
MEGC (w/o UGSGE) and MEGC (w/o LNGE), such as
MEGC obtains 1.9%, 3.2%, 6.8%, 9%, 2%, 2.9%, 2.9%, and
8.1% improvement than MEGC (w/o UGSGE) and MEGC
(w/o LNGE) under 10%, 20%, 30%, and 40% uniform
noise rates, respectively. These results powerfully reveal the
importance of information collaboration between noisy node
labels and inaccurate graph structure relationships rectification
in improving the quality of noisy node identification and
its rectified node labels. From the fourth, fifth, and sixth
columns of Table III, MEGC (W/o0 Lother, w/0 Ljp) perform
worse than MEGC (w/o Lomer) and MEGC, especially under
high noise rate, which indicates the benefit of self-supervision
information from the noisy nodes and unlabeled nodes. For
instance, MEGC (w/o Lomer) and MEGC achieve improve-
ment of 2.4%, 3%, under 10% uniform noise rates in turns.
Although MEGC (w/0 Loer) outperforms MEGC (w/o Lothers
w/o Lj) by a large margin, it is difficult to guarantee that
the self-supervision information from the noisy nodes and
unlabeled nodes is not misleading for GNNs optimization. In
summary, Table III has powerfully demonstrated the effective-
ness of all components in alleviating the negative effect of
label noise.

E. Parameters Sensitivity

In this part, we further conduct extensive experiments to
implement the sensitivity analysis of MEGC under three
important parameters, including neighbor numbers K’, feature
masking rate M), balance parameters o and 8 in Figs. 3-5.

Effect of the Neighbor Numbers K': Fig. 3 shows the
performance of MEGC with various K’ values on node
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84 T T T T T T T
3\ 79 -
e 74 - 7;
= 69 /H\Q\/\Q\S/M
3 4
< 64T ¢ (Cora) n
59 |- —A— (Citeseer) 1
54 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Feature Masking Rate MV
Fig. 4.  Sensitivity analysis of the feature masking rates M) on node

classification task with 20% pair noise rate and 5% training label rate.

classification task with 20% pair noise rate and 5% training
label rate, when we change K’ from 10 to 100. The size of the
neighbor numbers K’ is closely related to the sample numbers
in each category. As is demonstrated in Fig. 3, MEGC all rise
first and then decrease on different datasets, and a common
phenomenon is that a too small K’ (Citeseer) and too large
K’ (Cora) both damage their classification performance. For
example, MEGC with K’ = 80 achieve drops of 6.2% and
4.6% in comparison to MEGC with the best K’ values on the
Cora (K’ = 40) and Citeseer (K’ = 100) datasets, respectively.
The main reason is that a too large K’ on the Cora dataset
with the small sample sizes can cause the over-smoothing
problem between the updated node features via GNNs owing
to the existence of inaccurate and misleading connection
relationships. On the one hand, these results demonstrate that
the proposed MEGC is more sensitive to the selection of
neighbor numbers K’; on the other hand, they indirectly reveal
how to select the best K values for different datasets is very
important.

Effect of the Feature Masking Rate MV : Fig. 4 reports
the influence of the feature masking rate M) for MEGC
on the Cora and Citeseer datasets. As shown in Fig. 4,
the performance of MEGC will drop dramatically when we
remove the feature masking scheme. For example, MEGC
without the feature masking operation obtains drops of 2.5%
and 4.9% in comparison to the best results on the Cora
(MY = 0.1) and Citeseer (MY = 0.5) datasets, respectively.
These results reveal the effectiveness of the feature masking
scheme with disturbing the node embeddings in improving
the generalization of the graph structure learning module. In
addition, a too large MV (Cora) and too small MV (Citeseer)
both result in poor performance, such as MEGC with MV =
0.1 improves by 8.2% and 5.6% in comparison to MEGC with
MY = 0.6 and MEGC with MV = 0.9 in turns. MEGC
with MV = 0.5 improves by 1% and 7.2% in comparison
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Accuracy

Fig. 5. Average accuracy on the Cora dataset versus balance parameters o
and B of the proposed MEGC on node classification task with 20% pair noise
rate and 5% training label rate.

to MEGC with MV = 0.1 and MEGC with MY = 0.4,
respectively. We conjecture that

1) For the Cora dataset with low-dimensional node fea-
tures, the origin node embeddings will be seriously
undermined due to a too large MYV. This operation
makes the graph encoder module unable to learn more
discriminative node features, which indirectly influences
the guidance process of cross-view graph contrastive
learning.

