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Abstract—In this paper, we present an agglomerative fuzzy K-Means clustering algorithm for numerical data, an extension to the

standard fuzzy K-Means algorithm by introducing a penalty term to the objective function to make the clustering process not sensitive

to the initial cluster centers. The new algorithm can produce more consistent clustering results from different sets of initial clusters

centers. Combined with cluster validation techniques, the new algorithm can determine the number of clusters in a data set, which is a

well-known problem in K-Means clustering. Experimental results on synthetic data sets (2 to 5 dimensions, 500 to 5,000 objects and

3 to 7 clusters), the BIRCH two-dimensional data set of 20,000 objects and 100 cluster0and the WINE data set of 178 objects,

17 dimensions, and 3 clusters from UCI have demonstrated the effectiveness of the new algorithm in producing consistent clustering

results and determining the correct number of clusters in different data sets, some with overlapping inherent clusters.

Index Terms—Fuzzy K-Means clustering, agglomerative, number of clusters, cluster validation.

Ç

1 INTRODUCTION

CLUSTERING is a process of grouping a set of objects into
clusters so that the objects in the same cluster have high

similarity but are very dissimilar with objects in other
clusters. Various types of clustering methods have been
proposed and developed, see, for instance, [1]. The
K-Means algorithm [1], [2], [3], [5] is well known for its
efficiency in clustering large data sets. Fuzzy versions of the
K-Means algorithm have been reported by Ruspini [4] and
Bezdek [6], where each pattern is allowed to have member-
ships in all clusters rather than having a distinct member-
ship to one single cluster. Numerous problems in real-
world applications, such as pattern recognition and
computer vision, can be tackled effectively by the fuzzy
K-Means algorithms, see, for instance, [7], [8], and [9].

There are two major issues in the application of

K-Means-type (nonfuzzy or fuzzy) algorithms in cluster

analysis. The first issue is that the number of clusters k

needs to be determined in advance as an input to these

algorithms. In a real data set, k is usually unknown. In

practice, different values of k are tried, and cluster

validation techniques are used to measure the clustering

results and determine the best value of k, see, for instance,

[1]. In [10], Hamerly and Elkan studied statistical methods

to learn k in K-Means-type algorithms.

The second issue is that the K-Means-type algorithms use
alternating minimization methods to solve nonconvex
optimization problems in finding cluster solutions [1].
These algorithms require a set of initial cluster centers to
start and often end up with different clustering results from
different sets of initial cluster centers. Therefore, the
K-Means-type algorithms are very sensitive to the initial
cluster centers. Usually, these algorithms are run with
different initial guesses of cluster centers, and the results are
compared in order to determine the best clustering results.
One way is to select the clustering results with the least
objective function value formulated in the K-Means-type
algorithms, see, for instance, [11]. In addition, cluster
validation techniques can be employed to select the best
clustering result, see, for instance, [1]. Other approaches
have been proposed and studied to address this issue by
using a better initial seed value selection for K-Means
algorithm using genetic algorithm [12], [13], [14], [15].
Recently, Arthur and Vassilvitskii [16] proposed and
studied a careful seeding for initial cluster centers to
improve clustering results.

In this paper, we propose an agglomerative fuzzy
K-Means clustering algorithm for numerical data to tackle
the above two issues in application of the K-Means-type
clustering algorithms. The new algorithm is an extension to
the standard fuzzy K-Means algorithm by introducing a
penalty term to the objective function to make the clustering
process not sensitive to the initial cluster centers. The new
algorithm can produce more consistent clustering results
from different sets of initial clusters centers. Combined with
cluster validation techniques, the new algorithm can
determine the number of clusters in a data set. Experimental
results have demonstrated the effectiveness of the new
algorithm in producing consistent clustering results and
determining the correct number of clusters in different data
sets, some with overlapping inherent clusters.

The organization of this paper is as follows: In Section 2,
we review the related work. In Section 3, we formulate the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 11, NOVEMBER 2008 1519

. M.J. Li is with the Department of Mathematics, Hong Kong Baptist
University, Kowloon Tong, Hong Kong. E-mail: jjli@math.hkbu.edu.hk.

. M.K. Ng is with the Centre for Mathematical Imaging and Vision and the
Department of Mathematics, Hong Kong Baptist University, Kowloon
Tong, Hong Kong. E-mail: mng@math.hkbu.edu.hk.

. Y.-m. Cheung is with the Department of Computer Science, Hong Kong
University, Kowloon Tong, Hong Kong. E-mail: ymc@comp.hkbu.edu.hk.

. J.Z. Huang is with the E-Business Technology Institute, The University of
Hong Kong, Pokfulam Road, Hong Kong. E-mail: jhuang@eti.hku.hk.

Manuscript received 1 May 2007; revised 1 Jan. 2008; accepted 21 Apr. 2008;
published online 1 May 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-05-0245.
Digital Object Identifier no. 10.1109/TKDE.2008.88.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



agglomerative fuzzy K-Means algorithm and combine it
with clustering validation techniques to select the number
of clusters. In Section 4, experimental results are given to
illustrate the effectiveness of the new algorithm. Finally,
concluding remarks are given in Section 5.

