
Clustering Billions of Data Points Using GPUs
Ren Wu
HP Labs

1501 Page Mill Road
Palo Alto, CA 94304

ren.wu@hp.com

Bin Zhang
HP Labs

1501 Page Mill Road
Palo Alto, CA 94304
bin.zhang2@hp.com

Meichun Hsu
HP Labs

1501 Page Mill Road
Palo Alto, CA 94304

meichun.hsu@hp.com

ABSTRACT
In this paper, we report our research on using GPUs to accelerate
clustering of very large data sets, which are common in today's
real world applications. While many published works have
shown that GPUs can be used to accelerate various general
purpose applications with respectable performance gains, few
attempts have been made to tackle very large problems. Our goal
here is to investigate if GPUs can be useful accelerators even with
very large data sets that cannot fit into GPU’s onboard memory.

Using a popular clustering algorithm, K-Means, as an example,
our results have been very positive. On a data set with a billion
data points, our GPU-accelerated implementation achieved an
order of magnitude performance gain over a highly optimized
CPU-only version running on 8 cores, and more than two orders
of magnitude gain over a popular benchmark, MineBench,
running on a single core.

Categories and Subject Descriptors
I.3.1 [COMPUTER GRAPHICS]: Hardware Architecture-
Graphics processors, Parallel processing; H.3.3
[INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval-Clustering; D.1.3
[PROGRAMMING TECHNIQUES]: Concurrent
Programming-Parallel programming;

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Parallel Algorithm, Data-mining, Clustering, Graphics Processor,
GPGPU, Accelerator, Multi-core, Many-core, Data parallelism

1. INTRODUCTION
Graphics processors (GPUs) have developed very rapidly in
recent years. GPUs have moved beyond their originally-targeted
graphics applications and increasingly become a viable choice for
general purpose computing. In fact, with many light-weight data-
parallel cores, GPUs can often provide substantial computational

power to accelerate general purpose applications at a much lower
capital equipment cost and much higher energy efficiency, which
means much lower operating cost while contributing to a greener
economy.

In this paper, we report our work on using GPUs as accelerators
for processing very large data sets. Using the well-known
clustering algorithm K-Means as an example, our results have
been very positive. A very large data set with one billion data
points can be clustered at a speed more than 10 times faster than
our own highly optimized CPU version running on an 8-core
workstation.

2. RELATED WORK
2.1 GPU Computing
Graphics processors (GPUs) are originally designed for a very
specific domain - to accelerate graphics pipeline. Recognizing
the huge potential performance gains from these GPUs, many
efforts have been made to use them to perform general purpose
computing, by mapping general purpose applications onto
graphics APIs. This has been known as the General Purpose GPU
(GPGPU) approach.

However, to express a general problem in existing graphics APIs
proved to be cumbersome and counter-intuitive. A few attempts
have been made to create new languages or APIs that offer a
general purpose interface [7].

One of the most important advances in GPU computing is the
Nvidia's CUDA solution, which provides both software support -
the CUDA programming language extended from the popular C
language, and the CUDA-enabled hardware compute engine - a
highly parallel architecture with hundreds of cores and very high
memory bandwidth. With the large install base of CUDA-enabled
devices and the C-like programming environment, many
researchers are now able to use GPUs to accelerate their
applications, and many have shown respectable speedup
performance compared to CPU-only implementations. Popular
commercial applications, such as Adobe’s creative suite,
Mathematica, etc., have new releases of their CUDA-enabled
version; researchers have used CUDA in cloud dynamics, N-Body
and molecular dynamics simulations, and database operations,
with results that show good promise [4].

2.2 K-Means algorithm
K-Means is a well-known clustering algorithm widely used in
both academic research and industrial practices. It shares the
properties of a much wider class of statistical algorithms.
Given the number of clusters k, K-Means iteratively finds the k-
centres of the data clusters. Each iteration consists of two steps:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UCHPC-MAW’09, May 18–20, 2009, Ischia, Italy.
Copyright 2009 ACM 978-1-60558-557-4/09/05...$5.00.

1

• Step 1. Partition the data set into k subsets by assigning
each point to the subset whose center is the closest center to the
point.
• Step 2. Recalculate the k cluster centers as the geometric
centers of the subsets.
The algorithm repeats these two steps until no data point moves
from one cluster to another. It has been shown that K-Means
converges to a local optimum and stops in a finite number of
iterations.
There is still active research on the K-Means algorithm itself [1,
12]. In this paper, we are interested in GPU acceleration rather
than the K-Means algorithm itself.

