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ABSTRACT 
In this paper, we report our research on using GPUs to accelerate 
clustering of very large data sets, which are common in today's 
real world applications.  While many published works have 
shown that GPUs can be used to accelerate various general 
purpose applications with respectable performance gains, few 
attempts have been made to tackle very large problems. Our goal 
here is to investigate if GPUs can be useful accelerators even with 
very large data sets that cannot fit into GPU’s onboard memory.  

Using a popular clustering algorithm, K-Means, as an example, 
our results have been very positive.  On a data set with a billion 
data points, our GPU-accelerated implementation achieved an 
order of magnitude performance gain over a highly optimized 
CPU-only version running on 8 cores, and more than two orders 
of magnitude gain over a popular benchmark, MineBench, 
running on a single core. 

Categories and Subject Descriptors 
I.3.1 [COMPUTER GRAPHICS]: Hardware Architecture- 
Graphics processors, Parallel processing; H.3.3 
[INFORMATION STORAGE AND RETRIEVAL]: 
Information Search and Retrieval-Clustering; D.1.3 
[PROGRAMMING TECHNIQUES]: Concurrent 
Programming-Parallel programming; 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Parallel Algorithm, Data-mining, Clustering, Graphics Processor, 
GPGPU, Accelerator, Multi-core, Many-core, Data parallelism 

1. INTRODUCTION 
Graphics processors (GPUs) have developed very rapidly in 
recent years. GPUs have moved beyond their originally-targeted 
graphics applications and increasingly become a viable choice for 
general purpose computing.  In fact, with many light-weight data-
parallel cores, GPUs can often provide substantial computational 

power to accelerate general purpose applications at a much lower 
capital equipment cost and much higher energy efficiency, which 
means much lower operating cost while contributing to a greener 
economy.  

In this paper, we report our work on using GPUs as accelerators 
for processing very large data sets. Using the well-known 
clustering algorithm K-Means as an example, our results have 
been very positive. A very large data set with one billion data 
points can be clustered at a speed more than 10 times faster than 
our own highly optimized CPU version running on an 8-core 
workstation.   

2. RELATED WORK 
2.1 GPU Computing 
Graphics processors (GPUs) are originally designed for a very 
specific domain - to accelerate graphics pipeline.  Recognizing 
the huge potential performance gains from these GPUs, many 
efforts have been made to use them to perform general purpose 
computing, by mapping general purpose applications onto 
graphics APIs. This has been known as the General Purpose GPU 
(GPGPU) approach.  

However, to express a general problem in existing graphics APIs 
proved to be cumbersome and counter-intuitive.  A few attempts 
have been made to create new languages or APIs that offer a 
general purpose interface [7].  

One of the most important advances in GPU computing is the 
Nvidia's CUDA solution, which provides both software support - 
the CUDA programming language extended from the popular C 
language, and the CUDA-enabled hardware compute engine - a 
highly parallel architecture with hundreds of cores and very high 
memory bandwidth. With the large install base of CUDA-enabled 
devices and the C-like programming environment, many 
researchers are now able to use GPUs to accelerate their 
applications, and many have shown respectable speedup 
performance compared to CPU-only implementations. Popular 
commercial applications, such as Adobe’s creative suite, 
Mathematica, etc., have new releases of their CUDA-enabled 
version; researchers have used CUDA in cloud dynamics, N-Body 
and molecular dynamics simulations, and database operations, 
with results that show good promise [4].  

2.2 K-Means algorithm 
K-Means is a well-known clustering algorithm widely used in 
both academic research and industrial practices.  It shares the 
properties of a much wider class of statistical algorithms.  
Given the number of clusters k, K-Means iteratively finds the k-
centres of the data clusters.  Each iteration consists of two steps: 
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• Step 1. Partition the data set into k subsets by assigning 
each point to the subset whose center is the closest center to the 
point.  
• Step 2. Recalculate the k cluster centers as the geometric 
centers of the subsets. 
The algorithm repeats these two steps until no data point moves 
from one cluster to another.  It has been shown that K-Means 
converges to a local optimum and stops in a finite number of 
iterations.   
There is still active research on the K-Means algorithm itself [1, 
12].  In this paper, we are interested in GPU acceleration rather 
than the K-Means algorithm itself. 

