Parallel Data Mining on Graphics Processors

Wenbin Fang, Ka Keung Lau, Mian Lu, Xiangye Xiao, Chi Kit Lam, Philip Yang Yang,
Bingsheng Hel, Qiong Luo, Pedro V. Sander, and Ke Yang2

Department of Computer Science and Engineering, Hong Kong University of Science and Technology
! Microsoft Research Asia, *Microsoft China Co,, Ltd
wenbin@cse.ust.hk

ABSTRACT

We introduce GPUMiner, a novel parallel data mining system that
utilizes new-generation graphics processing units (GPUs). Our sys-
tem relies on the massively multi-threaded SIMD (Single Instruc-
tion, Multiple-Data) architecture provided by GPUs. As special-
purpose co-processors, these processors are highly optimized for
graphics rendering and rely on the CPU for data input/output as
well as complex program control. Therefore, we design GPUMiner
to consist of the following three components: (1) a CPU-based
storage and buffer manager to handle I/O and data transfer be-
tween the CPU and the GPU, (2) a GPU-CPU co-processing paral-
lel mining module, and (3) a GPU-based mining visualization mod-
ule. We design the GPU-CPU co-processing scheme in mining de-
pending on the complexity and inherent parallelism of individual
mining algorithms. We provide the visualization module to facil-
itate users to observe and interact with the mining process online.
We have implemented the k-means clustering and the Apriori fre-
quent pattern mining algorithms in GPUMiner. Our preliminary
results have shown significant speedups over state-of-the-art CPU
implementations on a PC with a G80 GPU and a quad-core CPU.
We will demonstrate the mining process through our visualization
module. Code and documentation of GPUMiner are available at
http://code.google.com/p/gpuminer/.

1. INTRODUCTION

For the past decade, various data mining techniques have been de-
veloped to discover patterns, clusters, and classifications from var-
ious kinds of data [18]. While many algorithms focus on the effec-
tiveness of mining, other work aims at performance improvement.
Utilizing parallel architectures has been a viable means to improv-
ing data mining performance [39]. With the emergence of new-
generation graphics processing units (GPUs) as high-performance
commodity parallel hardware, we propose GPUMiner, a system
that uses the GPU as a hardware accelerator for data mining.

GPUs can be regarded as massively multi-threaded manycore pro-
cessors. Recent multicore CPUs, e.g., Sun’s Niagra, are following
a similar trend of exploiting parallelism in time and space. Differ-
ent from multicore CPUs, the cores on the GPU are virtulized, and
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GPU threads are managed by the hardware. Such a design simpli-
fies GPU programs and improves program scalability and portabil-
ity, since programs are oblivious about physical cores and rely on
hardware for thread creation and management. At present, the GPU
possesses an order of magnitude higher computation capability as
well as memory bandwidth than a multicore CPU.

Taking advantage of the massive computation power and the high
memory bandwidth of the GPU, previous work has accelerated
database operations [5, 15, 21, 35], approximate stream mining of
quantiles and frequencies [16], MapReduce [22] and k-means clus-
tering [10]. So far, there has been no prior work that focuses on
systematically studying the GPU acceleration for general-purpose
data mining algorithms.

In designing GPUMiner, we consider the following characteristics
of the GPU. First, the GPU is a co-processor to the CPU. As such,
we develop a CPU-based storage and buffer manager to handle
disk I/O as well as data transfers between the GPU and the CPU
memory. Second, the GPU processing is in SIMD (Single Instruc-
tion, Multiple-Data) and there is no language support for recur-
sion. Therefore, we design “regular-shaped” data structures, e.g.,
bitmaps, and iterative algorithmic constructs, e.g., counting, that
are suitable for the GPU, and perform GPU-CPU co-processing to
complete a complex mining task. Third, the GPU is specialized for
realtime graphics rendering. To allow users to observe and interact
with the mining process online, we develop a GPU-based interac-
tive visualization module. Since part of or the entire computation
of mining is already done on the GPU, the efficiency of the visual-
ization is further improved.

As a first step in GPU acceleration for mining, we selected two
representative mining algorithms - the k-means clustering and the
Apriori frequent itemset mining (FIM) algorithms to implement in
GPUMiner. k-means is largely parallelizable and has been acceler-
ated by 35 times on a most recent GPU over a four-threaded CPU
[10]. We revisit the k-means to seek further improvement and to
possibly gain insight for designing other mining algorithms on the
GPU.

In comparison, there has been little work on accelerating FIM al-
gorithms on the GPU, even though parallel FIM has been stud-
ied on simultaneous multithreading (SMT) processors [13], shared-
memory systems [31], and most recently multicore CPUs [28].
Two representative FIM algorithms are Apriori [2] and FPGrowth
[19]. FPGrowth grows multiple pattern trees recursively to count
itemset frequency whereas Apriori scans transactions for the pur-
pose. As a first step, we start with a state-of-the-art trie-based Apri-



ori [8] and design a GPU-CPU co-processing algorithm, with the
trie residing on the CPU and itemset frequency counting done on
the GPU.

In both k-means and Apriori, we design bitmaps to encode infor-
mation on the GPU and to facilitate fast counting. In k-means,
the bitmap represents the membership of data objects to clusters;
in Apriori, the bitmap stores occurrences of items in transactions.
Such data structures utilize the GPU efficiently and significantly
speed up the computation. As a result, our k-means is up to five
times faster than the prior GPU-based implementation [10], and
our Apriori is an order of magnitude faster than the best CPU-based
Apriori [8] implementation.

