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Abstract

Biometric cryptosystem has been proven to be one of the
promising approaches for template protection. Since most
methods in this approach require binary input, to extend it
for multiple modalities, binary template fusion is required.
This paper addresses the issues of multi-biometrics’ per-
formance and security, and proposes a new binary tem-
plate fusion method which could maximize the fused tem-
plate discriminability and its entropy by reducing the bits
dependency. Three publicly available datasets are used for
experiments. Experimental results show that the proposed
method outperforms the state of the art methods.

1. Introduction
Multi-modal biometric systems, consolidating multiple

traits (e.g., face, fingerprint, palmprint, voice, iris), ad-
dress limitations of unimodal biometric systems in match-
ing accuracy, spoofing difficulty, universality, and feasibil-
ity [27]. However, the template security in multi-biometric
systems is more crucial than uni-biometric systems because
they store and process information about multiple biomet-
ric traits per user. Once the system storage is compromised,
the biometric templates that without protection could be re-
vealed and used to construct the physical spoof [8, 26]. As
the biometrics is unique and irrevocable, if the original bio-
metric images corresponding to multiple traits of a user can
all be reconstructed, it would cause permanent compromise
of these user biometrics.

To date, there are three kinds of biometric template pro-
tection approaches. They are feature transformation [23],
biometric cryptosystems [13, 14] and hybrid approaches
[10]. In the feature transformation approach, templates are
transformed through a one-way transformation method us-
ing a user-specific random key. This approach provides can-
cellability as a new user-specific key can be used to generate
a new transformed output if the previous transformed output
has been compromised. The biometric cryptosystems store
a sketch that is generated from the enrolled template, where
the security of these cryptosystems is based on the entropy

of the templates. Hybrid approaches combine both feature
transformation and biometric cryptosystems approaches to
provide both security and template cancellability.

Biometric cryptosystems take query templates (features)
and the auxiliary data as input, and produce the binary de-
cisions (accept/reject). When employing biometric cryp-
tosystems, multiple traits in multi-biometric systems can
be fused at feature or score/decision level. Multi-biometric
cryptosystems based on score/decision-level fusion are ar-
guably less secure than those based on feature-level-fusion.
In score/decision-level-fusion-based systems, the sketches
generated from the unimodal templates are stored individu-
ally and can be attacked separately; while in feature-level-
fusion-based systems, the stored sketch is generated from
the multimodal template and much harder to be attacked be-
cause the multimodal template integrates multiple uncorre-
lated biometrics and hence has a higher entropy. The higher
security of feature-level-fusion-based systems has also been
justified in a recent work [19] using hill-climbing analysis.

Binary feature is the only acceptable form of input for
typical biometric cryptosystems such as fuzzy commitment.
To obtain a set of fused binary features via feature fusion,
a typical approach is to convert distinct types of features to
some unified representations, fuse them and convert these
fused features into binary when such a biometric cryptosys-
tem is concerned. However, when some of the modali-
ties are inherently represented in binary (e.g., binary fea-
tures extracted from commercial black-box feature extrac-
tors such as IrisCode [4]), converting these features to other
forms is often infeasible because the quantization and en-
coding parameters used in the actual binarization process
are not available. In this case, feature fusion can only be
carried out after converting the unimodal features into bi-
nary [7, 9, 10, 18, 30].

In this paper, we focus on binary feature level fusion for
multi-biometric cryptosystems, where biometric features
from multiple biometric sources are converted individually
to a unified binary representation before fusion. Generally,
in multi-biometric cryptosystems, there are three criteria for
fused binary biometric features:

• Discriminability: Fused binary features have to be dis-



criminative in order not to defeat the original purpose of
recognizing users. Each bit of the fused feature should
have small intra-user variations and large inter-user vari-
ations.

• Security: Entropy of the fused binary features have to
be adequately high in order to thwart guessing attacks,
even if the stored auxiliary data is revealed. Hence, the
binary feature fusion should produce highly uniform bits
and incur low dependency among bits in the fused binary
representation.

• Privacy: The stored auxiliary data for feature extrac-
tion and fusion should not leak information on the cor-
responding raw biometrics of a target user.

To obtain a fused binary feature with high discriminabil-
ity and high entropy, the dependency among bits in a bi-
nary representation should be reduced and each of the bits
is made highly uniform, on top of having small intra-user
variations and large inter-user variations.