2.3 Experiment design and hardware 
Since MineBench [9] has been used in a few related previous 
works [2, 3], we have used it as our baseline for performance 
comparison so as to align with previously published results. We 
also implemented our own CPU version of K-Means algorithm for 
more accurate comparisons (details in the next section).  Two 
machines used in our experiments are both HP XW8400 
workstations with dual quad core Intel Xeon 5345 running at 
2.33GHz, each equipped with an Nvidia GeForce GTX 280, with 
1GB onboard device memory; one machine has 4GB of memory 
running Windows XP, and the other  has 20GB of memory 
running Windows XP x64. The GPU code was developed in 
CUDA on top of Microsoft Visual C++ 2005.  

Since our primary interest is on the performance acceleration 
ratios by GPUs, not the algorithm itself, we used randomly 
generated data sets. The maximum number of iterations is limited 
to 50 for all experiments because for our purpose of speedup 
comparison, it is sufficient to obtain the per-iteration cost. The 
timing reported is the total wall time for all iterations, including 
both the time for calculation and communication between the 
CPU and the GPU, but without the time for initializing the data 
sets.  Both CPU- and GPU-versions give identical new centers 
under identical initializations of the centers. This confirms the 
algorithmic correctness of our GPU implementation. 

2.4 CPU-only implementation 
MineBench is a popular high-performance multi-threaded data-
mining package, which includes K-Means as one of its benchmark 
algorithms. It has been used in a few previous works as the 
baseline reference.  

Table 1. Performance comparison between MineBench and 
optimized implementation 

 
N: Number of data points 
D: Number of dimensions for each data point 
K: number of clusters 
M: number of iterations before stopping 

 
While focusing on exploring potential speedup achievable by 
GPU over CPU, we also bear in mind that the CPU has a lot of 

performance potential as well [6]. Careful algorithm and data 
structure designs, using various optimization techniques, and the 
use of CPU’s SSE vector capabilities etc, can usually help 
creating a CPU implementation that outperforms the non-
optimized version by a considerable margin.  

Since we are interested in the performance difference between 
CPU-only version and GPU-accelerated version, we have 
developed our own highly optimized K-Means package on CPU 
as well, trying to push the performance on CPU as much as 
possible. Our own optimized CPU code for K-Means runs several 
times faster than MineBench. It provides a better CPU 
performance benchmark to judge more accurately the value of 
GPU accelerators. Table 1 is the comparison between MineBench 
and our optimized CPU version, using 1 core, 4 cores and 8 cores 
respectively. It is shown that our optimized CPU implementation 
achieved about 3.8x speedup over MineBench implementation. 

2.5 GPU Accelerated K-Means Algorithm 
There are a few published works which have used GPUs for 
clustering, and in particular, using the K-Means method [2, 3, 5]. 
Among them, a team at University of Virginia, led by Professor 
Skadron, was one of the best. They did a series of research on 
using GPU to accelerate various general purpose applications, 
including K-Means.  In their earlier work [2], 8x speed up was 
observed on a G80 GPU, versus MineBench running on a single 
core Pentium 4. Subsequently, they fine-tuned their code and 
achieved much better performance. Their latest version showed 
about 72x speedup on a GTX 260 GPU over a single threaded 
CPU version on a Pentium 4 running MineBench, and about 35x 
speedup over a four-thread CPU version running MineBench on a 
dual-core, hyper-threaded CPU [3].  

Table 2. Speedups, compared to CPU versions running on 1 
core 

 
In our previous paper ([11]), we have reported that our version is 
about 2-4x faster than that reported in [3]. For data sets smaller 
than GPU’s onboard memory, our results are shown in Table 2. In 
this table, “HPL CPU” refers to our optimized CPU-only 
implementation, while “HPL GPU” refers to our GPU-accelerated 
version. The speedup ratio of GPU over CPU increases as the 
number of dimensions (D) and the number of clusters (K) 
increase, and for the set of parameters being experimented, we 
achieved an average of 190x speedup over MineBench running on 
single core, and 49x speedup over our own optimized CPU 
implementation running on single core.   
Note that so far none of the published works has tackled the 
problem with very large data sets that are too large to fit inside 
GPU’s onboard memory.  
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3. VERY LARGE DATA SETS 
3.1 Multi-tasked Streaming 
Compared to the CPU’s main memory whose size can go up to 
128GB in some of high-end machines, GPU’s onboard memory is 
very limited.  With the ever increasing problem size, it is often the 
case that GPU’s onboard memory is too small to hold the entire 
data set. This has posed a few challenges: 

• The problem has to be data-partitionable and each partition 
processed separately.  