Additionally, we have developed GPU-based interactive visualiza-
tion modules for k-means and Apriori. In the k-means visualization,
data objects and cluster centroids are visualized on two dimensions
by mapping the data space onto the display space. Users can select
data attributes for visualization and can interact with the visual-
ization online by pausing and resuming the process or changing
view directions. In the Apriori visualization, we display itemsets in
point sprites online as they are discovered, and organize the item-
sets in a three-dimensional space by their sizes and item composi-
tion. We will demonstrate the online mining and visualization as
well as various performance comparisons with algorithm and visu-
alization frequency varied.

2. RELATED WORK

In this section, we briefly review related work on GPGPU (General-
Purpose Computation on GPUs), parallel and distributed data min-
ing algorithms and data mining visualization.

2.1 GPGPU

The GPU is an integral component in commodity machines. It was
previously designed to be a co-processor to the CPU for games
and other interactive applications. Recently, the GPU has been
used as a hardware accelerator for various non-graphics applica-
tions, such as scientific computation, matrix multiplication [26],
databases [14, 16, 22], and distributed computing projects includ-
ing Folding@home and Seti@home. For additional information
on the state-of-the-art GPGPU techniques, we refer the reader to a
recent survey by Owens et al. [30].

There are mainly two kinds of GPU programming languages: graph-
ics APIs such as DirectX and OpenGL, and GPGPU languages
such as CUDA and CTM. The former kind processes the textures
through the programmable hardware pipeline, as shown in Figure
1(a). Vertices and pixel processors are employed to drive the com-
putation. Therefore, programming with the graphics APIs can di-
rectly utilize the hardware features related to rendering and visu-
alization. Previously, GPGPU developers used graphics APIs to
map applications to the graphics rendering mechanism [16, 26].
However, this kind of mapping may be inefficient and sometimes
infeasible [30].

In contrast, GPGPU languages model the GPU as a manycore ar-
chitecture (as shown in Figure 1(b)), provide C/C++-like interfaces,
and expose hardware features for general-purpose computation. For
example, CUDA exposes hardware features including the fast inter-
processor communication via the local memory, as well as the mas-
sive thread parallelism. The GPU has a large amount of device
memory, which has high bandwidth and high access latency. Re-
cently, primitives as the building blocks for higher-level applica-
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Figure 1: The architecture model on the GPU

tions have been proposed and implemented [20, 22, 33]. These
GPU-based primitives further reduce the complexity of GPU pro-
gramming.

GPUMiner takes advantage of both kinds of GPU programming
languages. It uses CUDA to implement mining algorithms and Di-
rectX for visualization. Moreover, different from the previous stud-
ies [16, 20, 22, 33], GPUMiner focuses on the architectural issues
of developing a GPU-based parallel system for general-purpose
data mining.

2.2 Parallel and Distributed Mining

Parallel data mining has been widely studied in distributed systems
[4,9, 11, 27]. Aouad et al. [4] designed a distributed Apriori on
heterogeneous computer clusters and grid environments using dy-
namic workload management to tackle memory constraint, achieve
balanced workloads, and reduce communication costs. Buehrer [9]
and El-Hajj [11] proposed variants of FPGrowth on computer clus-
ters, lowering communication costs and improving cache, memory,
and I/O utilization. Most recently, Li et al. [27] demonstrated a
linear speedup of the FP-Growth algorithm over thousands of dis-
tributed machines using Google’s MapReduce infrastructure.

Since SMT and multicore CPUs have emerged as the main-stream
processor, researchers have studied representative mining algorithms,
such as Apriori [2] and k-means [29] on multicore CPUs. The key
issue is how to fully exploit the instruction-level parallelism (ILP)
and thread-level parallelism (TLP) on the multicore CPU. Goth-
ing [13] et al. improved FPGrowth [19] through a cache-conscious
prefix tree for spatial locality and ILP, and a tiling strategy for tem-
poral locality. Liu et al. [28] proposed a cache-conscious FP-
array from compacting FP-tree [19] and a lock-free dataset tree
construction algorithm for TLP. Ye et al. [38] explored paralleliz-
ing Bodon’s trie-based Apriori algorithm [8] with a database par-
titioning method. Recently, two benchmarks for mining on multi-
core processors, including the PARSEC Benchmark Suite [7] and
NU-MineBench [32], have been proposed to facilitate architectural
studies. Our ongoing work in GPUMiner includes developing a
GPU-based FPGrowth and comparing our algorithms with these
benchmarks.



In comparison with previous serial or parallel CPU-based FIM al-
gorithms, our algorithms are designed for the GPU with massive
thread parallelism. Moreover, we attempt to identify the common
techniques on implementing data mining algorithms on the GPU.
In particular, our Apriori employs both the GPU and the CPU in the
processing. The GPU handles frequency counting on transactions
in a bitmap whereas the CPU manages the trie structure for result
patterns. Such a design takes advantage of the GPU’s SIMD mas-
sive parallelism as well as works well with the GPU’s virtualized
cores and hardware-managed threads.

There is little work done for parallel data mining algorithms on the
GPU. Only recently, Che et al. [10] implemented k-means among
five kinds of parallel applications on the GPU using CUDA. In their
algorithm, the GPU is responsible for calculating the distances of
each object to the k clusters in parallel, and the CPU takes over the
reduction step that produces the new centroid for each sub-cluster.
In comparison, our k-means algorithm utilizes the bitmap-based
computation for the efficiency of SIMD execution, exploits the lo-
cal memory optimization for temporal locality, and minimizes the
data transfer between the main memory and the GPU memory.