2 RELATED WORK

2.1 Cluster Validation

The most important parameter in the K-Means-type algo-
rithm is the number of clusters. The number of clusters in a
data set is a user-defined parameter, which is difficult to
specify. In practice, different k values are tried, and the
results are compared and analyzed with cluster validation
techniques to determine the most appropriate number of
clusters. For this purpose, different validation indices have
been proposed [1], [17], [18], [19], [20], [21]. For instance,
Gath et al. [19] proposed a cluster validation index based on
performance measure using hypervolume and density
criteria. For the evaluation of the fuzzy K-Means clustering,
several validation indices are available, including parti-
tional coefficients and classification entropy [18]. Recently,
Rezaee et al. [21] proposed a validation index that is derived
from a linear combination of the average scattering
(compactness) of clusters and the distance (separation)
between clusters. Sun et al. [20] proposed a validation index
with a suitable balance between the compactness factor and
cluster separation.

On the other hand, some validation indices were
developed for the probabilistic mixture-model framework.
In density estimation, the commonly used criteria of AIC
[22] and BIC [23] seem to be adequate in finding the correct
number of clusters for a suitable density estimate. However,
these conventional criteria can overestimate or under-
estimate the cluster number due to the difficulty of
choosing an appropriate penalty function [24]. Hamerly
and Elkan [10] proposed a statistical framework to test a
hypothesis on the subset of data following a Gaussian
distribution. Other comprehensive criteria include Efron
information criterion (EIC) [25], cross-validation-based
information criterion (CVIC) [26], minimum information
ratio criterion (MIR) [27], and informational complexity
criterion (ICOMP) [28], see the summary in [29].

2.2 Optimization Functions

An alternative approach to determining the number of
clusters is to define an optimization function that involves
both cluster solutions and the number of clusters. Recently,
Cheung [30] studied a rival penalized competitive learning
algorithm [31] that has demonstrated a very good result in
finding the cluster number. His algorithm is formulated by
learning the parameters of a mixture model through the
maximization of a weighted likelihood function. In the
learning process, some initial seed centers move to the
genuine positions of the cluster centers in a data set, and
other redundant seed points will stay at the boundaries or
outside of the clusters.

The Bayesian-Kullback Ying-Yang learning theory has
been proposed in [32]. It is a unified algorithm for both
unsupervised and supervised learning, which provides us a
reference for solving the problem of selection of the cluster

number. The experimental results worked very well for
many samples. However, for a relatively small number of
samples, the maximum likelihood method with the ex-
pectation-maximization algorithm for estimating the mix-
ture model parameters do not adequately reflect the
characteristics of the cluster structure [33].

2.3 Competitive Agglomeration

An agglomerative clustering procedure starts with each
object as one cluster and forms the nested sequence by
successively merging clusters. The main advantage of the
agglomerative procedure is that clustering is not influenced
by initialization and local minima. In addition, the number
of clusters need not be specified a priori. Practitioners can
analyze the dendrogram produced by the clustering
process, cut the dendrogram at a suitable level, and then
identify the clusters. Based on the agglomerative procedure,
Frigui and Krishnapuram [34] proposed a new fuzzy
clustering algorithm that minimizes an objective function
that produces a sequence of partitions with a decreasing
number of clusters. The initial partition has an over
specified number of clusters, and the final one has the
optimal number of clusters. In the clustering process,
adjacent clusters compete for objects in a data set, and the
clusters that lose the competition gradually become
depleted and vanish. Experimental results have shown that
the performance of the competitive agglomeration algo-
rithm is quite good. We remark that their proposed
algorithm assumes the objects-clusters membership value
do not change significantly from one iteration to the next
one to simplify the computational procedure. Moreover, in
the clustering process, the objects-clusters membership
value may not be confined between 0 and 1. An additional
procedure may be applied to the algorithm to set the
suitable values.

3 THE AGGLOMERATIVE FUZZY K-MEANS
ALGORITHM

Let XX ¼ fX1; X2; . . . ; Xng be a set of n objects in which each
object Xi is represented as ½xi;1; xi;2; . . . ; xi;m�, where m is the
number of numerical attributes. To cluster XX into k clusters
by the agglomerative fuzzy K-Means algorithm [35] is to
minimize the following objective function:

P ðU;ZÞ ¼
Xk
j¼1

Xn
i¼1

ui;jDi;j þ �
Xk
j¼1

Xn
i¼1

ui;j logui;j ð1Þ

subject to

Xk
j¼1

ui;j ¼ 1; ui;j 2 ð0; 1�; 1 � i � n; ð2Þ

where U ¼ ½ui;j� is an n-by-k partition matrix, ui;j
represents the association degree of membership of the
ith object xi to the jth cluster zj, Z ¼ ½z1; z2; . . . ; zk�T is an
k-by-m matrix containing the cluster centers, and Di;j is a
dissimilarity measure between the jth cluster center and
the ith object. Here, the square of the euclidean norm is
used as the dissimilarity measure, i.e.,
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Di;j ¼
Xm
l¼1

