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Abstract

This paper presents a novel approach to extracting features from motif content and protein composition for protein sequence classification.

First, we formulate a protein sequence as a fixed-dimensional vector using the motif content and protein composition. Then, we further project

the vectors into a low-dimensional space by the Principal Component Analysis (PCA) so that they can be represented by a combination of the

eigenvectors of the covariance matrix of these vectors. Subsequently, the Genetic Algorithm (GA) is used to extract a subset of biological and

functional sequence features from the eigen-space and to optimize the regularization parameter of the Support Vector Machine (SVM)

simultaneously. Finally, we utilize the SVM classifiers to classify protein sequences into corresponding families based on the selected feature

subsets. In comparison with the existing PSI-BLAST and SVM-pairwise methods, the experiments show the promising results of our approach.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One core problem in computational biology is the

annotation of new protein sequences with the structural

and functional features. To deal with this problem, one way

is to classify a new protein sequence into a certain known

protein family based on sequence similarity so that the

structural and functional features of the sequence can be

easily identified. In the literature, a variety of approaches,

e.g. PSI-BLAST (Altschul et al., 1997), profiles (Gribskov,

McLachlan, & Eisenberg, 1987), position-specific weight

matrices (Henikoff & Henikoff, 1994), and Hidden Marked

Models (HMM) (Krogh, Brown, Mian, Sjolander, &

Haussler, 1994) have been developed for protein sequence

classification. However, most of these methods belong to
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generative approaches that build a model for a single protein

family and then evaluate each candidate sequence to see

how well it fits the model. If the ‘fit’ is beyond a pre-defined

threshold value, the sequence will be classified into the

family; otherwise, it is not. The drawback of the generative

approaches is that only positive examples are used as

training sets. In contrast, discriminative approaches utilize

both positive and negative examples as training sets.

Consequently, the protein classifier results from the

discriminative methods are usually better than those from

the generative methods. Recently, a discriminative method,

namely, Support Vector Machine (SVM) (Vapnik, 1995),

has been successfully applied to protein sequence classifi-

cation and shown the superiority to the other methods (Ding

& Dubchak, 2001; Jaakkola, Diekhans, & Haussler, 2000;

Leslie, Eskin, Cohen, Weston, & Noble, 2004; Liao &

Noble, 2003; Markowetz, Edler, & Vingron, 2003; Zhao,

Huang, Cheung, Wang, & Huang, 2004). Nevertheless, the

success of the SVM depends on the selection of features to

represent each protein family.

Early work (Brennan & Matthews, 1989) has shown that

some short regions of the protein sequences, namely motifs

(also called pattern or signature hereinafter), are better

conserved than the others during the evolution. These motifs

are generally important for the function of a protein. By
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focusing on the limited and highly conserved regions of the

proteins, motifs can often reveal important information on

functional and structural features of the proteins. For

example, the motifs for most catalytic sites and binding

sites are conserved over wider taxonomic distance and

longer evolutionary time than the sequences of the proteins

themselves (Ben-Hur & Brutlag, 2003). That is, motifs can

often represent important functional regions of the proteins

such as catalytic sites, binding sites, protein–protein

interaction sites structural motifs, and so forth.

In fact, some pioneering researchers have investigated

the motif content to generate feature vectors for protein

classification (Ben-Hur & Brutlag, 2003; Wang, Schroeder,

Dobbs, & Honavar, 2003). However, they used the motif

content only to characterize the local sequence features.

Actually, the classification results of protein sequences are

affected by many factors including local features and global

features, etc., among which the fundamental one is which

features should be extracted from the data. Apparently, if

the features are appropriately selected, the protein

sequences will be well classified. Currently, there have

been a lot of approaches proposed for feature selection,

among which the Genetic Algorithm (GA) has shown the

superiority to the other methods (Raymer, Punch, Goodman,

Kuhn, & Jain, 2000; Yang & Honavar, 1998). Furthermore,

some works have used the GA for feature selection in

combination with the kernel methods. For example,

Fröhlich, Chapelle, and Schölkopf (2003) used the GA

technique for feature selection and train SVM. Eads et al.

(2002) used GA and SVM for time series classification.