2.3 Data Mining Visualization

Data mining visualization [25] uses interactive visualization tech-
niques to facilitate fast and effective exploration into an abstract
and often a large-scale dataset. Information visualization tech-
niques [34], such as scatterplots, are usually employed to map the
data into visual metaphors. We use scatterplots in our visualization
due to its capability to express the spatial distribution and associa-
tion of data items.

Ammoura et al. [3] proposed a system of visualizing OLAP data
sources under the CAVE virtual reality environment. Yang [36]
proposed to visualize large datasets in 3D scatterplots, also under
a CAVE environment. In this paper, we also use scatterplots to vi-
sualize the data, but our scatterplot is 2D to avoid depth perception
issues with 3D space [34], and our method uses commodity GPUs
rather than specialized hardware.

Yang [37] proposed methods for visualizing frequent itemsets and
association rules. They use parallel coordinates with line connec-
tions to represent association rules. This method efficiently visual-
izes the relationship between rules. However, parallel coordinates
do not express well the spatial distribution of itemsets. We use
scatterplots to efficiently express the spatial distributions.

Additionally, there are specialized visual mining techniques. For
example, the SplatViz [6] tool in the SGI MineSet software uses a
splatting technique to interactively visualize proteomics data. Al-
though the data mining community has sent out the call for GPU-
based visualization [17], little work has been done to utilize the
GPU for both backend mining and frontend visualization. To the
best of our knowledge, our work is the first to integrate mining
computation and visualization on the new generation GPUs.

3. ARCHITECTURE OVERVIEW

Figure 2 illustrates the architectural design of GPUMiner. Our sys-
tem consists of three major components, namely storage and buffer
management, the mining, and the visualization.

As an integrated data mining system, GPUMiner has the following
features.

High performance. The data mining algorithms in GPUMiner are
designed and implemented as parallel ones exploiting the
parallelism of the entire machine, including the co-processing
parallelism between the CPU and the GPU, and the on-chip
parallelism within each processor. In particular, these paral-
lel algorithms are scalable to hundreds of processors on the
GPU.

I/0 handling infrastructure. GPUMiner provides a flexible and
efficient I/O handling infrastructure for analyzing large amounts
of data.

Online visualization. Data mining is often a long-running and in-
teractive process. Visualization helps people mine large dataset
more efficiently. GPUMiner provides online visualization for
the user to observe and interact with the mining process.
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Interaction <:> Itemset Mining
Microsoft DirectX NVIDIA CUDA
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Figure 2: The System Architecture of GPUMiner

The storage and buffer management component is responsible for
handling the data transfer between the disk, the main memory and
the GPU memory. These three levels of memories form a mem-
ory hierarchy, where buffer management should be carefully de-
signed between two adjacent levels. For simplicity and efficiency,
this component supports bulk reads and bulk writes only, i.e., read-
ing a chunk of data from the disk to the GPU memory, and writing
a chunk of data from the GPU memory to the disk.

In our current implementation, GPUMiner utilizes Berkeley DB
(Bdb) as the backend for storing the data persistently. Compared
with the raw I/O APIs accessing data in plain text files or structured
files, Bdb transparently provides the efficient buffer management
between the disk and the main memory, together with convenient
file I/0 operations including in-place data update. Since current
version of GPUMiner supports bulk reads and writes only, we store
abulk of data as a record in Berkeley DB with a unique key. Thus, a
data chunk can be fetched or stored by the key. Based on the buffer
management from Bdb, GPUMiner provides a lightweight I/O li-
brary consisting of two APIs, namely Read Bulk and Write Bulk.
ReadBulk reads a chunk of data from the disk and transfers them
to the GPU memory, whereas W rite Bulk outputs a chunk of data
from the GPU memory to the disk. With these two APIs, developers
can handle large data sets without considering explicit data alloca-
tion and data transfer among the GPU memory, the main memory
and the disk.

The mining component consists of parallel data mining algorithms
including clustering and frequent itemset mining. We choose GPGPU
APIs to implement and optimize the mining algorithms due to their
algorithmic complexity. With the infrastructure provided in the
GPUMiner, we are adding more data mining algorithms such as
FP-Growth and classification.
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Figure 3: Counting 1s for the 5-th row of a 5x14 bitmap.

The visualization component visualizes the intermediate or final re-
sults as they are produced from the mining component online. It is
implemented in DirectX to take advantage of the graphics pipeline
for fast rendering. Since both the mining and the visualization com-
ponents mostly run on the GPU, the data transfer between the two
components is small. Moreover, the interactions and visualizations
are designed to suit individual mining tasks, e.g., examining clus-
tering results as they converge through iterations or observing item-
sets of a specific number of items.

4. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of the
mining and the visualization components in GPUMiner. As a start,
we implement two common algorithms in the clustering and fre-
quent mining (FIM), namely k-means [29] and Apriori [2], respec-
tively. Both algorithms are based on the bitmap technique exploit-
ing data parallelism in the SIMD execution. Following the previous
studies [22], we optimize our implementation using memory opti-
mizations and thread parallelism. The memory optimizations in-
clude the local memory optimization for temporal locality and the
coalesced access optimization for spatial locality.