ðzj;l � xi;lÞ2:

Such dissimilarity measure is commonly used in clustering,
see, for instance, [1] and [2]. The first term in (1) is the cost
function of the standard K-Means algorithm. The second
term is added to maximize the negative objects-to-clusters
membership entropy in the clustering process. Because of
the second term, ui;j can choose between 0 and 1, which
represents a fuzzy clustering:

. When ui;j is close to zero for all j 6¼ j� and ui;j� is
close to one, the negative objects-to-clusters entropy
value �

Pk
j¼1 ui;j logui;j is close to zero. In this case,

the ith object is firmly assigned to the j�th cluster,
and the corresponding entropy value is small.

. However, when ui;j are about the same for some
clusters, and the ui;j values for other clusters are
close to zero, the negative objects-to-clusters mem-
bership entropy becomes more positive, i.e., much
larger than zero. In this situation, the ith object
belongs to several clusters.

Therefore, with the weight entropy term, the clustering
process can simultaneously minimize the within cluster
dispersion and maximize the negative weight entropy to
determine clusters to contribute to the association of objects.

3.1 The Optimization Procedure

Minimization of P in (1) with the constraints forms a class
of constrained nonlinear optimization problems whose
solutions are unknown. We can extend the standard
K-Means clustering process to minimize P . The usual
method toward optimization of P is to use the partial
optimization for U and Z. In this method, we first fix U and
minimize the reduced P with respect to Z. Then, we fix Z
and minimize the reduced P with respect to U .

Given U fixed, Z is updated as

zjl ¼

Pn
i¼1

ui;j xi;l

Pn
i¼1

ui;j

for 1 � j � k and 1 � l � m: ð3Þ

We note that (3) is independent of the parameter �.
Given that Z fixed, U is updated as follows: We use the

Lagrangian multiplier technique to obtain the following
unconstrained minimization problem:

~P ðU; �Þ ¼
Xk
j¼1

Xn
i¼1

ui;jDi;j þ �ui;j logui;j
� �

þ �i
Xn
i¼1

Xk
j¼1

ui;j � 1

 !
;

where � ¼ ½�1; . . . ; �n� is the vector containing the Lagran-
gian multipliers. If ðÛ; �̂Þ is a minimizer of ~P ðU; �Þ, the
gradients in both sets of variables must vanish. Thus,

@ ~P ðÛ; �̂Þ
@ûi;j

¼ Di;j þ �ð1þ logui;jÞ þ �̂i ¼ 0;

1 � j � k; 1 � i � n;
ð4Þ

and

@ ~P ðÛ; �̂Þ
@�̂i

¼
Xk
i¼1

ûi;j � 1 ¼ 0: ð5Þ

From (4), we obtain

ûi;j ¼ exp
�Di;j

�

� �
expð�1Þ exp

��̂i
�

� �
: ð6Þ

By substituting (6) into (5), we have

Xk
j¼1

ûi;j ¼
Xk
j¼1

exp
�Di;j

�

� �
expð�1Þ exp

��̂i
�

� �

¼ expð�1Þ exp
��̂i
�

� �Xk
j¼1

exp
�Di;j

�

� �
¼ 1:

It follows that

ûi;j ¼
exp

�Di;j

�

� �
Pk
l¼1

exp
�Dl;j

�

� � ; ð7Þ

and U can be updated by (7). The alternating minimization

procedure between Z and U can be applied to (1). The

optimization procedure to solve (1) is given as follows:

THE AGGLOMERATIVE FUZZY K-MEANS ALGORITHM:

1. SET THE PENALTY FACTOR �. RANDOMLY CHOOSE

INITIAL POINTS Zð0Þ ¼ fZ1; Z2; . . . ; Zkg. DETERMINE

U ð0Þ SUCH THAT P ðU ð0Þ; Zð0ÞÞ IS MINIMIZED BY USING

(7). SET t ¼ 0.

2. LET Ẑ ¼ Zt, SOLVE PROBLEM PðU; ẐÞ TO OBTAIN Utþ1.

IF PðUtþ1; ẐÞ ¼ PðUt; ẐÞ, OUTPUT ðUt; ẐÞ AND STOP;

OTHERWISE, GO TO STEP 3.

3. LET Û ¼ Utþ1, SOLVE PROBLEM PðÛ; ZÞ TO OBTAIN

Ztþ1. IF PðÛ; Ztþ1Þ ¼ PðÛ; ZtÞ, OUTPUT ðÛ; ZtÞ AND

STOP; OTHERWISE, SET t ¼ tþ 1 AND GO TO STEP 2.