Jong, Marchiori, and van der Vaart (2004) used GA and

SVM for cancer detection. Friedrichs et al. (Friedrichs &

Igel, 2004, 2005; Igel, 2005) used evolutionary algorithms

for tuning parameters of SVM. Runarsson and Sigurdsson

(2004) used evolutionary strategies (ES) for model selection

for SVM. Recently, we have also proposed a hybrid GA/
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Fig. 1. The procedure of extracting features from motif content a
SVM technique for protein classification (Zhao et al., 2004),

which performs well for selecting features in high

dimensional space.

In this paper, we further improve this hybrid GA/SVM

technique to select features from eigen-space and to

optimize the regularization parameter of the SVM simul-

taneously. First, we formulate a protein sequence as a fixed-

dimensional vector via the motif content and protein

composition. Then, we further project the vectors into a

low-dimensional space by the Principal Component

Analysis (PCA) (Diamantaras & Kung, 1996) so that they

can be represented by a combination of the eigenvectors of

the covariance matrix of these vectors. Subsequently, the

GA technique is used to extract a subset of biological and

functional sequence features from the eigen-space and to

optimize the parameters of the SVM simultaneously.

Finally, we utilize the SVM classifiers to classify protein

sequences into the corresponding families based on the

selected feature subsets. In comparison with the existing

methods such as PSI-BLAST (Altschul et al., 1997) and

SVM-pairwise (Liao & Noble, 2003), the experiments show

the outstanding performance of our approach.

The remainder of this paper is organized as follows.

Section 2 describes the proposed approach in detail. The

experimental results and discussions are reported in Section

3. Finally, a conclusion is drawn in Section 4.
2. A new approach to extracting features from protein

sequences

In this section, we present a new method for extracting

features from motif content and protein composition for

protein sequence classification. Fig. 1 gives an overview of

our proposed method: (1) The training protein sequences are

first converted into eigenvectors by being projected into the
SVM
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eigen-space via PCA; (2) The hybrid GA/SVM technique is

then used to select features from the eigen-space and to

optimize the regularization parameter of SVM; (3) After

acquiring a subset of features, the SVM classifier is utilized

to classify an unseen set of protein sequences into

corresponding family based on the selected features and

optimized regularization parameter. The detailed procedure

of extracting features from motif content and protein

composition is given in the following sub-sections.

2.1. Vectorization of protein sequences

The first step of our proposed approach is to convert each

protein sequence into a vector of fixed dimensionality based

on the motif content and protein composition. The set of

motifs to be used can be chosen from the existing motif

database PROSITE (Falquet et al., 2002), which is a

database of protein families and domains. In general,

proteins can be grouped into a limited number of families

based on the similarities between their sequences. Proteins

or protein domains belonging to a particular family

generally share functional attributes and are derived from

a common ancestor. By analyzing the properties of such

group of similar sequences, it is possible to derive a

signature for a protein family or domain, which dis-

tinguishes its members from all other unrelated proteins.

Generally, such a protein signature or pattern can be used to

assign a new sequenced protein to a specific protein family

and thus to induce its function.

PROSITE currently contains patterns and profiles

specific for more than a thousand protein families or

domains. Each of these patterns comes with documentation

providing background information on the structure and

function of these proteins. For example, the expression of

the PROSITE pattern PS50020 is WKX(9,11)K[VFY]K
[FYW]KX(6,7)K[GSTNE]K[GSTQCR]K[FYW]K
X(2)KP, where X means any amino acids, [AB] means

either A or B, A(6,7) means A appears 6–7 times

consecutively. The documentation associated with the

pattern PS50020 lists the proteins that contain the pattern

and presents the information on the structure and function of

the pattern. In this paper, the patterns extracted from the

PROSITE database using a perl program, namely ps_scan,

are used to describe each protein of interest. Consequently,

each protein sequence is converted into an N-dimensional

motif-based feature vector, where N is the total number of

the motifs in the PROSITE database. Since the PROSITE

updated database contains 1744 entries, the number of

features will therefore be 1744. Each element of the vectors

represents the presence or absence of a motif in the protein

sequences. That is, the corresponding feature value will be 1

if a motif is present. Otherwise, it will be 0.