In the visualization component, we visualize the intermediate clus-
ters or patterns generated by the two algorithms for user interaction.
Since both algorithms are iterative, our visualization naturally maps
to multiple iterations/passes during the mining process.

4.1 GPU-Based Data Mining Algorithms
4.1.1 The Bitmap technique

Counting is a core operation in data mining algorithms. For exam-
ple, k-means counts the number of data objects associated with a
specific cluster, and Apriori counts the number of transactions con-
taining the same item. We transform this association counting into
counting the number of ones resulted from a set of boolean tests
on the association. Since the association is usually a binary rela-
tion (e.g., <object, cluster> in k-means and <transaction, item>
in Apriori), we use a bitmap, i.e., a 2D array of bits, to store the
association.

The bitmap can be implemented in row-major or column-major.

We take the row-major implementation as an example. Each row is
rounded in bytes, padded with 0. Given Object ¢ and Object 7 in an
m x n bitmap, 0 < ¢ < mand 0 < j < n, if Object 7 and Object
Jj are associated, the corresponding (i, j) bit is set to 1. Figure 3
shows an example of 5 x 14 bitmap. The row is rounded to 2 bytes,
that is, 16 bits.

The bitmap supports efficient row-wise and column-wise opera-
tions exploiting the thread parallelism on the GPU. Given an m
X n bitmap, we can use x threads to process m rows in paral-
lel, or to process n columns in parallel. The tasks of processing
rows or columns are uniformly assigned to the threads. Another
common operation is counting on the number of ones in a set of
rows/columns in the bitmap. This can also be implemented using
row- or column-wise operations. Since this operation is common
and important for the performance, we construct a summary vec-
tor for each row/column to accelerate counting. A summary vector
stores the number of ones of each row. To count the number of ones
in a set of rows, we first extract the corresponding counts from the
summary vector, and then use a parallel reduce primitive [12] to
calculate the final result.

Figure 3 illustrates an example for counting ones for the 5-th row
of a 5 x 14 bitmap. Each row is rounded to 2 bytes, so that we need
to look up the summary vector for 2 times. In this example, the first
byte of the 5-th row is a bit-string of 0000 0111, which is the binary
form of 7 in decimal. We use 7 as the index to look up the summary
vector, getting 3, the number of ones for the first byte. We repeat
the same process for the second byte, and then get 1. By summing
up both results, we get the number of ones for the 5-th row.

4.1.2 K-Means

k-means is one of the most well-known and commonly used clus-
tering algorithms. It takes an input parameter k, and partitions a
set of m objects into k clusters according to a similarity measure.
Each object has multiple attributes, or features. The mean values,
or centriods, are a summary measure of the similarity of data ob-
jects within the same cluster.

The k-means algorithm works in iterations. At the beginning, the
algorithm randomly chooses k of the objects as the initial centroid
for each cluster. In each iteration, k-means associates each data
object with its nearest centroid, according to the similarity metric.
Next, it computes the new centroids by taking the mean of all the
data objects in each cluster respectively. K-means terminates when
the changes in the centriods are less than some threshold.

The data transfer between the main memory and the GPU memory
is small, once the input data is ready on the GPU memory. During
the execution, only a 4-byte flag variable is transferred between
GPU memory and CPU memory. Thus, our implementation avoids
heavy memory ping-pong overhead described in Che et. al [10].
Our bitmap-based k-means algorithm outlines as follows:

Algorithm 1 Bitmap-Based K-Means
while cpu_flag do
makeBitmap_kernel
transfer cpu_flat to gpu_flag
computeCentriod_kernel
transfer gpu_flag to cpu_flag
findCluster_kernel




Functions makeBitmap_kernel, computeCentriod_kernel and find-
Cluster_kernel are three kernel functions executed on the GPU in
parallel. In the makeBitmap _kernel function, each thread processes
one data object, by finding out the nearest centriod. Next, the func-
tion sets the corresponding bit according to the association in a
bitmap. We use a k X n bitmap to keep track of each data ob-
ject and the corresponding centroid, in which, k is the number of
clusters and n is the number of data objects. In the computeCen-
triod _kernel function, according to the bitmap, computes the sum
of counts for data objects in one cluster according to the summary
vector and then computes a new centroid. If the distance between
the new centroid and the old one is bigger than a given thresh-
old, then we consider the centroid changes. In this case, we set
the gpu_flag variable to true, so that the iteration keeps going. If
none of the centroid changes, the iteration terminates. Finally, the
findCluster_kernel function makes up the association between each
data object to its nearest centroid.

4.1.3 Apriori

Frequent itemset mining finds sets of items that appear in a per-
centage of transactions with the percentage, called support, larger
than a given threshold. The Apriori algorithm finds all frequent
itemsets in multiple passes, given a support threshold. At the first
pass, it finds the frequent items. Generally at the [-th pass, the algo-
rithm finds the frequent itemsets each consisting of [ items (called
l-itemsets). In each pass, e.g., the (I41)-th pass, it first generates
candidate (141)-itemsets from the frequent [-itemsets, then counts
supports of these candidates and prunes those candidates whose
supports are less than a given support threshold. The algorithm
ends when no candidate is generated in a pass.