2) For the Citeseer dataset with high-dimensional node
features, a too small MY will reduce the robustness
of rectified graph structure relationships owing to the
easy challenge of self-supervised learning tasks. These
results reveal the sensitivity of MEGC in the selection
of feature masking rate M) and the importance of the
reasonable selection of feature masking rate M)V for
task performance.

Effect of the Balance Parameters o and B: To show the
relationships between balance parameters (¢ and B) and
the classification performance of MEGC, Fig. 5 reports the
accuracy versus different balance parameters o and B values
on the Cora dataset with 20% pair noise rate and 5% training
label rate. As shown in Fig. 5, MEGC with « = 0.5 and 8 =
0.3 achives gains of 0.9 % and 4.7 % in comparison to MEGC
with @ = 0.1 and 8 = 0.3, and MEGC with @ = 0.5 and 8 =
0.1, respectively. In this article, MEGC with 0 < o < 0.6 and
0 < B < 0.6 achieves the best performance in most cases, and
a too large o and B will result in worse performance. The main
reason that excessive trust for UGSGE and LNGE will mislead
the optimization process of GNNs, owing to the unreliable
of the rectified graph structure relationships optimized by
Lgs1, and noisy nodes’ rectified labels and unlabeled nodes
generated pseudo-labels by LNGE. Thus, how to reasonably
execute information collaboration between noisy node labels
and inaccurate graph structure relationships rectification for
LNR-GRL is vital.

V. CONCLUSION

In this article, we propose a simple and effective LNR-
GRL method from a MEGC perspective to effectively enhance
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information collaboration between noisy node labels rectifica-
tion and inaccurate graph structure relationships rectification,
which aims to maximally alleviate the effect of inaccurate
graph structure relationships and noisy node labels in the
information propagation process of GNNs. To be concrete,
to alleviate the effect of inaccurate graph structure relation-
ships, an unsupervised graph structure governance expert is
proposed to learn an optimal graph structure that describes
the local geometric distribution between nodes correctly. To
further alleviate the effect of noisy node labels, we pro-
pose a rectified graph structure-based label noise governance
expert to improve the quality of noisy node identification,
noisy nodes rectified labels, and unlabeled nodes’ pseudo-
labels. Finally, a simple end-to-end training framework is
proposed to effectively improve the generalization of GNNs
on graphs with noisy and limited labels under the guid-
ance of cross-view graph contrastive loss and cross-entropy
loss. Extensive results under three benchmarks, two label
noise types, and four noise rates and four training label
rates validate the superiority of MEGC over the existing
methods.

While the proposed MEGC improves the performance of
semi-supervised node classification with noisy and limited
labels by a large margin, our MEGC still faces the following
challenges to be addressed.

1) Unquantifiable graph structure relationships rectification
constraint. The proposed MEGC indirectly achieves the
optimization of inaccurate graph structure relationships
by maximizing the mutual information between node
embeddings. Owing to the lack of a unified and effective
standard for directly constraining the inaccurate graph
structure relationships optimization, MEGC makes the
identified clean nodes still exist with part noisy nodes
and further misleads the parameters optimization of
GNNeE.

2) Ineffectiveness in resisting multiple types of noise. Label
noise, structure noise and feature noise are key factors
affecting the robustness of graph representations for
GNNs. The proposed MEGC typically addresses only
one or two types of noise, while label noise, structure
noise and feature noise often co-occur in practical
applications. The accumulation of multiple types of
noise makes it challenging for MEGC to effectively
handle such complex noise scenarios. In future works,
we will try to solve the above-mentioned challenges
from different perspectives and further propose effective
LNR-GRL models to improve the generalization of
the existing GNNs on graphs with the above diverse
noise.
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