3.2 The Properties of the Algorithm

In the clustering process, the algorithm tries to minimize the

within cluster dispersion and maximize the sum of the

negative weight entropies of all objects, so the objective

function (1) is minimized. Which part plays a more

important role in the minimization process of (1) is

balanced by the parameter �. We know that the weight

entropy of an object measures whether the object is assigned

to a single cluster, in which case the entropy is equal to zero,

or to several clusters, in which case the entropy is positive

number. Maximization of the sum of the negative entropies

of all objects is to assign each object to more clusters instead

of a single cluster. Therefore, the parameter � has the

following properties to control the clustering process.

1. When � is large such that the value of

Xk
j¼1

Xn
i¼1

ui;jDi;j
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(the within cluster dispersion term) is much less

than the value of �
Pk

j¼1

Pn
i¼1 ui;j logui;j (the entropy

term), the entropy term will play a more important

role to minimize (1). The clustering process will try

to assign each object to more clusters to make the

second term more negative. When the weights ui;j of

an object to all clusters are equal, the object weight

entropy is the largest. Since the locations of objects

are fixed, to achieve the largest object entropy, move

the cluster centers to the same location. Therefore,

when � is large, the clustering process turns to move

some clusters centers to the same locations to

maximize the sum of the negative entropies of all

objects.
2. When � is small such that the value of

Xk
j¼1

Xn
i¼1

ui;jDi;j

is much larger than the value of

�
Xk
j¼1

Xn
i¼1

ui;j logui;j;

the within cluster dispersion term will a play a more

important role to minimize (1). The clustering process

turns to minimize the within cluster dispersion.

In the next two sections, we will present how to select

suitable values of � for numerical data clustering.

3.3 An Example

The properties of the proposed objective function can be

demonstrated by the following example. A data set of

1,000 points in a two-dimensional (2D) space is shown

Fig. 1a. We can see there are three clusters. We want to use

the new algorithm to cluster this data set and discover the

three clusters. We started with five initial cluster centers

randomly selected from the data set, as shown in Fig. 1b. It

happened that these initial seed centers were all selected

from the same cluster. Apparently, this was not a good

selection from the K-Means clustering point of view. Fig. 2

shows the clustering results of the data set in Fig. 1a by the

algorithm with different � input values. We can see that

when � is very small, the number of clusters generated by

the algorithm was equal to the number of initial cluster

centers. As � increased, the number of generated clusters

reduced because some initial cluster centers moved to the

same locations. As � increased to certain level, the number

of generated clusters was same as the number of the true

clusters in the data set. This indicates that the � setting was

right in finding the true clusters by the algorithm. However,

as � further increased, the number of generated clusters

became smaller than the number of the true clusters in the

data set. Finally, when � increased to a certain value, the
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iterations.

Fig. 2. The numbers of merged cluster centers with respect to different

values of �.



number of generated clusters became one. This indicates
that the negative entropy term fully dominated the
clustering process.

For instance, when � is equal to 1 in Fig. 2, Figs. 1c, 1d,

1e, and 1f show the movements of the cluster centers in the

subsequent iterations. The clustering process stopped at the

eighth iteration. In Fig. 1f, we can see that the five initial

cluster centers moved to three locations, which are very

close to the three true cluster centers in the data set. The

positions of the identified cluster centers by the clustering

process and the true cluster centers are given in the table

below.

Repeated experiments with different numbers of initial
cluster centers produced the same clustering result, as
shown in Fig. 1f.

The above experiments show that by introducing the

negative entropy term to the K-Means objective function

and by using different values of � in the clustering process,

we can discover the centers of true clusters on the data set

but also find the correct number of the true clusters. These

are the two well-known problems in K-Means clustering

stated in Section 1, which can be solved by the new

algorithm.
The agglomerative fuzzy K-Means algorithm has the

following advantages:

1. It is not sensitive to the initial cluster centers. This
algorithm can improve the traditional K-Means
algorithm by generating more consistent clustering
results in different clustering runs. These consistent
clustering results can be effectively used with cluster
validation techniques to determine the number of
clusters in a data set.

2. It is not necessary to know the exact number of
clusters in advance. The number of clusters will be
determined by counting how many finally merged
cluster centers. For instance, as shown in Fig. 1f, the
number of merged cluster centers is three. This is
exactly the same as the number of “true” clusters in
the data set.

3.4 The Overall Implementation

The overall algorithm is implemented in the framework

shown in Fig. 3, which automatically run agglomerative

fuzzy K-Means algorithm to discover the “best” number of

clusters. In the implementation, there is only one input

parameter, the number of initial cluster centers k?. This

input number should be larger than the possible number of

clusters in the given data set.

There are two loops in the implementation. In the first

loop, we find the penalty factor �min such that the

agglomerative fuzzy K-Means algorithm will produce

exactly k? clusters in the output. The first loop guarantees

the “best” number of clusters will not be missed. In the

second loop, the number of clusters k is changed in an

decreasing order while � changes in an increasing order.