2.3 Experiment design and hardware
Since MineBench [9] has been used in a few related previous
works [2, 3], we have used it as our baseline for performance
comparison so as to align with previously published results. We
also implemented our own CPU version of K-Means algorithm for
more accurate comparisons (details in the next section). Two
machines used in our experiments are both HP XW8400
workstations with dual quad core Intel Xeon 5345 running at
2.33GHz, each equipped with an Nvidia GeForce GTX 280, with
1GB onboard device memory; one machine has 4GB of memory
running Windows XP, and the other has 20GB of memory
running Windows XP x64. The GPU code was developed in
CUDA on top of Microsoft Visual C++ 2005.

Since our primary interest is on the performance acceleration
ratios by GPUs, not the algorithm itself, we used randomly
generated data sets. The maximum number of iterations is limited
to 50 for all experiments because for our purpose of speedup
comparison, it is sufficient to obtain the per-iteration cost. The
timing reported is the total wall time for all iterations, including
both the time for calculation and communication between the
CPU and the GPU, but without the time for initializing the data
sets. Both CPU- and GPU-versions give identical new centers
under identical initializations of the centers. This confirms the
algorithmic correctness of our GPU implementation.

2.4 CPU-only implementation
MineBench is a popular high-performance multi-threaded data-
mining package, which includes K-Means as one of its benchmark
algorithms. It has been used in a few previous works as the
baseline reference.

Table 1. Performance comparison between MineBench and
optimized implementation

N: Number of data points
D: Number of dimensions for each data point
K: number of clusters
M: number of iterations before stopping

While focusing on exploring potential speedup achievable by
GPU over CPU, we also bear in mind that the CPU has a lot of

performance potential as well [6]. Careful algorithm and data
structure designs, using various optimization techniques, and the
use of CPU’s SSE vector capabilities etc, can usually help
creating a CPU implementation that outperforms the non-
optimized version by a considerable margin.

Since we are interested in the performance difference between
CPU-only version and GPU-accelerated version, we have
developed our own highly optimized K-Means package on CPU
as well, trying to push the performance on CPU as much as
possible. Our own optimized CPU code for K-Means runs several
times faster than MineBench. It provides a better CPU
performance benchmark to judge more accurately the value of
GPU accelerators. Table 1 is the comparison between MineBench
and our optimized CPU version, using 1 core, 4 cores and 8 cores
respectively. It is shown that our optimized CPU implementation
achieved about 3.8x speedup over MineBench implementation.

2.5 GPU Accelerated K-Means Algorithm
There are a few published works which have used GPUs for
clustering, and in particular, using the K-Means method [2, 3, 5].
Among them, a team at University of Virginia, led by Professor
Skadron, was one of the best. They did a series of research on
using GPU to accelerate various general purpose applications,
including K-Means. In their earlier work [2], 8x speed up was
observed on a G80 GPU, versus MineBench running on a single
core Pentium 4. Subsequently, they fine-tuned their code and
achieved much better performance. Their latest version showed
about 72x speedup on a GTX 260 GPU over a single threaded
CPU version on a Pentium 4 running MineBench, and about 35x
speedup over a four-thread CPU version running MineBench on a
dual-core, hyper-threaded CPU [3].

Table 2. Speedups, compared to CPU versions running on 1
core

In our previous paper ([11]), we have reported that our version is
about 2-4x faster than that reported in [3]. For data sets smaller
than GPU’s onboard memory, our results are shown in Table 2. In
this table, “HPL CPU” refers to our optimized CPU-only
implementation, while “HPL GPU” refers to our GPU-accelerated
version. The speedup ratio of GPU over CPU increases as the
number of dimensions (D) and the number of clusters (K)
increase, and for the set of parameters being experimented, we
achieved an average of 190x speedup over MineBench running on
single core, and 49x speedup over our own optimized CPU
implementation running on single core.
Note that so far none of the published works has tackled the
problem with very large data sets that are too large to fit inside
GPU’s onboard memory.

2

3. VERY LARGE DATA SETS
3.1 Multi-tasked Streaming
Compared to the CPU’s main memory whose size can go up to
128GB in some of high-end machines, GPU’s onboard memory is
very limited. With the ever increasing problem size, it is often the
case that GPU’s onboard memory is too small to hold the entire
data set. This has posed a few challenges:

• The problem has to be data-partitionable and each partition
processed separately.

• If the algorithm requires multiple iterations over the data set,
the entire data set has to be copied from CPU’s main memory to
GPU’s memory at every iteration using the PCIe bus which is the
only connection between CPU’s main memory and GPU’s
memory.

The first challenge has to be answered by algorithm design, and in
our case, K-Means can be data-partitioned in a straightforward
manner. The only communication needed between partitions is
the local sufficient statistics [12]. However, in the current
generation of GPUs, the GPU’s memory sub-system is connected
to the main memory system via a PCIe bus. The theoretic
bandwidth limit is about 4GB/s for PCIe 1.1x16, and the observed
limit is about 3.2GB/s [10]. Heavy data transfer can pose a
significant delay.