The entropy of the extracted binary features from every
biometric source is generally limited, because of the inher-
ently high dependency among bits. This dependency can
be used to facilitate guessing of the binary features of the
target user(s) [11, 25, 31]. However, existing binary fusion
techniques are limited to simple concatenation and bit se-
lection. Most of them consider only the discriminability
criterion without taking into account the dependency among
bits, thus potentially producing fused binary representation
with low entropy.

By combining information from multiple bits appro-
priately, it is more likely that a uniform and discrimina-
tive bit can be derived. We propose a binary feature fu-
sion method to extract discriminative and high-entropy tem-
plates from multiple binary representations of unimodal
biometric sources for multi-biometric cryptosystems. First,
we use dependency reductive bit-grouping to extract a set of
less dependent bit-groups. Then, for each bit group, we fuse
the bits based on a discriminability and uniformity objective
function.

The structure of this paper is organized as follows. In
the next section, we present related work of binary fusion
techniques of biometric features. In Section 3, we describe
proposed two-stage binary feature fusion. We present our
experimental results to justify the effectiveness of our fu-
sion approach in Section 4. Finally, concluding remarks are
drawn in Section 5.

2. Related Work
Only a few binary feature-level-fusion based multi-

biometric cryptosystems can be found in the literature
[15, 20, 28]. Furthermore, most of them only consider
the discriminability of the fused binary feature, but lack

of consideration on security. Sutcu et al. [28] combine bi-
nary string of fingerprint and face by concatenation, then
the fuzzy commitment is applied on the combined feature
immediately. However, concatenating binary strings might
lead to a curse-of-dimensionality problem due to the large
increase in feature dimensionality and limited training data
[27]. In addition, feature concatenation cannot remove re-
dundant or unstable feature introduced during feature ex-
traction.

Bit selection is applied to avoid the curse-of-
dimensionality problem by selecting discriminative or
reliable features. Kelkboom et al. [15] selected a subset
of most reliable bits according to a criteria named z-score
at feature level fusion, which measures the regularized
distance between the real-value corresponding to these
quantized bits and the quantization threshold. Nagar
et al. [20] present a discriminability based bit selection
method to select a subset of bits from each biometric trait
individually and combine the selected bits together via
concatenation. They compute the discriminability from the
genuine and impostor bit-error probability. In most cases,
there are insufficient bits that fulfill all three requirements
(i.e., high uniformity, small intra-user variations and large
inter-user variations). In addition, most bits are mutually
dependent and the dependency among them cannot be
reduced through bit selection.

3. Proposed binary feature level fusion
3.1. Overview of proposed method

A discriminative and high-entropy binary representation
necessitates lowly-dependent and highly-uniform bits with
small intra-user and large inter-user variations. We propose
a two-stage binary feature-level fusion method to achieve
this objective: (i) dependency reductive bit-grouping and
(ii) discriminative and uniform within-group fusion. We
first reduce the dependency among the fused bits by as-
signing the bits into groups so that the groups have low
inter-dependency. With these bit groups, we extract an out-
put fused bit per group through a mapping that maximizes
uniformity, minimizes intra-user variation and maximizes
inter-user variation of the fused bit. By concatenating these
fused bits, we obtain the fused representation of a user. The
block diagram of proposed method is shown in Fig.1.

Suppose we have extracted a multimodal binary feature
b = {b1, b2, · · · , bN}, which is obtained by concatenat-
ing binary features from multiple modalities (e.g., face, fin-
gerprint, iris, etc.). Here, N denotes the size of the con-
catenated binary feature. Our two stages in testing phase
for fusing the bits of b to an L-bit binary feature z =
{z1, z2, · · · , zL} are described as follows:

(1) Dependency reductive bit-grouping: Input bits of b
are grouped into a set of weakly-dependent disjoint
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Figure 1: The proposed binary feature level fusion algorithm

bit-groups C = {c1, c2, ..., cL} such that ∀l1, l2 ∈
[1, L], cl1 ∩ cl2 = ∅,

⋃L
l=1 cl ⊆ {b1, · · · , bn, · · · , bN}.

(2) Discriminative and uniform within-group fusion:
Bits in each group cl are fused to a single bit zl using a
group-specific mapping fl that maximizes the discrim-
inability and uniformity of zl.