We consider that the values of � increase from

�min : � :¼ �min � t, where t ¼ 2; 3; . . . , and run the agglom-

erative fuzzy K-Means algorithm for each �. In the loop,

the generated cluster centers are checked and the kshare
cluster centers, which share the same locations with other

cluster centers, are removed. Therefore, the output number

of clusters become k ¼ k? � kshare. The whole procedure is

stopped when k is equal to 1, i.e., the value of � is large

enough such that all the objects associate to one merged

cluster center.

In using this algorithm, when the number of clusters k

stays unchanged in a few iterations, where � has increased a

few times, this indicates that the right number of clusters

may have been found. For example, in Fig. 2, the number of

clusters stays 3 as � has changed from 2 to 10. This indicates

that 3 is the true number of clusters in the data set.

In this iterative process, we further add a cluster

validation step to validate the clustering result, where a

cluster that shares its center with other clusters is identified.

A cluster validation index will be defined and studied in

Section 4. This loop stops when k ¼ 1, i.e., all cluster centers

have moved to the same location. The output of the

implementation is the clustering results with the least

validation index value.

4 EXPERIMENTAL RESULTS

In this section, we present five experiments to show the

effectiveness of the proposed algorithm. The first three

experiments were conducted on synthetic data sets contain-

ing overlapping clusters. The last experiment used a real data

set. The experiment results demonstrated that starting with

different numbers of initial cluster centers, the algorithm was

able to consistently discover the genuine clusters.

In the experiments, we used a validation index proposed

by Sun et al. [20]. This validation index is constructed based

on the average scattering (compactness) of clusters and

distances (separations) between clusters. However, we

would like to remark that other validation indices can also

be used in our framework since the proposed algorithm can

provide more consistent and effective clustering solutions

in different clustering runs for cluster validation. The

validation index [20] is given as

VðU;Z; kÞ ¼ SCAT T ERðkÞ þ DISTANCEðkÞ
DISTANCEðkmaxÞ

;

where

SCAT T ERðkÞ ¼
1
k

Pk
i¼1

k�ðziÞk

k�ðXÞk
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shows the average scattering of the clusters. Here,

�ðXÞ ¼ �1ðXÞ; �2ðXÞ; . . . ; �mðXÞ½ �T ;

�jðXÞ ¼
1

n

Xn
i¼1

ðxi;j � �xjÞ2;

�xj ¼
1

n

Xn
i¼1

xi;j;

�ðzlÞ ¼ �1ðzlÞ; �2ðzlÞ; . . . ; �mðzlÞ½ �T ; and

�mðzlÞ ¼
1

n

Xn
i¼1

ui;lðxi;m � zl;mÞ2:

When the number of clusters k is large, the value of

SCAT T ERðkÞ is small. The second term DISTANCEðkÞ
measures the separation between clusters:

DISTANCEðkÞ ¼ d2
max

d2
min

Xk
i¼1

Xk
j¼1

1

kzi � zjk2
;

dmin ¼ min
i6¼j
kzi � zjk and dmax ¼ max

i6¼j
kzi � zjk:

We note that the smaller the V, the better the clustering

result.
In addition, the performance metric to evaluate cluster-

ing results is the Rand index. It measures how similar the

partitions of objects are according to the real clusters ðAÞ
and a clustering result ðBÞ. Denote a and b as the number of

object pairs that are in the same cluster in both A and B and

in the same cluster in A but not B, respectively. The Rand

index is defined as follows:

RANDðkÞ ¼ aþ b
n

;
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where n is the total number of objects. We note that the

larger the RAND, the better the clustering result.

4.1 Experiment 1

The example in Fig. 1 has shown that starting from different

initial cluster centers, the algorithm was able to move the

initial cluster centers to the center locations of the genuine

clusters in the date set with some initial centers merged to

the same genuine centers. However, the three clusters are

well separated without overlapping in the data set.

In this experiment, we investigated the performance of

the agglomerative fuzzy K-Means algorithm in clustering

data with overlapping and nonspherical clusters. We

generated 1,000 synthetic data points from a mixture of

three bivariate Gaussian densities given by

0:33 Gaussian
1:0

1:0

� �
;

0:20 0:05

0:05 0:30

� �� 	

þ 0:34 Gaussian
1:0

2:5

� �
;

0:20 0:00

0:00 0:20

� �� 	

þ 0:33 Gaussian
2:5

2:5

� �
;

0:20 �0:10

�0:10 0:30

� �� 	
;

where Gaussian½X;Y � is a Gaussian normal distribution
with the mean X and the covariance matrix Y . The
generated data set by this density function is shown in
Fig. 4a. In the experiment, we randomly allocated 20 initial

centers shown as stars in Fig. 4a. Here, the number of the
initial centers is much larger than the number of the
genuine clusters in the data set. After several iterations, the
algorithm merged the initial centers to three locations, as
shown in Fig. 4b. These three locations are very close to the
“real” centers of the three genuine clusters in the data set.