In addition to the motif content, the protein composition

is also incorporated into the feature vectors to improve

the classification accuracy. A protein sequence S is defined

as a linear succession of 20 symbols from a finite alphabet
S, where S consists of {A, C, D, E, F, G, H, I, K, L, M, N, P,

Q, R, S, T, V, W, Y}. Generally, the features describing the

protein composition can be defined as

vi Z
ciP20

jZ1

cj

; i Z 1;.; 20; (1)

where vi is the value for the ith feature, and ci is the times of

the ith amino acid occurring in the given protein sequence.

Hence, we can get 20 features for the 20 amino acids in the

protein sequences, respectively. Each element in the feature

vector denotes the presence frequency of an amino acid.

Consequently, the number of features will be 1744C20Z
1764 in total.

Although the dimension of the feature vectors is very

high, the vectors contain relatively a much smaller number

of non-zero features. Edler, Grassmann, and Suhai (2001)

have used the PCA technique to determine an appropriate

subset of principal components to represent most infor-

mation of protein sequences for protein fold classification.

Here, the PCA technique is also used to reduce the

dimensionality and normalize the extracted features. We

project a protein into a low-dimensional eigen-space via

PCA and then represent it as an eigenvector containing the

coefficients of the projection.
2.2. Selecting features from the eigen-space via hybrid

GA/SVM

The role of PCA is to reduce the dimensionality and

normalize the extracted features. However, it is usually

difficult to know how many components should be chosen.

Although various rules (Jolliffe, 1986) have been developed

to determine the number of principal components, most of

them are ad hoc and subjective. Under the circumstances,

we first select a large dimensionality of 1000, and then

project the protein sequences into the eigen-space via PCA.

Subsequently, a subset of features is automatically selected

by the hybrid GA/SVM technique.

The basic idea behind the hybrid GA/SVM technique is

that GA is used to select features and optimize the hyper-

parameter of SVM, while SVM is used to evaluate the

selected features. In the hybrid GA/SVM algorithm, a

population contains chromosomes that are the potential

solutions to feature selection and to optimization of the

hyper-parameter of SVM. A fitness function is associated

with each chromosome to measure the degree of goodness

of the chromosome, where SVM is used to calculate the

classification accuracy based on the selected features and

optimized hyper-parameter. By applying the genetic

operators, i.e. selection, crossover, and mutation, to the

chromosomes in the population, a new population is

generated for the next generation. The procedure of

selection, crossover and mutation is repeated until a

termination criteria is satisfied, i.e. one of the generations
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contains solutions that are good enough. Suppose the

selected feature set is F and the hyper-parameter of SVM

is C. The procedure of the hybrid GA/SVM algorithm is

summarized in Fig. 2.

It can be seen that the key issues of the hybrid GA/SVM

algorithm are the encoding of the chromosomes and the

definition of the fitness function. Furthermore, the SVM

algorithm is also involved. In the following, we will

describe them in more detail.

2.2.1. Support vector machine

In this section, an overview of SVM is presented. Given a

set of labelled training pairs (xi,yi), iZ1,.,l, where xi 2R
n,

yi2{K1,C1}l, SVM maps the input vector xi into a high

dimensional feature space R
nh by a mapping function F($)

and finds a hyperplane, which maximizes the margin, i.e. the

distance between the hyperplane and the nearest data points

of each class in the space R
nh. The decision function

implemented by SVM can be written as

f ðxÞ Z sgn
Xl

iZ1

yiaiKðxi; xÞCb

 !
(2)
Fig. 2. Hybrid GA/SVM algorithm, where the tournament selection

operator and uniform crossover operator are used with the population p

evaluated by SVM.
with

Kðxi; xÞ Z hFðxiÞ;FðxÞi; (3)

where ais are the coefficients obtained by solving the

following optimization problem

maximize
Xl

iZ1

aiK1=2
Xl

iZ1

Xl

jZ1

aiajyiyjKðxi; xjÞ;

subject to 0%ai %C;

Xl

iZ1

aiyi Z 0; i Z 1; 2;.; l;

where C is a regularization parameter, which controls the

trade-off between the margin and the misclassification error.