• If the algorithm requires multiple iterations over the data set, 
the entire data set has to be copied from CPU’s main memory to 
GPU’s memory at every iteration using the PCIe bus which is the 
only connection between CPU’s main memory and GPU’s 
memory. 

The first challenge has to be answered by algorithm design, and in 
our case, K-Means can be data-partitioned in a straightforward 
manner. The only communication needed between partitions is 
the local sufficient statistics [12]. However, in the current 
generation of GPUs, the GPU’s memory sub-system is connected 
to the main memory system via a PCIe bus. The theoretic 
bandwidth limit is about 4GB/s for PCIe 1.1x16, and the observed 
limit is about 3.2GB/s [10].  Heavy data transfer can pose a 
significant delay.  

CUDA offers the APIs for asynchronous memory transfer and 
streaming. With these capabilities it is possible to design the 
algorithm that allows the computation to proceed on both CPU 
and GPU, while memory transfer is in progress.  

Our stream-based algorithm is illustrated in Fig. 1. 

 
Figure 1:  Implementation for stream based K-Means (per iteration) 

3.2 Data Preparation 
When the data set is small enough to fit in the GPU memory, we 
adopted an implementation that transfers the entire data set and an 
initial set of k-centers to GPU memory upon start; the data set is 
then transposed in the GPU memory so that the use of GPU 
memory bandwidth is optimized [8]. Thereafter, for each 
iteration, GPU computes the “assign center” procedure which 
assigns a center id to each data point, and transfers the assignment 

results back to CPU which computes the new set of k-centers.  
The new set of k-centers is then copied to GPU to start the next 
iteration.  Note that the data set is transferred from CPU to GPU 
and transposed only once.  

In the stream-based algorithm, the data set is partitioned into large 
blocks. At every iteration, we process these blocks in turn, until 
all of them have been processed. Processing of each block 
includes transferring the block from CPU to GPU, transposing it 
to a column-based layout, computing cluster membership for each 
data point in the data block, and transferring the assignment 
results back to CPU. At any given time, more than one block is 
being processed concurrently. CUDA streams have been used to 
keep track of the progress on each block. Note that all calls are 
asynchronous, which give maximum possibilities for overlapping 
computation and memory transfers. 

One important issue we investigated has to do with handling of 
data transposition (from row-based to column-based). It is not a 
problem when the data size fits into the GPU memory, in which 
case the data set is transposed once, kept inside GPU's memory 
and used for all iterations. However, when the data does not fit 
into the GPU memory, either transposition has to be performed 
per iteration at CPU, which proved too high in overhead, or the 
CPU memory has to keep 2 copies of the data set, one row-based 
and the other column-based, which is also not practical.  
Eliminating transposition altogether and forcing GPU to work on 
row-based data proved to be unacceptable in GPU performance. 
We solved this problem by inventing a method for a separate 
GPU kernel to transpose the data block once it is transferred. Our 
experiments have shown that this is the best solution to this 
problem. 

3.3 Optimal Number of Streams 
A series of experiments have also been run to determine what the 
optimal number of streams is, as shown in Table 3. It turns out 
that with the current GPU hardware, the choice of  two streams 
works the best, offering much better performance than running 
with only one stream (no overlapping), while running with more 
than two streams does not bring any additional benefit.  

Table 3. Performance comparison: number of streams 

 
Table 4. Performance comparison: streamed vs. non-streamed 
version 

 

Memcpy(dgc, hgc); 
while (1) 
{ 
 while (ns = streamAvail() && !done) 
 { 
  hnb = nextBlock(); 
  MemcpyAsync(db, hnb, ns); 
  DTranspose(db, dtb, ns); 
  DAssignCluster(dtb, dc, ns); 
  MemcpyAsync(hc, dc, ns); 
 } 
 while (ns = streamDone()) 
  aggregateCentroid(hc, hb, ns); 
  
 if (done) 
  break; 
 else 
  yield();  
} 
calcCentroid(hgc); 
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In enabling stream processing, we have observed that the extra 
overhead in the form of additional transposition work, kernel 
launch, and synchronization, has imposed a 1.1-2.5x degradation 
when compared to the original implementation where the entire 
data set fits into GPU memory, as shown in Table 4.  However, 
even with this overhead, the use of GPU still offers significant 
speedup over pure CPU implementation. We believe that this 
overhead is justifiable since it expands the applicability of GPU 
computing significantly, enabling it to process much bigger data 
sets while still delivering significant performance gain. 