Fig. 5 shows the results of the same data set with
different values of � and the same initial centers in Fig. 4a.
From these results, we can observe that the number of the
merged clusters reduced as � increased. Fig. 6 shows the
relationship between the number of the merged cluster
centers and �. We can see that the number of the merged
clusters approached 1 as � increased to 2. However, when
the number of the merged cluster centers is equal to the
number of the clusters in the data set, it kept the same for a
long range of � values. Therefore, this long range can be
used as an indicator for the right number of clusters if the
number of clusters in a data set is not known.

We also tested with different sets of initial cluster centers
and found that when the number of the merged cluster
centers became close to the number of clusters in the data
set, it kept unchanged for a big range of � values. Figs. 4a
and 4c show two different sets of initial cluster centers for
the same data set. Figs. 4b and 4d show their corresponding
final locations of the merged cluster centers. The locations
of the three clusters and the merged clusters from two
different sets of initial cluster centers are given in the table
below. We can see that they are very close. This implies that
the “real” locations of the cluster centers can be discovered

LI ET AL.: AGGLOMERATIVE FUZZY K-Means CLUSTERING ALGORITHM WITH SELECTION OF NUMBER OF CLUSTERS 1525

Fig. 4. The clustering results by the proposed algorithm (a) a random chosen initial seed centers, (b) the final positions of the merged cluster centers

from (a), (c) a bad initial seed centers, and (d) the final positions of the merged cluster centers from (c).



with the new algorithm, and the final result is not sensitive
to the selection of the initial cluster centers.

Cluster validation techniques can be further applied to
these clustering results to verify the number of clusters in
the data set. Fig. 7a shows the values of V with respect to
different values of �. The numbers in the brackets refer to
the number of the merged cluster centers for a given value
of �. As the data set was heavily overlapped, the proposed
algorithm selected many possible numbers of clusters in the
data set (cf., (6)). We find in Fig. 7a that the case of the three
merged clusters give the smallest value of V. Similarly, we

show in Fig. 7b the values of RAND with respect to
different values of �. Again, it is clear that the case of three
merged clusters give the largest value of RAND. Both
indices support that the data set contains three clusters. The
proposed algorithm determined the number of clusters
accurately.

4.2 Experiment 2

In this experiment, we randomly generated synthetic data
sets with different numbers of dimensions (2/3/4/5), objects
(500/1,000/5,000), and clusters (3/5/7) and different de-
grees of overlapping between clusters. Each dimension of
each group of data sets was generated as the normal
distribution with the controlled standard derivation � (the
standard derivation of the distance between each object
value and its assigned center value in a dimension). The
number of objects in each cluster was the same in each
generated data set. We designed two cases of overlapping
between two clusters, namely, 1) well separated ð� ¼ 6�Þ and
2) heavily overlapped ð� ¼ 3�Þ. Here, � refers to the distance
between two centers values in a dimension. For the well-
separated case, there were no overlapping points between
clusters (cf., Fig. 8). For the overlapping case, points in
different clusters were overlapped (cf., Fig. 10). Algorithm 1
gives the description for synthetic data generation.

Algorithm 1. Synthetic data generation

Specify the number of cluster k, objects n, dimensions m,

the standard derivation of the clusters �, the distance �

between two centers (3� or 6� in our tested data sets), and

the output a set of objects XX ¼ fX1; X2; . . . ; Xng
Set num to be the smallest integer being greater than or

equal to n=k

{Randomly choose the centers}

Randomly choose the first center z1

for j ¼ 2 to k do
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Fig. 5. The positions of the merged cluster centers (a) � ¼ 0:27, (b) � ¼ 0:47, (c) � ¼ 0:63, (d) � ¼ 1:60, and (e) � ¼ 1:86.

Fig. 6. The numbers of merged cluster centers with respect to different

values of �.



Choose the center zj such that for each dimension l,

jzj;l � zj�1;lj ¼ � and jzi;l � zj;lj � � for i > j

end for

{Generate about num objects for each cluster}

for i ¼ 1 to n do

Set j to be the smallest integer being greater than or

equal to i=num

for l ¼ 1 to m do

Set a random number r is generated by a Gaussian

distribution with the mean zero and the standard

derivation one

xi;l ¼ zj;l þ r � �
end for

end for

In conducting this experiment, the number of the initial

cluster centers was set to 15 (the number larger than the

number of clusters in the generated data sets). There are

10 runs of the agglomerative fuzzy K-Means algorithm.

Each run used different randomly generated initial cluster

centers. In each data set, we checked the proposed
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Fig. 7. The evaluation results by the proposed algorithm (a) the index V and (b) the index RAND for Experiment 1.

Fig. 8. (a) The initial seed centers, (b) the final positions of the merged cluster centers by the proposed algorithm, (c) the final positions of cluster

centers by the rival penalized competitive learning algorithm, and (d) the final positions of the cluster centers by the classical fuzzy K-Means

algorithm.



algorithm a long range of � values keeping the same

number of merged cluster centers to estimate the number of

true clusters. We also employed the index V to validate the

best clustering result and the estimate of the number of the

true clusters by the proposed algorithm.