To construct the SVM classifier, we need to determine

the following two parameters: the regularization parameter

C and the kernel function K. In this paper, the Gaussian

kernel is adopted for all the SVM classifiers and C is

optimized by GA. The variance of the Gaussian kernel is

computed as the median Euclidean distance from any

positive training examples to the nearest negative example

(Hou, Hsu, Lee, & Bystroff, 2003).

2.2.2. Chromosome representation

In this paper, the chromosome is encoded into a bit

string. As shown in Fig. 3, a chromosome is partitioned into

two parts: Parts A and B. Part A represents the selected

features. Let m (mZ1000 in our case) be the total number of

features, and Part A is represented by a binary vector of

dimension m (Fig. 3). If the ith bit of the vector is equal to 1,

the corresponding ith feature is selected; Otherwise, the

corresponding ith feature will not be selected. In addition, to

train an optimized SVM, C should also be selected by GA.

Part B represents C using 4 bits to encode the numbers of

K7,.,8, which are used as the powers of 10. Hence, C can

be selected in the discrete value of 10K7,.,108. For

example, the value for C in Fig. 3 is 106.

2.2.3. Fitness function for chromosome evaluation

The goal of feature selection is to use fewer features to

achieve the same or better performance compared with that

obtained using the complete feature set. Hence, chromo-

some evaluation contains the following two objectives: (1)

minimizing the number of features; (2) maximizing the

classification accuracy. Obviously, there are some trade-offs

between the accuracy and the number of features, among

which the accuracy is our major concern. In the literature

(Deb & Reddy, 2003a,b, 2004), there have been many

methods proposed for combining the above two terms. In

this paper, a simple weighting method using linear

aggregation of the two objectives is adopted. Given a

chromosome g, the fitness function can be defined as

f ðgÞ Z f1ðgÞCwf2ðgÞ; (4)

where w is the weighting coefficient, f1(g) is the recognition
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rate obtained using features presented in g, and f2(g) is the

number of features removed from the original feature set. A

small value is given to w because we mainly focus on the

recognition rates. In this paper, w is set at 4!10K5. It can be

seen that the chromosomes with higher accuracies will

outweigh those with lower accuracies, no matter how many

features they contain.

In the hybrid GA/SVM algorithm, the recognition rate is

obtained by the SVM classifier, where the five-fold cross-

validation is used to estimate the classification performance.

The training set T is randomly partitioned into five equal

disjoint sets: T1, T2, T3, T4 and T5. Consequently, five SVM

classifiers are trained on the complement �Ti of each

partition Ti, and each classifier is then tested on the

corresponding unseen test set Ti.

The final cross-validation recognition rate is given by

f1 Z
1

5

X5

iZ1

rðTi; �TiÞ; (5)

where rðTi; �TiÞ is the recognition rate on Ti using the SVM

classifier trained on �Ti.

2.2.4. Genetic operators

In this work, the tournament selection is adopted to select

two parent chromosomes from the current population. Then,

the uniform crossover method is applied to the two parent

binary string vectors to produce two offsprings, and the

mutation operation mutates the offsprings.

If the mutated chromosome is superior to both parent

chromosomes, it replaces the similar one; if it is in between

the two parents, it replaces the inferior one; otherwise, the

most inferior one in the population is replaced. The

procedure of selection, crossover and mutation is repeated

until a termination criteria is satisfied.
3. Experiments and discussions

In this section, we investigated our proposed method on
classifying the protein sequences obtained from the Protein

Information Resource (PIR) (Barker et al., 2000) database

and Structural Classification of Protein (SCOP) (Murzin,

Brenner, Hubbard, & Chothia, 1995) database. The

parameters used in GA were: population size 50, generation

1000, crossover rate 0.8, and mutation rate 0.02.

3.1. Experiment I

In this experiment, protein sequences obtained from the

PIR database were used to evaluate our proposed technique.

