Agent-Based Grid Load Balancing Using Performance-Driven Task Scheduling

Presented by: Xiaolong Jin

Performance-Driven Task Scheduler

• Resources
 – A grid resource (node) P with n processor
 – Resource model ρ_i describes perf. info. of processor p_i

• Tasks
 – m parallel tasks T_j to be run on P
 – Application model σ_i describes perf. related info. of tasks T_i
 – δ_j is the deadline requirement of task T_j

Performance-Driven Task Scheduler (Cont.)

• Schedule
 – A schedule is a set of $\bar{p}_j \subseteq P$ ($\bar{f}_j \subseteq \rho$) allocated to task T_j, and a set of start time τ_j
 – The execution time for task T_j is a function $t_e(\bar{p}_j, \sigma_j)$
 – The completion time is: $\eta_j = \tau_j + t_e(\bar{p}_j, \sigma_j)$
 – Makespan ω of a schedule: $\omega = \max_j \{ \eta_j \}$, i.e., the latest completion time of any task

 Scheduler goal:
 • Minimize ω, and
 • $\forall j, \eta_j \leq \delta_j$
Performance-Driven Task Scheduler (Cont.)

- Genetic algorithm
 - Coding:
 - string S_k
 - task ordering
 - ordering part
 - mapping part

�

Scheduler Implementation

Request Info. → Task Management → Task Execution → GA Scheduling → Application Models → PACE Evaluation Engine

Results → Resource Info. → Resource Monitoring → Resource Info. → Evaluation Results → Resource Models

Agent-Based Grid Load Balancing System

User Portals → Application Tools

Agent Hierarchy → Evaluation Engine

Local Schedulers → Resource Tools

Agent-based grid load balancing → PACE performance prediction
Agent-Based Grid Load Balancing System (Cont.)

- Each resource is managed by an agent coupling a GA-based scheduler
- All agents are organized into a hierarchical structure
- Service discovery: After a task is submitted to a resource
 - If the service can match the task requirement, the discovery ends successfully. Otherwise,
 - The corresponding agent evaluates the service information of upper and lower agents, and passes the task to the one that provides the best requirement/service match.
 - If no service can match, the task is submitted to the upper agent.
 - If the task reaches the head of the agent hierarchy and does still not find a matched service, the discovery terminates unsuccessfully.

System Performance Metrics

- Average advance time \(\bar{e} = \frac{\sum_{i=1}^{M} (\delta_j - \eta_j)}{M} \)
- Average resource utilization rate \(v = \frac{\sum_{j=1}^{N} v_j}{N}, \quad u_i = \frac{\sum_{j \in F_i} (\eta_j - \tau_j)}{t} \)

Where \(v_i \) is the resource utilization rate of processor \(P_i \)
- Load balancing level \(\beta = 1 - \frac{d}{v}, \quad d = \sqrt{\frac{\sum_{i=1}^{N} (v - u_i)^2}{N}} \)

Remarks

- Load balancing is addressed at a lower/local level. The proposed mechanism cannot guarantee global load balancing.
- In a grid resource, tasks are scheduled in a batch. (Say, a batch contains 6 tasks)
 - The scheduler has to wait until 6 tasks are submitted?
 - During the process of scheduling, processors are idle?
- An agent at a higher level must know the service information of all its offspring agents.