For comparison, we used the classical fuzzy K-Means

algorithm to generate the clustering results. We remark that

the objective function in the classical fuzzy K-Means

algorithm is the same as (1) except without the second

entropy term. Different values of k to the classical fuzzy
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TABLE 1
The Degree of Overlapping between Two Clusters Is 6�

TABLE 2
The Degree of Overlapping between Two Clusters Is 3�



K-Means algorithm were tested. For each k ðk ¼ 2; 3; . . . ; 15Þ,
we performed 10 runs with different initial cluster centers

randomly generated. We found that the clustering results of

the classical fuzzy K-Means algorithm were quite different

in different runs. The validation index V was used to

determine the number of clusters generated by the classical

fuzzy K-Means algorithm in the data set.

Tables 1 and 2 list the true number ktrue of clusters in the

generated data sets, the number knew of the merged clusters

found by the agglomerative fuzzy K-Means algorithm that

is most frequently generated by the algorithm, and the

number kclassical of clusters found by the classical fuzzy

K-Means algorithm. Here, kclassical refers to the result

(among 10 runs) selected from the minimum validation
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Fig. 9. The evaluation results by the proposed algorithm: (a) the index V and (b) the index RAND for Experiment 3.

Fig. 10. (a) The clustering results (a) by using the “K-Means ++” procedure and (b) by using the proposed algorithm.

TABLE 3
The Determined Cluster Centers by the Proposed Algorithm, K-Means ++ Algorithm,

and the Proposed Algorithm with “K-Means ++” Initialization Procedure



index V in each run. We can see in Table 1 that the proposed
algorithm performed very well, and the performance of the
classical fuzzy K-Means algorithm was slightly poor. For
some data sets, different k numbers could be selected from
the results generated by the classical fuzzy K-Means
algorithm according to the minimum validation index V.
If the true number of clusters were not known, it would be
difficult to determine which k was right. The proposed
algorithm did not have such problem.

For heavily overlapping data sets, the performance of the
proposed algorithm was much better than that of the

classical fuzzy K-Means algorithm. In particular, the
determined numbers of clusters were more accurate than
those by the classical fuzzy K-Means algorithm. The
number of correctly determined clusters by the proposed
algorithm was 35 out of 36. For the incorrect case, the
number of determined clusters by the proposed algorithm
was 8, which was very close to the true number 7 in the data
set (the case of the number of dimensions = 5, the number of
objects = 500, and the number of true clusters = 7). The
number of correctly determined clusters by the classical
fuzzy K-Means algorithm was 5 out of 36.

These results show the effectiveness of the proposed

algorithm when clustering data with overlapping clusters

and the consistency of the clustering results from different

initial cluster centers.

4.3 Experiment 3

In this experiment, we show an example to demonstrate the
usefulness of the proposed algorithm. We consider the data
set (the number of dimensions = 2, the number of objects = 1,
000, and the number of clusters = 7) in Table 1. Fig. 8a shows
the data set and the initial cluster centers. In the test, we
compared the proposed algorithm with the rival penalized
competitive learning algorithm [30]. The number of initial
cluster centers randomly generated was set to 15 in the two
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TABLE 4
Clustering Results for Different Algorithms Using the Forgy and

Random Partition Initializations

Fig. 11. (a) The Forgy initialization for the proposed algorithm. (b) The Forgy initialization for the other algorithms. (c) The random partition

initialization for the proposed algorithm. (d) The random partition initialization for the other algorithms.



algorithms. Each algorithm was run 100 times. The proposed
algorithm showed consistent results in 100 runs on the final
locations of the merged cluster centers, as shown in Fig. 8b. It
is clear from the figure that the number of the merged cluster
centers is 7, which is exactly the same as the number of the
true clusters. Both validation indices V andRAND have the
smallest and the largest values, respectively, when the
number of the merged clusters was 7 (see Fig. 9). However,
the rival penalized competitive learning algorithm was
sensitive to the initial cluster centers. The best result
produced by this algorithm is shown in Fig. 8c. We can see
from the figure that one cluster center is situated between
two clusters. In Fig. 8d, we show the clustering results by the
classical fuzzyK-Means algorithm. The best clustering result
is attained when the number of clusters is 9. We can see from
the figure that one cluster contains two centers. However,
these two cluster centers were not merged together. We
cannot interpret them as a single cluster. In our proposed
algorithm, we moved the merged cluster centers to the same
cluster and grouped all the objects in the corresponding
clusters as one cluster.