Six protein superfamilies data were used as positive datasets

and one protein superfamily used as negative dataset. Both

the six positive datasets and the one negative dataset were

obtained from the PIR Non-Redundant Reference Sequence

Database (PIR-NREF), Release 1.35. The six positive

protein superfamilies were: Cytochrome C (964), Ferre-

doxin (312), Plastocyanin (132), Triose (195), Ligase (678)

and Lectin (159), respectively. The one negative dataset

containing 759 sequences was Cytochrome b. In each of the

seven datasets, two-third of the dataset was used as the

training set and input for the hybrid GA/SVM algorithm to

get a subset of features, and the rest one-third was held as the

test set. The hybrid GA/SVM classifier was trained on each

positive dataset against the negative dataset to find a subset

of features so that we can discriminate the positive dataset

from the negative dataset. This procedure was repeated for

six times for the six positive families.

We first investigated whether or not using the combi-

nation of motif content and protein composition can get

better results than using only the motif content. Six kinds of

combination were therefore compared: Classification using

motif content by SVM; Classification using composition by

SVM; Classification using the combination of motif content

and protein composition by SVM; Classification using the

combination of motif content and protein composition by

GACSVM; Classification using the motif content by

PCACGACSVM; Classification using the combination

of motif content and protein composition by PCACGAC
SVM. Here, PCACGACSVM represents our proposed
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method, and GA/SVM means the hybrid GA/SVM

technique without PCA used. Fig. 4 shows the results

obtained by the six methods on the test sets of the six protein

families. It can be seen that, using both motif content and

protein composition, we can get better classification

accuracy than using only the motif content. Further, using

PCA to reduce the dimensionality and normalize the

features, we can get better results than those obtained

without PCA. It can also be concluded that using the feature

subsets generated from the motif content and protein

composition, the classification accuracy can be indeed

improved.

Furthermore, we investigated the influence of the weight

value w in Eq. (4) on the classification performance. We set

w at 4!10K5, 0 and 4!10K4, respectively. Fig. 5 shows

the recognition rates and feature numbers obtained on the

test sets using different ws. As shown in Fig. 5, when w was

set at 0, we can get the same recognition rates as those

obtained by setting w at 4!10K5, but the number of features
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different w values. The right figure shows the number of features obtained using
was larger; when w was set at 4!10K4, the number of

features was the smallest but the recognition rate was the

worst. Therefore, it can be concluded that the larger the

value of w is, the smaller the set of features is selected and

the worse the recognition rates are obtained. It can be

learned from Fig. 5 that the weight coefficient we proposed

in this paper is reasonable for protein sequence

classification.

Table 1 summarizes the comparison of the recognition

rates and feature numbers before and after the dimension-

ality reduction for the SVM classifier on the test sets of the

six superfamilies. It can be seen that using the feature

subsets, the feature numbers have been significantly reduced

by 52.9–62.3% compared with the complete eigen-feature

sets, and the classification accuracies for the given protein

sequences can be indeed improved.

In addition, we compared our proposed method with the

other three protein sequence classification methods: the

C4.5 decision tree algorithm (Quinlan, 1993), the BLAST
w=0

w=4× 10–4

w=4× 10–5
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Table 1

Comparison of the recognition rates and feature numbers before and after

the dimensionality reduction for the SVM classifier on the test sets of the six

protein superfamilies

Protein

datasets

Original feature set Selected feature subset

Feature

number

Classification

accuracy (%)

Feature

number

Classification

accuracy (%)

Cytochrome c 1764 98.08 471 100.00

Ferredoxin 1764 99.32 458 100.00

Plastocyanin 1764 97.64 409 100.00

Triose 1764 98.25 462 100.00

Ligase 1764 98.92 377 100.00

Lectin 1764 96.72 431 100.00
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(Altschul et al., 1997) method and the HMMer (Durbin,

Eddy, Krogh, & Mitchison, 1998) method. Table 2

summarizes the results obtained by the four classifiers on

the test sets of the six protein superfamilies, where the C4.5

decision tree algorithm used only the motif content as inputs

as described in (Wang et al., 2003). From Table 2, it can be

readily found that our proposed hybrid GA/SVM technique

based on motif content and protein composition outper-

forms the decision tree algorithm, the BLAST and the

HMMer.
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3.2. Experiment II

In this section, the SCOP 1.53 data set presented by Liao

and Noble (2003) was used to evaluate the performance of

our proposed method in comparison with the other methods.