An [-itemset becomes a candidate if all of its subsets are frequent
[2]. Candidate generation has two steps. The first step finds pairs
of l-itemsets that have the same prefix (I—1)-itemset and differ
only in the I-th item, and joins each pair of < 41,...,%1—1,% >
and < 41, ...,7-1, Zf > to generate a potential candidate < i1, ...,
i1-1, 11, 7, >. The second step checks the [-subsets of the potential
(I41)-candidates. If all [-subsets of a potential (I+1)-candidate
are frequent, it becomes a candidate.

After candidate generation, the algorithm scans the transaction set
to count supports for the candidates. For each transaction, the al-
gorithm decides which candidates are contained by it, and the sup-
ports of contained candidates are each increased by one. After the
entire transaction set is scanned, the algorithm identifies the can-
didates with support no less than the support threshold as frequent
itemsets.

The state-of-the-art Apriori algorithm is the trie-based implemen-
tation [8]. It uses a trie to store candidates and their supports. Each
node in the trie has two attributes: item id and support. Trie-based
Apriori counts support by reading the transaction set, just as the
original Apriori [2] does. What is different is that, for each transac-
tion, it finds paths from the root to the leaves in the trie correspond-
ing to contained candidates in the transaction. The supports of the
leaves in the found paths are each increased by one. We adopt the
trie-based implementation on the GPU.

No matter there is a trie or not, Apriori scans the transaction set
multiple times, one scan per pass, to count supports of candidates.
The counting operations are time consuming and is the performance
bottleneck. For example, in our experiments, the FIMI'03 best
Apriori implementation, with a typical support threshold of 2% and

a large data set 710/4D100K [8], spent about 90% of total time
on support counting. Thus, we implement the counting operations
with the bitmap technique.

We use an I x T bitmap, denoted as 1T, to store the occurrences of
items in the transaction set, where 7' is the total number of transac-
tions and I is the total number of unique items in all transactions.
In the bitmap, bit I7T'[¢][¢] is one if item i is contained in transaction
t; otherwise, it is zero. We implement the bitmap as a two dimen-
sional array with the first index being the item id and the second
index being the transaction id. In this storage format, transaction
sets of items correspond to equal-sized bitsets such that the overlap
of transaction sets of items can be easily obtained through bitset
intersection operations. One scan of the transaction set is sufficient
to put 1s in the corresponding bits in the array.

The bitmap-based Apriori algorithm works as follows. In the first
pass, we obtain the supports of items through counting 1s in their
corresponding transaction bitsets in I’7". In the second pass, for
each 2-itemset, we intersect the two items’ corresponding transac-
tion bitsets and count 1s in the result as the support. From the third
pass, support counting is a recursive procedure. We start from the
root of the trie. For each node ¢ in the trie (corresponding to an
item), if it does not have leaf nodes, we return directly. Otherwise,
we intersect ¢’s transaction bitset I'7'[¢] with the intersection result
R’ of its ancestors’ transaction bitsets, which is passed from the
caller recursion. Let R = IT[i]&R’ be the result. After that, we
examine whether the level of ¢ in the trie equals to [, the current
number of passes. If it does, we count 1s in R and attach the count
to node ¢ as its support. Otherwise, we call our procedure recur-
sively and pass R for bitset intersection to this procedure.

Our bitmap-based support counting is efficient for the following
reasons. First, we use intersection and 1-bit counting on bitmaps
to obtain support. Both operations are efficient on both the CPU
and the GPU. In particular, 1-bit counting can be done even more
efficiently on the GPU through the parallel map primitive [22]. Sec-
ond, the recursive procedure passes the previous intersection result
as a parameter, hence eliminates repeated intersection operations
for itemsets with the same prefix. Third, we scan the transaction
set only once (for bitmap construction) instead of scanning it once
per pass, therefore eliminate subsequential I/O.

We employ GPU and CPU co-processing to implement support
counting. The trie traversal is implemented on the CPU. This de-
cision is based on the following considerations. (1) The trie is
an irregular structure and difficult to share among SIMD threads;
(2) recursion, which is used to visit nodes in the depth first order
(DES), is not supported on the GPU; (3) compared with bitset oper-
ations, the time for trie operations is insignificant. Both the bitmap
IT and the intermediate intersection results are stored in the GPU
global memory since the size may be large. The 1-bit counting and
intersection operations are implemented as GPU programs called
kernels.

A naive GPU-CPU co-processing scheme is single node per recur-
sion (SNPR). In each recursion, we perform intersection and 1-bit
counting for a single node. The inputs of SNPR are 1) an item ¢, 2)
its parent item p in the trie, 3) its level level in the trie, and 4) the
current pass /. In a recursion, we call the GPU kernel to intersect
i’s transaction bitset I'7'[i] with the intersection result R’ of its an-
cestors’ transaction bitsets. The position of R’ in the GPU memory
is identified by p. If level of node 7 equals to [, we count 1s in R
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Figure 4: The merged nodes in MNPR of Apriori.

in the GPU kernel, pass the count back to the main memory, and
assign the count to ¢’s support. Otherwise, we call the recursion on
each of ¢’s children. We implement bitset intersection with a map
primitive [22], and 1-bit counting is done on the map result.

This implementation is simple but not efficient because of two rea-
sons: (1) for each single node, the data size of map primitive is
small, thus the GPU computation resource is not fully utilized, (2)
there are a large number of small GPU-CPU memory transfers in-
curred in GPU kernel calls, so the overhead is considerable.