3.4 Use of Constant vs. Texture Memory – 
Accommodating Large Number of Clusters 
At each iteration, since we postpone the centroids calculation 
until we finish all the membership assignments, it is best to keep 
the centroids in constant memory which is cached. In the current 
generation of Nvidia’s GPUs, the size of the constant memory is 
64 KB for every multi-processor. This is a reasonable size and in 
most cases sufficient for our purposes (i.e., to hold shared read-
only data.) However, as the number of clusters and number of 
dimensions increase, the constant memory will eventually become 
too small. We therefore explore the use of texture memory, whose 
limit in current hardware is 128MB. 

 Table 5. Cost for keeping centroids in other type of memory 

 
C.Mem: Constant Memory 
T.Mem: Texture Memory 
G.Mem: Global Memory 

 
However, while the texture memory is usually faster than the 
global memory, it is still much slower than constant memory. In 
our experiments running on GeForce GTX 280, as shown in Table 
5, the program is about 2.2x slower using texture memory than 
using constant memory on the average.  It is interesting to also 
note that, as shown in Table 5, the global memory can sometimes 
be even faster than texture memory when the centroids array 
becomes large enough to cause too many cache misses on the 
texture memory; this implies that, in general, it is difficult to 
assert that texture memory is always a better choice than global 
memory.  

3.5 Results with Very Large Data sets 
The results of our experiments with very large data sets are shown 
in Table 6 and 7, where the number of data points has been 
increased to up to 1 billion with varying number of dimensions 
and centers.   
The results are further explained below: 

• The data sets in these experiments are too big to fit in the 
GPU’s memory, and the program has to rely on multi-tasked 

streaming. GPU-based implementation lost some 
performance due to the overhead of multi-tasked streaming, 
but at the same time the larger computation load required to 
handle larger number of data points and larger number of 
clusters gave GPU additional edge over CPU. Overall, the 
program still achieved respectable speedup.   

 

Table 6. Performance on large data sets, large number of data 
points 

 
Table 7. Performance on large data sets, large number of 
centriods 

 
• The CPU-only program used here is our own highly 

optimized 64-bit version, running on 8 cores. Still the GPU 
version offers more than 10x speedup if the centroids array 
fits inside GPU’s constant memory.  

• Recall that our optimized CPU-only version running on 8 
cores is about 29.3x faster than our baseline – MineBench 
running on single core (Table 1). The number above 
translates to about 300x speedup, compared to the baseline 
program MineBench on a single core. For the data set with 
one billion 2-d data points and one thousand clusters, the 
GPU-version took about 26 minutes, our optimized CPU-
only version took close to 5 hours on 8 cores, and the 
baseline program would have taken about 6 days!   

• At the point when D and K become too large, constant 
memory can no longer hold the read-only shared centroid 
data, and the implementation switches over to using texture 
memory. The result is shown in last two rows of Table 7. 
Observe the drop in speedup performance when this switch 
happens. However, even with this switch, we still achieved a 
3x performance gain over 8 cores.  

We also note that more than one GPU board can be installed into 
one machine, each with its own PCIe bus, which will give even 
more performance boost. It is one of our future goals to study 
systems with multi-GPU support. 

4. CONCLUSION 
We have reported our research on using GPU to accelerate a 
clustering algorithm with very large data sets. For these larger 
problems, the data set size exceeds GPU’s memory. We showed 
that with implementation of highly efficient kernels and a careful 
design that maximizes the utilization of memory bandwidth and 
compute bandwidth on both CPU and GPU, the GPU-accelerated 
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version still offers dramatic performance boost against CPU-only 
version. In our example, a clustering problem with one billion 2-
dimensional data points, and one thousand clusters, can be 
processed in less than 30 seconds per iteration, compared to about 
6 minutes per iteration with our highly optimized CPU version on 
8 cores, or more than 11x speed up. The 50 iterations that took 
our GPU-based implementation 26 minutes to complete would 
have taken our baseline program MineBench close to 6 days to 
finish on a single-core CPU. 

Note that GPU is still evolving at a fast pace. For example, the 
latest GPU from Nvidia, GTX 295, has doubled the capacity of 
the GTX 280 used in this paper.. In addition, more than one GPU 
board can be installed into the same machine.  These can translate 
into greater performance potential, and potentially enable us to 
tackle even bigger problems. 
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