The output bit zl of all groups are concatenated to produce
the final bit string z. To realize these two stages, the opti-
mum grouping function cl = {bn, n ∈ ζ̂l} that is based on
grouping information Ĉ = {ĉ1, · · · , ĉl, · · · , ĉL} in stage
one and the mapping function fl in stage two need to be
sought. Here, the grouping information ĉl specifies bits of
b that should be grouped. The mapping function fl speci-
fies to which output bit value is for the bits in group cl are
mapped.

3.2. Dependency reductive bit-grouping

To extract a set of lowly dependent bit-groups C from b,
the bits with strong dependency should be grouped together,
and the ones with weak dependency should be grouped into
different groups. We adopt clustering with dependency as
the similarity metric to perform such dependency reductive
bit-grouping. However, dependency, typically measured by
mutual information(MI), is not a common metric in cluster-
ing that is based on spatial domain. This causes the desired

bit-groups unable to be extracted via partitioning the bits di-
rectly according to their distribution or density. Inspired by
[17], we overcome this limitation by using agglomerative
hierarchical clustering.

The basic idea of the agglomerative hierarchical cluster-
ing is to first initialize all the objects as a one-point (single-
ton) cluster, and then merge the cluster pair with the highest
similarity iteratively. We express the dependency measure
using MI [17] as

I(cl1 , cl2) = H(cl1) +H(cl2)−H(cl1 , cl2) (1)

where H(cl1) and H(cl2) denote the joint entropy of bits in
cluster cl1 and cl2 , respectively, and H(cl1 , cl2) denotes the
joint entropy of bits in both of them.

Performing agglomerative hierarchical clustering using
MI as similarity metric might not group the bits with strong
pairwise dependency together. This is because the MI does
not provide a fair comparison when involving cluster of
different sizes. When ignoring the high order dependency
(higher than second order) of the bits, the MI between two
clusters is roughly equal to the MI sum of their correspond-
ing bit-pairs (each of bits from different clusters). For a spe-
cific cluster, its MI with a large-size cluster is mostly higher
than a small-size cluster, even though the bits of this clus-
ter have higher dependency with the bits in the small-size
cluster than the ones in large-size cluster. The large-size
cluster would be merged with the specific cluster, which



Algorithm 1 AMI based hierarchical clustering

1: Inputs:
α training samples B = {b1, b2, · · · , bα},
number of clusters L, maximum cluster size tsize

2: Outputs:
grouping information Ĉ = {ĉ1, · · · , ĉl, · · · , ĉL}

3: Initialize:
ˆCtmp = {ĉ1, · · · , ĉn, · · · , ĉN}, where ĉn = {n}

Entmp ← kThMaxEtp( ˆCtmp, L)
1

Ĉ ← ˆCtmp; En← 0
S = {sij}i 6=j ; sij : AMI between cluster ci, cj

4: while | ˆCtmp| > L do
5: search for largest sab
6: if |ĉa|+ |ĉb| > tsize then
7: sab ← −1
8: Continue
9: end if

10: merge ĉa and ĉb to ĉz and form the new ˆCtmp
11: Entmp ← kThMaxEtp( ˆCtmp, L)
12: if Entmp > min(En, 1) then
13: Ĉ ← ˆCtmp, En← Entmp
14: end if
15: for each ĉj ∈ ˆCtmp, j 6= z do
16: update all szj
17: end for
18: end while
19: find L highest-entropy clusters from Ĉ and return

is unwanted because bits with strong dependency are not
grouped together.

To cluster the bits with strong pairwise dependency to-
gether, normalization of MI on cluster size is required to al-
leviate the effect of cluster size on clustering. Treating each
cluster as a set, the number of pairwise bit-dependency in-
volved in the MI between two clusters equals the cardinality
product of these two clusters. To obtain a fair comparison
on pairwise bit-dependency involving cluster of different
sizes, we normalize the MI using the cardinality product,
which is named as average mutual information (AMI)

Iavg(cl1 , cl2) =
I(cl1 , cl2)

|cl1 ||cl2 |
(2)

where |cl1 | and |cl2 | denotes the cardinality of cluster cl1
and cl2 , respectively. Therefore, we design our AMI based
clustering algorithm, which is shown in Algorithm 1.

We prevent the clusters to be merged to a cluster with
size larger than tsize in Algorithm 1 by setting their simi-

1kThMaxEtp(Ĉ, k) returns the k-th largest cluster entropy of Ĉ

larity to −1. This is because the within-group fusion func-
tion sought in stage two is based on the estimation of the
bit-combination distribution of each groups. However, the
estimation for a group with large size require large number
of training data, which is generally limited in biometrics.
To ensure the estimation accuracy, the cluster size has to be
limited. The maximum size we used is the binary logarithm
of number of training samples.