Our optimized GPU implementation processes multiple nodes per
recursion (MNPR). The main idea of the optimization is to group as
many as possible intersection and 1-bit counting operations in one
recursion on the GPU to reduce the kernel call overhead and to fully
utilize the computation power of the GPU. We use a bound variable
B to determine the number of parent and children pairs whose in-
tersections and 1-bit counting are to be performed in the same GPU
kernel call. The setting of B considers the size of transaction bit-
sets of each item and the size of the GPU memory. Suppose the
available size of the GPU memory is GG, the maximum number of
items in one transaction is L, the total number of transactions is T,
we have B = LXLT

The inputs of MNPR are 1) a list of items /L, all in the same level
of the trie, 2) the list of their parents PL in the trie, 3) the level
level of the items in /L, 4) the current pass [/, and 5) bound B.
In a recursion, we first call the GPU kernel to intersect transaction
bitset of each item in I L with the intersection result of its ancestors’
bitsets. The position of the ancestors’ intersection result in the GPU
memory is identified by PL. Then, we check whether level equals
to [. If so, we count 1s in the results in the kernel and pass the
counts back to the CPU memory, and assign them to I L’s supports.
Otherwise, we divide the children of I L into serval segments. Each
segment contains at most B items. We then call the recursion for
each segment.

Figure 4 shows an example with B = 5. We pass the item ids of
nodes IL ={5, 6, 7, 8 9} and their corresponding parent nodes
PL ={1, 2} together to the same GPU kernel to intersect {/}
with {5, 6, 7} and {2} with {8 9}. Compared to SNPR, MNPR
reduces the number of kernel calls from 5 to 1. After that, we
divide the children of {5, 6, 7, 8, 9} into segments {10, 11, 12,
13, 14} and {15, 16, 17, 18}. Then, we pass {10, 11, 12, 13, 14}
and their corresponding parents {5, 6, 7} together to a GPU kernel
in a recursion, and pass {I 5 16, 17, 1 8} and their corresponding
parents {8,9} together to a GPU kernel for another recursion. This
optimization reduces the number of kernel calls from 5 to 1 and 4
to 1, respectively. In total, it reduces the number of kernel calls
from 14 to 3 when visiting the branches of node 1 and 2 in the trie
in DFS.

4.2 Visualization

The GUIs of k-means and Apriori modules of GPUMiner are dis-
played in Figures 5 and 6, respectively. We describe the visual
analysis functionalities of each module.

4.2.1 Visualization of K-Means

(a) All data objects (b) Data objects in a cluster

Figure 5: Visualization of K-Means clustering.

Figure 5(a) displays 400,000 data objects that are clustered into ten
groups based on their 41 features. The user can select two features
to be the two axes, and visualize the dataset as a scatterplot in the
2D space. Each point represents one data object; points within the
same cluster share a color. The centroid of each cluster is drawn
as a filled circle with the radius representing the number of objects
of this cluster. We can see clearly the distribution, position and
density of each cluster on the two displayed features. In this way,
GPUMiner utilizes human visual system (HVS) to efficiently and
effectively discover potential patterns or outliers.

The user could reassign which features are to be clustered on and
which are to be displayed as his/her wish. The displayed features
are not necessarily involved in the clustering. The user could use
the keyboard to control the progress of clustering iteration to ob-
serve the intermediate results in animation. He/she can interac-
tively change the number of clusters and the number of iterations
to converge. The GPU performs interactive k-means clustering in
the backend. The user could click on one cluster to observe it in
isolation (5(b)), and zoom in to further explore this cluster.

4.2.2  Visualization of Apriori

(a) Parallel 2D scatterplots (b) One scatterplot

Figure 6: Visualization of Apriori.

Figure 6(a) displays the Apriori frequent itemset mining for trans-
action set. The window contains a series of parallel 2D scatter-
plots. The [-th scatterplot represents the mining result of pass [,
i.e., frequent [-itemsets (I-patterns). In the [-th scatterplot, we map
the combination of the first [—1 items of each [-pattern to the x-
coordinate, and map the last item of the pattern to the y-coordinate
of the scatterplot. As a result, each pattern is displayed as a 2D
point in the scatterplot, and the 2D space of the [-th scatterplot is
always warped into the x-axis of the adjacent (I+1)-th scatterplot.
The first scatterplot is 1D, since the 1-patterns (frequent items)
have no corresponding y-coordinate. The GPU performs interac-
tive Apriori frequent item mining in the backend.



‘We use heat map color intensity of the points to indicate the sup-
port of the patterns. In each scatterplot, we can intuitively see the
support of each pattern and the distribution of support of patterns
with the same prefix. Across scatterplots, we can compare the as-
sociated patterns with subset relationships; we can also observe the
change of frequencies increase in the size of patterns.

During the mining process, the user can use the keyboard to pause
at a pass to observe the existing scatterplots. The user can per-
form 3D navigation into the world of parallel scatterplots. The
navigation follows common 3D GUI conventions that use mouse
movements to change the direction, and the arrow keys to move
the position. The user can select a single scatterplot and zoom in
to further explore it, as shown in Figure 6(b). When the user cap-
tures a point using a mouse, the support and item containment of
the corresponding pattern are displayed.