Sequences were selected using the Astral database (Brenner,

Koehl, & Levitt, 2000) with an E-value threshold of 10K25.

This procedure resulted in 4352 distinct sequences that were

grouped into 54 families. We compared our proposed

technique with four other methods: PSI-BLAST (Altschul

et al., 1997), SAM (Krogh et al., 1994), SVM-pairwise

(Liao & Noble, 2003) and SVM-Fisher (Jaakkola et al.,

2000). The same experiment setup described by Liao (Liao

& Noble, 2003) was used so that we can compare our

proposed method directly with the other four methods.

For PSI-BLAST, a sequence from the positive training

set was randomly selected to serve as the initial query

sequence. The resulting profiles were used to search against

the test set sequences, and the resulting E-values were used
Table 2

Comparison of the recognition rates for the four classifiers on the test sets of

the six superfamilies

Protein

datasets

SVM (%) Decision

tree (%)

BLAST

(%)

HMMer

(%)

Cytochrome c 100.00 98.43 96.16 82.2

Ferredoxin 100.00 99.44 100.00 96.92

Plastocyanin 100.00 99.33 87.98 97.64

Triose 100.00 99.46 98.89 91.25

Ligase 100.00 99.17 99.25 89.98

Lectin 100.00 99.35 99.35 96.74
to rank the testing sequences. For the SAM method, the

hidden Markov models were trained using the Sequence

Alignment and Modelling (SAM) toolkit (Krogh et al.,

1994). After a hidden Markov model was obtained, the

testing sequences can be compared against the model, and

the resulting E-values were used to rank the testing

sequences.

For SVM-pairwise and SVM-Fisher, the difference is

how to represent the protein sequences as feature vectors.

The SVM-Fisher method used the feature vectors generated

from the parameters of a profile HMM, while the SVM-

pairwise method used the pairwise Smith–Waterman

sequence similarity scores to represent the protein

sequences. The regularization parameter for both SVM-

pairwise and SVM-fisher was set at 10, and the Gaussian

kernel was adopted for both methods.

In this paper, the receiver operating characteristic (ROC)

scores (Gribskov et al., 1987) and the median rate of false

positives (RFP) (Jaakkola et al., 2000) were used to evaluate

the performance of all methods. The experimental results

were summarized in Figs. 6 and 7, where a higher curve

corresponds to a more accurate classification result. As

shown in Figs. 6 and 7, using either performance measure,

our proposed method outperforms the other four methods.

Table 3 summarizes the final feature numbers, ROC scores

and median RFP scores on the test sets. As shown in

Table 3, after generations of evolution, the number of the

features in the final iteration ranges from 431 to 500 for the

54 protein families, reducing the features about 50–56.9%

compared with the complete eigen-feature sets. It can be

concluded from Figs. 6, 7 and Table 3 that using the

information extracted from the motif content and protein

composition, the feature subsets extracted from the eigen-

space can provide concise representation of corresponding

protein families, i.e. our proposed method can find

biological significant features for protein classification.

This also implies that the feature selection really plays an

important role in protein classification.
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Fig. 6. Comparison of the performance of the five methods on the 54 protein

families, where the curves show the number of families versus a ROC score

threshold for the five methods.
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In addition, the relative performance of our proposed

method was further illustrated in Fig. 8. The left figure in

Fig. 8 shows the family-by-family comparison of the 54

ROC scores for our proposed technique versus the SVM-

pairwise method. As shown in the left figure of Fig. 8, our

proposed technique scores higher than the SVM-pairwise

method on every protein family in terms of ROC scores.