4.4 Experiment 4

In this experiment, we demonstrate the insensitive cap-
ability of the proposed algorithm to the centers’ initializa-
tion. David et al. [16] provide a new algorithm, “K-Means

++,” to estimate better initial centers for K-Means algo-
rithms. We consider the data set (the number of dimensions
= 2, the number of objects = 1, 000, and the number of
clusters = 7) in Table 2. The data set is shown, as in Fig. 10.
The clustering result of the proposed algorithm for this data
set in shown, as in Fig. 10b. We remark that the number of
initial cluster centers is set to 15 (cf., Experiment 2). It is
clear from the figure that the merged cluster centers match
the locations of the true centers. We also employ the
“K-Means ++” algorithm for this data set. In this test, we
assume the number of clusters is known (i.e., k ¼ 7) and
would like to check the performance of the initialization
procedure. The clustering result is shown, as in Fig. 10a. We
see from the figure that two initial centers determined by
the “K-Means ++” procedure are located in the same
cluster, and there is one true center that cannot be identified
by the final centers. In Table 3, we summarize the clustering
results of the proposed algorithm and the “K-Means ++”
algorithm and further add the clustering result by using the
proposed algorithm with the “K-Means ++” initialization
procedure (i.e., using the initial seed centers generated by
the “K-Means ++” algorithm only). In the table, the
clustering accuracy refers to the percentage of objects in
the data set that are correctly clustered together. According
to the table, it is clear that the performance of the proposed
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Fig. 12. The clustering results of the proposed algorithm using (a) the Forgy initialization and (b) the random partition initialization. The clustering

results of KHM using (c) the Forgy initialization and (d) the random partition initialization.



algorithm is better than that of the “K-Means ++” algorithm.
We also find that the initialization procedure added to the
proposed algorithm does not further improve the clustering
result.

4.5 Experiment 5

In this experiment, we further investigate the insensitive
capability of the proposed algorithm to the centers’ initi-
alization. We compare it with other algorithms: k-harmonic
means algorithm (KHM) by Zhang et al. [38] and its two new
variants (H1 and H2) by Hamerly and Elkan [39]. These
algorithms are quite insensitive to initial cluster centers.
Here, we used the BIRCH data set [37], which has 100 true
clusters arranged in a 10� 10 2D grid. Each clusters contains
200 objects generated by Gaussian distributions. The total
number of objects is 20,000. The distance between two
adjacent generated data cluster centers is 4

ffiffiffi
2
p

. The variance
of Gaussian distribution is 1. In the tests, we employed two
initial cluster centers. One method is called the Forgy
initialization [39], and the other method is random partition
initialization. These two methods have been tested in [39]. In
the proposed algorithm, we set the number of initial cluster
centers to be 200. For the other clustering algorithms, we
assign the number of initial cluster centers to be 100, which is
the same as the number of clusters in the BIRCH data set. As a
comparison, we also testK-Means algorithm (KM) and fuzzy

K-Means algorithm (FZKM). In Table 4, clustering results for
different algorithms using the two different initializations
are presented. In the table, the square root of the K-Means
objective function values

ffiffiffiffiffiffiffiffiffiffi
KM
p

from the output of different
algorithms and the number of clusters found by different
algorithms are listed. We see from the table that the proposed
algorithm is competitive with k-harmonic means algorithm
and its two variants. Fig. 11 shows the two initializations of
the proposed algorithm and the other algorithms. Figs. 12, 13,
and 14 show the clustering results of different algorithms
using the two initializations. We see from the figures that the
proposed algorithm performs quite well.

4.6 Experiment 6

In this experiment, we used the WINE data set obtained
from the UCI machine Learning Repository. This data set
represents the results of chemical analysis of wines grown
in the same region in Italy but derived from three different
cultivars. As such, each data point was labeled as one of the
three cultivars. The WINE data set consists of 178 records,
each being described by 13 attributes.

We carried out 10 runs of the proposed algorithm and
also 10 runs of the classical fuzzy K-Means algorithm with
different initial cluster centers. We found that the proposed
algorithm with the validation index V can find the corrected
number of clusters, i.e., three clusters. The average value of
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Fig. 13. The clustering results of H2 using (a) the Forgy initialization and (b) the random partition initialization. The clustering results of H1 using

(c) the Forgy initialization and (d) the random partition initialization.



the RAND index is 0.931. On the other hand, using the
validation index V, the classical fuzzy K-Means algorithm
usually produced the numbers of clusters as 5, 9, or 12 in
10 runs. The corresponding average value of the RAND
index is 0.694, which is significantly smaller than that by the
proposed algorithm. Even if we correctly found three
clusters in one of 10 runs by the fuzzy K-Means algorithm,
the RAND index value is only 0.720, which is still inferior
to the proposed algorithm.

5 CONCLUDING REMARKS

In this paper, we have presented a new approach, called
the agglomerative fuzzy K-Means clustering algorithm for
numerical data to determine the number of clusters. The
new approach minimizes the objective function, which is
the sum of the objective function of the fuzzy k-mean and
the entropy function. The initial number of clusters is set
to be larger than the true number of clusters in a data set.
With the entropy cost function, each initial cluster centers
will move to the dense centers of the clusters in a data set.
These initial cluster centers are merged in the same
location, and the number of the determined clusters is just
the number of the merged clusters in the output of the
algorithm. Our experimental results have shown the
effectiveness of the proposed algorithm when different

initial cluster centers were used and overlapping clusters

are contained in data sets.
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