Since both the backend computation and the frontend rendering
are performed on the GPU, it would be ideal that the frontend di-
rectly fetches the results of the backend. Unfortunately, the current
general-purpose APIs are compatible with only a few graphics re-
sources. Therefore, when the computation results are not immedi-
ately visible to the graphics API, we have to do an extra buffer copy
from the output of computing to the input of the rendering, even
though both are already in the GPU memory. This extra copy does
not affect the interactiveness of the demonstrations in this paper, but
might be a performance issue for very large datasets. Nowadays,
the inter-operability between general-purpose APIs and graphics
APIs is being rapidly enhanced, and we expect a tighter integration
of the two APIs to result in a higher performance in the future.

5. EXPERIMENTAL RESULTS

In this section, we present our experimental results on evaluating
the mining and the visualization components of GPUMiner. We
report results on both k-means and Apriori.

5.1 Experimental Setup

Our experiments were performed on a PC with an NVIDIA GTX280
GPU and an Intel Core2 Quad Core CPU, running on Microsoft
XP SP3. The GPU consists of 30 SIMD multi-processors, each of
which has eight processors running at 1.29 GHZ. The GPU mem-
ory is 1GB with the peak bandwidth of 141.7 GB/sec. The CPU
has four cores running at 2.4 GHZ. The main memory is 2 GB with
the peak bandwidth of 5.6 GB/sec. The GPU uses a PCI-E bus to
transfer data between the GPU memory and the main memory with
a theoretical bandwidth of 4 GB/sec. The PC has a 160 GB SATA
magnetic hard disk.

All source code was written and compiled using Visual Studio 2005
with the optimization level / 0O2. The versions for CUDA, DirectX,
and Berkeley DB are 2.0, 9.0 and 4.7.25, respectively.

Comparison. For k-means, we compare our algorithm with the
CUDA-based implementation by Che et al. [10] (denoted as “UVir-
ginia”). Che et al. showed that their CUDA based k-means imple-
mentation was up to 35x faster than the four-threaded CPU-based
counterpart. We download their GPU-based implementations from
their website [24] for comparison.

For Apriori, we compared our GPU-based algorithm with two CPU-
based algorithms, since there is no GPU-based Apriori implemen-
tation in the public domain. One version is the CPU counterpart of
our GPU-based implementation, denoted as GPUMiner: Apriori-
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Figure 7: Execution time of the two implementations of K-
Means on various number of data objects.

CPU. The other version is the FIMI'03 best implementation [8] of
Apriori, denoted as FIMI: Apriori.

Data sets. Following previous studies [10], we use the KDD Cup
1999 [23] intrusion detection data set to evaluate k-means. Each
object of the data set contains 41 features, and each feature is a
floating point number. The number of clusters is 24, which repre-
sents 24 attack types.

‘We used the data sets from FIMI’03 repository to evaluate the three

Apriori implementations. The three data sets we used were 710/4D10K,

T10I4D100K, and T40/10D100K. The three data sets are rep-
resentative small, medium, and large data sets used in FIMI.

Metric. We measured the total elapsed time for evaluating the effi-
ciency of the mining component, and used FPS (Frame Per Second)
to evaluate the visualization component. Since comparison experi-
ments were conducted on the same input file and produce the same
mining result, we excluded the initial file input and final result out-
put from the total time measurement. We ran each experiment for
three times, and calculated the mean value. The variance among
different runs of the same experiment was smaller than 10%.

5.2 Results on Mining

Figure 7 shows the total running time of our k-means algorithm
and UVirginia as the number of data objects increases. Our bitmap
based k-means was up to 5x faster than UVirginia.

We further investigate the time breakdown in Table 1, of these two
implementations processing 400 thousand data objects. We break
the running time into three components, GPU-CPU data transfer,
GPU computation, and CPU computation. The bitmap k-means
well utilizes GPU computation resources and minimizes the GPU-
CPU data transfer. The GPU computation time takes up more than
98% of total running time in our algorithm. In comparison, the data
transfer time dominates the total time in UVirginia.

One interesting point is that on the sum of the computation time of
GPU and CPU, UVirginia outperforms our bitmap implementation.
The reason is that UVirginia performs the accumulation computa-
tion on the CPU, whereas ours on GPU. Essentially, we exploit the
high computation capability on the GPU for less GPU-CPU data
transfer. As a result, the overall performance is improved.

Figure 8 shows the execution time of the three Apriori implemen-
tations. The support threshold is set to 1% for all of the three data
sets. Both the CPU and the GPU implementations of our bitmap-
based algorithm are faster than FIMI:Apriori, achieving a speedup



Table 1: Time Breakdown of K-Means
Total Data Transfer GPU CPU
GPUMiner | 23.8255s 0.1093s 23.5763s | 0.1399s
UVirginia | 115.8839s 110.8994s 0.0053s | 4.9792s
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Figure 8: Execution time of the three implementations of Apri-
ori on various data sets.

up to 10.4x and 7.5x, respectively. Furthermore, the speedup of our
algorithm with the CPU or the GPU implementations, increases as
the data size increases.

Figure 9 shows the execution time of the three implementations on
T40I10D100K with various support thresholds. When the sup-
port threshold changes from 0.5% to 2.0%, the GPU implementa-
tion of our bitmap-based Apriori achieves a speedup from 6.2x to
12.1x and the CPU implementation achieves a speedup from 3.8x
to 9.5x. We can see that both implementations of our algorithm are
much faster than the FIMI implementation throughout a range of
support thresholds.

5.3 Performance of Visualization
In the following, we evaluate the visualization performance for k-
means clustering and Apriori mining, respectively.