CUDA offers the APIs for asynchronous memory transfer and
streaming. With these capabilities it is possible to design the
algorithm that allows the computation to proceed on both CPU
and GPU, while memory transfer is in progress.

Our stream-based algorithm is illustrated in Fig. 1.

Figure 1: Implementation for stream based K-Means (per iteration)

3.2 Data Preparation
When the data set is small enough to fit in the GPU memory, we
adopted an implementation that transfers the entire data set and an
initial set of k-centers to GPU memory upon start; the data set is
then transposed in the GPU memory so that the use of GPU
memory bandwidth is optimized [8]. Thereafter, for each
iteration, GPU computes the “assign center” procedure which
assigns a center id to each data point, and transfers the assignment

results back to CPU which computes the new set of k-centers.
The new set of k-centers is then copied to GPU to start the next
iteration. Note that the data set is transferred from CPU to GPU
and transposed only once.

In the stream-based algorithm, the data set is partitioned into large
blocks. At every iteration, we process these blocks in turn, until
all of them have been processed. Processing of each block
includes transferring the block from CPU to GPU, transposing it
to a column-based layout, computing cluster membership for each
data point in the data block, and transferring the assignment
results back to CPU. At any given time, more than one block is
being processed concurrently. CUDA streams have been used to
keep track of the progress on each block. Note that all calls are
asynchronous, which give maximum possibilities for overlapping
computation and memory transfers.

One important issue we investigated has to do with handling of
data transposition (from row-based to column-based). It is not a
problem when the data size fits into the GPU memory, in which
case the data set is transposed once, kept inside GPU's memory
and used for all iterations. However, when the data does not fit
into the GPU memory, either transposition has to be performed
per iteration at CPU, which proved too high in overhead, or the
CPU memory has to keep 2 copies of the data set, one row-based
and the other column-based, which is also not practical.
Eliminating transposition altogether and forcing GPU to work on
row-based data proved to be unacceptable in GPU performance.
We solved this problem by inventing a method for a separate
GPU kernel to transpose the data block once it is transferred. Our
experiments have shown that this is the best solution to this
problem.

3.3 Optimal Number of Streams
A series of experiments have also been run to determine what the
optimal number of streams is, as shown in Table 3. It turns out
that with the current GPU hardware, the choice of two streams
works the best, offering much better performance than running
with only one stream (no overlapping), while running with more
than two streams does not bring any additional benefit.

Table 3. Performance comparison: number of streams

Table 4. Performance comparison: streamed vs. non-streamed
version

Memcpy(dgc, hgc);
while (1)
{
 while (ns = streamAvail() && !done)
 {
 hnb = nextBlock();
 MemcpyAsync(db, hnb, ns);
 DTranspose(db, dtb, ns);
 DAssignCluster(dtb, dc, ns);
 MemcpyAsync(hc, dc, ns);
 }
 while (ns = streamDone())
 aggregateCentroid(hc, hb, ns);

 if (done)
 break;
 else
 yield();
}
calcCentroid(hgc);

3

In enabling stream processing, we have observed that the extra
overhead in the form of additional transposition work, kernel
launch, and synchronization, has imposed a 1.1-2.5x degradation
when compared to the original implementation where the entire
data set fits into GPU memory, as shown in Table 4. However,
even with this overhead, the use of GPU still offers significant
speedup over pure CPU implementation. We believe that this
overhead is justifiable since it expands the applicability of GPU
computing significantly, enabling it to process much bigger data
sets while still delivering significant performance gain.

3.4 Use of Constant vs. Texture Memory –
Accommodating Large Number of Clusters
At each iteration, since we postpone the centroids calculation
until we finish all the membership assignments, it is best to keep
the centroids in constant memory which is cached. In the current
generation of Nvidia’s GPUs, the size of the constant memory is
64 KB for every multi-processor. This is a reasonable size and in
most cases sufficient for our purposes (i.e., to hold shared read-
only data.) However, as the number of clusters and number of
dimensions increase, the constant memory will eventually become
too small. We therefore explore the use of texture memory, whose
limit in current hardware is 128MB.

 Table 5. Cost for keeping centroids in other type of memory

C.Mem: Constant Memory
T.Mem: Texture Memory
G.Mem: Global Memory

However, while the texture memory is usually faster than the
global memory, it is still much slower than constant memory. In
our experiments running on GeForce GTX 280, as shown in Table
5, the program is about 2.2x slower using texture memory than
using constant memory on the average. It is interesting to also
note that, as shown in Table 5, the global memory can sometimes
be even faster than texture memory when the centroids array
becomes large enough to cause too many cache misses on the
texture memory; this implies that, in general, it is difficult to
assert that texture memory is always a better choice than global
memory.