Further, the right figure of Fig. 8 shows the family-by-

family comparison of the 54 median RFP scores for our

method versus the SVM-pairwise method. As shown in the

right figure of Fig. 8, our proposed method scores higher
Table 3

The final feature numbers, ROC scores and median RFP scores for the test sets o

ID Feature number ROC score Median RFP ID

1.27.1.1 462 1 0 2

1.27.1.2 461 0.9735 0.0056 3

1.36.1.2 441 1 0 3

1.36.1.5 450 1 0 3

1.4.1.1 457 0.9968 0 3

1.4.1.2 455 0.8525 0.0256 3

1.4.1.3 461 0.9823 0.0004 3

1.41.1.2 462 1 0 3

1.41.1.5 466 0.9970 0.0002 3

1.45.1.2 431 1 0 3

2.1.1.1 463 0.9945 0.0003 3

2.1.1.2 487 0.9958 0 3

2.1.1.3 474 0.9996 0.0213 3

2.1.1.4 468 0.9990 0 3

2.1.1.5 461 0.9603 0.0007 3

2.28.1.1 476 1 0 3

2.28.1.3 460 0.9963 0 3

2.38.4.1 455 0.9862 0.038 3

2.38.4.3 483 0.9490 0.145 7

2.38.4.5 438 0.9922 0 7

2.44.1.2 458 0.95 0.0634 7

2.5.1.1 462 1 0 7

2.5.1.3 437 1 0 7

2.52.1.2 475 0.9961 0 7

2.56.1.2 473 1 0 7

2.9.1.2 482 0.9827 0.035 7

2.9.1.3 452 1 0 7
than the SVM-pairwise method on almost all families in

terms of median RFP scores. In other words, using the

features extracted from the eigen-space, our proposed

technique outperforms other methods in terms of protein

classification.

To get an idea about the optimal set of eigenvectors

selected by the hybrid GA/SVM technique. We plotted the

distribution curves showing the distribution of the selected

eigen-features in the training sets and test sets. We took the

protein family of 7.3.6.4 as an example. The 7.3.6.4 family

contains 3591 negative training sequences, 485 negative test

sequences, 37 positive training sequences, and five positive

test sequences. Fig. 9 shows the distribution of the final 500

features selected by the hybrid GA/SVM technique from the

eigen-space formed by PCA, where x-axis corresponds to

the eigen-features and y-axis corresponds to the times of an

eigen-feature occurring in the training or test sets. As shown

in Fig. 9, the distribution of the eigen-features in the positive

test set is consistent with that in the positive training set,

while the distribution of the eigen-features in the negative

training set is consistent with that in the negative test set.

This scenario further implies the reason that our classifiers

can achieve better performance.
4. Conclusion

This paper has proposed a new method for classifying
f the 54 protein families

Feature number ROC score Median RFP

.9.1.4 458 1 0

.1.8.1 475 0.9867 0.0042

.1.8.3 469 1 0

.2.1.2 464 0.8878 0.2525

.2.1.3 451 0.9676 0.0065

.2.1.4 474 1 0

.2.1.5 477 0.9525 0.0023

.2.1.6 485 0.9699 0.0252

.2.1.7 456 1 0

.3.1.2 455 0.9893 0.0047

.3.1.5 465 1 0.0036

.32.1.1 467 0.9843 0.0077

.32.1.11 456 0.9245 0.0254

.32.1.13 463 0.9099 0.0045

.32.1.8 451 0.9716 0

.42.1.1 458 0.958 0.0505

.42.1.5 458 0.9934 0

.42.1.8 466 0.9425 0.0256

.3.10.1 467 0.9965 0

.3.5.2 471 1 0

.3.6.1 482 1 0

.3.6.2 487 1 0

.3.6.4 500 1 0

.39.1.2 451 0.95208 0

.39.1.3 462 0.9931 0

.41.5.1 458 1 0

.41.5.2 457 1 0
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protein sequences into functional families using features

extracted from the motif content and protein composition.

Compared with the previous works, the main novelty of

our method is that protein sequences are converted into

feature vectors using global features and local features

represented by the protein composition and motif content,

respectively. Furthermore, the PCA technique is also

utilized to normalize the feature vectors and project the

feature vectors into a low-dimensional eigen-space. Instead

of using the complete set of eigenvectors, we select a much

smaller feature subset to represent the protein sequences of

interest via the hybrid GA/SVM technique, where the

hyper-parameter of SVM is also optimized by GA. Having

obtained the subset of features, the SVM classifier is
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Fig. 9. The distribution of the selected features in the t
utilized to classify protein sequences into corresponding

families based on the optimized hyper-parameter. The

numerical results on protein sequences obtained from PIR

and SCOP databases have shown that features extracted

from the motif content and protein composition by our

proposed technique are really effective for protein

classification.
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