5.3.1 Performance of K-Means Visualization

We evaluate the visualization performance of k-means clustering
(Figure 10). We vary the number of objects from 50K to 400K, and
for each data size, measure (1) the elapsed time of k-means com-
putation, labeled as "Compute”, (2) the elapsed time after compu-
tation and before the first frame is drawn, labeled as “’First Frame”,
and (3) the total time of the two steps, labeled as "Compute + First
Frame”. We measure the time for a single iteration of clustering
since each iteration takes about the same time. The “First Frame”
time mainly consists of the memory copying from general-purpose
computing resources to graphics resources. We have also measured
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Figure 9: Execution time of the three implementations of Apri-
ori varying support thresholds on 740/10D100K.
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Figure 10: Elapsed time with varying data size.
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Figure 11: Visualization performance as number of passes pro-
gresses.

the rendering performance after the first frame is drawn. The FPS
(frame-per-second) is around 36 for all the tested data sizes. This
FPS indicates that the rendering overhead after the resource copy-
ing is negligible in comparison to the computation and the first
frame.

The figure shows that both the computation and copying time in-
crease linearly with the data size, and the copying overhead is only
10%-15% of the computing time. As the iteration number grows,
the copying overhead becomes a tiny portion of the total elapsed
time.

5.3.2  Performance of Apriori Visualization

We evaluate the visualization performance of Apriori with three
different support thresholds 1%, 1.5% and 2%, on the T40I10D100K
transaction set. In pass [, we tested the FPS of displaying the exist-
ing patterns discovered in the first [ passes, i.e., the FPS of render-
ing the first [ scatterplots. Figure 11 shows the FPS of each pass.
In general, the FPS drops with the increase of pass with all support
thresholds. The reason is that the number of scatterplots increases.
However, when the support threshold is set to 1.5% or 2%, the to-
tal number of patterns (6541 or 2295) discovered is relative small.
Therefore, the FPS is consistently above 35. When the support
threshold is set to 1%, new patterns keep emerging, and the FPS
finally drops to around 10 when all 65237 patterns are displayed.
However, this visualization performance is still highly interactive.
Note that the graphics resources to be copied (including the pat-
terns and their support) from the CPU memory are relatively small
in size, therefore the measured copy time is negligible in compari-
son to the mining and rendering time.

6. CONCLUSION AND FUTURE WORK

We have presented GPUMiner, a system that utilizes GPUs to ac-
celerate general-purpose data mining. It consists of a CPU-based



storage and buffer manager, a GPU-CPU coprocessing mining mod-
ule, and a GPU-based interactive visualization module. Our stor-
age and buffer manager handles file I/O and data transfers between
the disk, main memory, and the GPU memory. Our mining module
currently contains a GPU-based k-means and an Aproiri with GPU-
CPU coprocessing. Both mining algorithms employ bitmaps to en-
code information on the GPU and utilize the GPU’s SIMD mas-
sive thread parallelism for computation. Our visualization module
takes intermediate results from the mining algorithms on the GPU
and renders them on the screen efficiently. Additionally, it allows
users to interact with the mining process online. We have presented
preliminary performance results in comparison with state-of-the-
art GPU or CPU implementations. We will demonstrate the system
through our visualization module.

We are studying detailed performance of our algorithms. In partic-
ular, we will examine the time breakdown of our GPU-accelerated
Apriori algorithm to identify the performance bottleneck - the GPU,
the CPU, or the data transfer. Based on our findings, we may re-
design the algorithm to balance the performance of the three com-
ponents so as to improve the overall performance.

We are considering other improvements of our current implemen-
tations. For example, our bitmaps for counting are space inefficient
for sparse datasets. We limit the data chunk size that can fit into
the GPU memory. For efficiency, we are investigating data com-
pression techniques [1]. Moreover, we are developing a buffering
mechanism between the GPU memory and the main memory for
memory ping-pong.

We also plan to add to GPUMiner other mining algorithms with
GPU acceleration, for instance, FP-Growth and classfication. In
particular, FP-Growth and its CPU-based variants have shown a
superior performance; nevertheless, their irregular data structures
and complex algorithmic control pose great challenges for GPU
acceleration.

Finally, it could be desirable to enhance the interaction features of
the mining process, for example, adjusting distance / confidence /
support thresholds during the progress. Such interaction can greatly
improve the mining quality. For example, k-means requires the
knowledge of the number of clusters in advance. The interaction
enables the developer to input the number of clusters observed in
the visualization, and improves the convergence speed of the algo-
rithm. Nevertheless, this kind of interaction requires more design
and implementation effort in maintaining states of the mining pro-
cess and in incremental computation by adjusting the mining pa-
rameters. Code and documentation, including a full version of this
paper, are available at http://code.google.com/p/gpuminer/.
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8. DEMONSTRATION

We will demonstrate both the visualization and the performance for
the mining algorithms.

For the visualization of k-means using GPUMiner, we will com-
bine the following interactions in the mining process: changing the
number of clusters and iterations; step-by-step clustering; selecting
one cluster; and zooming in. For the visualization of Apriori us-
ing GPUMiner, we will combine the 3D navigation, selecting one
scatterplot and zooming in etc., to mine the data.

To demonstrate the performance, we use multi-threaded CPU-based
implementations as the counterparts. We will compare the elapsed
time of CPU- and GPU-based k-means, both in terms of one itera-
tion (if the clustering is slow) and all iterations. We will compare
the elapsed time of CPU- and GPU-based Apriori frequency min-
ing, both in one pass and in all passes.