3.5 Results with Very Large Data sets
The results of our experiments with very large data sets are shown
in Table 6 and 7, where the number of data points has been
increased to up to 1 billion with varying number of dimensions
and centers.
The results are further explained below:

• The data sets in these experiments are too big to fit in the
GPU’s memory, and the program has to rely on multi-tasked

streaming. GPU-based implementation lost some
performance due to the overhead of multi-tasked streaming,
but at the same time the larger computation load required to
handle larger number of data points and larger number of
clusters gave GPU additional edge over CPU. Overall, the
program still achieved respectable speedup.

Table 6. Performance on large data sets, large number of data
points

Table 7. Performance on large data sets, large number of
centriods

• The CPU-only program used here is our own highly

optimized 64-bit version, running on 8 cores. Still the GPU
version offers more than 10x speedup if the centroids array
fits inside GPU’s constant memory.

• Recall that our optimized CPU-only version running on 8
cores is about 29.3x faster than our baseline – MineBench
running on single core (Table 1). The number above
translates to about 300x speedup, compared to the baseline
program MineBench on a single core. For the data set with
one billion 2-d data points and one thousand clusters, the
GPU-version took about 26 minutes, our optimized CPU-
only version took close to 5 hours on 8 cores, and the
baseline program would have taken about 6 days!

• At the point when D and K become too large, constant
memory can no longer hold the read-only shared centroid
data, and the implementation switches over to using texture
memory. The result is shown in last two rows of Table 7.
Observe the drop in speedup performance when this switch
happens. However, even with this switch, we still achieved a
3x performance gain over 8 cores.

We also note that more than one GPU board can be installed into
one machine, each with its own PCIe bus, which will give even
more performance boost. It is one of our future goals to study
systems with multi-GPU support.

4. CONCLUSION
We have reported our research on using GPU to accelerate a
clustering algorithm with very large data sets. For these larger
problems, the data set size exceeds GPU’s memory. We showed
that with implementation of highly efficient kernels and a careful
design that maximizes the utilization of memory bandwidth and
compute bandwidth on both CPU and GPU, the GPU-accelerated

4

version still offers dramatic performance boost against CPU-only
version. In our example, a clustering problem with one billion 2-
dimensional data points, and one thousand clusters, can be
processed in less than 30 seconds per iteration, compared to about
6 minutes per iteration with our highly optimized CPU version on
8 cores, or more than 11x speed up. The 50 iterations that took
our GPU-based implementation 26 minutes to complete would
have taken our baseline program MineBench close to 6 days to
finish on a single-core CPU.

Note that GPU is still evolving at a fast pace. For example, the
latest GPU from Nvidia, GTX 295, has doubled the capacity of
the GTX 280 used in this paper.. In addition, more than one GPU
board can be installed into the same machine. These can translate
into greater performance potential, and potentially enable us to
tackle even bigger problems.

5. REFERENCES
[1] K-Means++: The Advantages of Careful Seeding. D. Arthur,

S. Vassilvitskii, 2007 Symposium on Discrete Algorithms,
2007.

[2] A performance Study of General Purpose Application on
Graphics Processors. S. Che et al, Workshop on GPGPU,
Boston, 2007.

[3] A Performance Study of General-Purpose Application on
Graphics Processors Using CUDA. S. Che et al, J. Parallel-
Distrib. Comput. 2008.

[4] CUDA Zone. http://www.nvidia.com/object/cuda_home.html
[5] Parallel Data Mining on Graphics Processors. W. Fang et al.

Technical Report HKUST-CS08-07, Oct 2008.
[6] Intel® 64 and IA-32 Architectures Software Developer's

Manuals. http://www.intel.com/products/processor/manuals/
2008

[7] Exploring VLSI Scalability of Stream Processors. D.
Khailany et al, Stanford and Rice University, 2003.

[8] Nvidia CUDA programming Guide, version 2.0.
http://developer.download.nvidia.com/compute/
cuda/2_0/docs/
NVIDIA_CUDA_Programming_Guide_2.0.pdf 2008.

[9] NU-MineBench 2.0. J. Pisharath, et al, Tech. Rep. CUCIS-
2005-08-01, Northwestern University, 2005.

[10] LU, QR and Cholesky Factorizations using Vector
Capabilities of GPUs. V. Volkov and J. Demmel, Technical
Report No. UCB/EECS-2008-49, 2008.

[11] GPU-Accelerated Large Scale Analytics. R. Wu, B. Zhang
and M. Hsu. HP Labs Technical Report, HPL-2009-38.
http://www.hpl.hp.com/techreports/2009/HPL-2009-38.html

[12] Accurate Recasting of Parameter Estimation Algorithms
Using Sufficient Statistics for Efficient Parallel Speed-up:
Demonstrated for Center-based Data Clustering Algorithms,
Zhang, B, Hsu, M., and Forman, G., PKDD 2000.

5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