The merging of the cluster pair with the maximum de-
pendency yields the updated cluster configuration ˆCtmp.
This configuration will be assigned to the current output
cluster set Ĉ based on their L-th largest cluster entropy. As
the entropy of the fused bit is dominated by the cluster en-
tropy, all of the L extracted clusters should have at least
one-bit entropy. If some of the clusters could not achieve
at least one-bit entropy, their entropy should be as high as
possible. Therefore, we update the cluster set Ĉ to ˆCtmp
when one of following conditions is satisfied: i) The L-th
largest cluster entropy of both Ĉ and ˆCtmp are greater than
one-bit; ii) The L-th largest cluster entropy of Ĉ less than
one-bit and less than the one of ˆCtmp.

3.3. Discriminative-uniform within-group fusion

The objective of this step is to search for a within-group
fusion function f(c) = z for each group c to fuse its
bits to a bit z with maximum uniformity, minimum intra-
user variations and maximum inter-user variations. For
a bit-group c that consist of m bits, there are at most
2m possible bit-combinations. This can be expressed as
c = {x1, · · · , xi, · · · , x2m}, where xi denotes i-th prob-
able bit-combination of c. Then, the within-group fusion
is analogous to a binary-label assignment process, where
each bit-combination is assigned a binary output label (a
fused bit value). More specifically, the fusion function
for group c could be described using a binary vector g =
{g1, · · · , gi, · · · , g2m}, gi ∈ {0, 1}, such that f(xi) = gi.

Maximizing the uniformity, minimizing the intra-user
variations and maximizing the inter-user variations in the
within-group fusion could be achieved even though the
maximization of the uniformity is removed. The uniformity
of a bit means how close the probability of this bit takes
value ‘0/1’ approach to 0.5, which will be maximized au-
tomatically during the maximization of the inter-user varia-
tion. To maximize the inter-user variation, bits from differ-
ent users should have highest probability to take different
values. This implies that the bit could equally separate all of
the users into two sets, one set of users take value ‘0’ and the
another take value ‘1’. Therefore, the bits have equal prob-
ability 0.5 across the population to take value ‘0/1’ when
their inter-user variation is maximized.

The intra-user variations and inter-user variations of the
fused bit z corresponding to group c could be measured by
the genuine bit-error probability peg and the impostor bit-



error probability pei , respectively. Let ys and yt denote the
corresponding bit-combination of s-th and the t-th training
sample in group c, where s 6= t and s, t range from 1 to
number of training samples α. The genuine probability of
bit-combination-pairs (xi, xj) is defined as their occurrence
probability across bit-combination-pairs that each of their
bit-combinations come from same user. Mathematically,

Pr
G
(xi, xj) = Pr(ys = xi, yt = xj |Ls = Lt) (3)

where Ls and Lt denote the label of s-th and t-th training
sample, xi and xj denotes the i-th and j-th possible bit-
combination of group c, resp., and i, j range from 1 to 2m.

Genuine bit-error probability of the fused bit is the prob-
ability where samples from the same user take different val-
ues/bit patterns. From the view of the pattern-pairs, it is
the probability of pattern-pairs where two patterns come
from the same user but are associated with different fused
bit value. Let K(0) and K(1) denote the sets of patterns in
group c to be fused to bit value ‘0’ and ‘1’, respectively.
This implies that gi = 0 when xi ∈ K(0) and gj = 1
when xj ∈ K(1). Mathematically, the genuine bit-error
probability of the fused bit z corresponding to group c is
the summation of all genuine pattern-pair probability where
the patterns in the pair are associated with different fused
results. We have

peg = Pr(ys ∈ K(0), yt ∈ K(1)|Ls = Lt)

=
∑

xi∈K(0)

∑
xj∈K(1)

Pr(ys = xi, yt = xj |Ls = Lt)

=
∑
gi=0

∑
gj=1

Pr
G
(xi, xj)

(4)

The impostor probability of pattern-pairs (xi, xj) is the
occurrence probability of pattern-pairs where both patterns
come from different users,

Pr
I
(xi, xj) = Pr(ys = xi, yt = xj |Ls 6= Lt) (5)

Similarly, the impostor bit-error probability of fused bit z
corresponding to group c is the probability of pattern-pairs
where their patterns come from different users and have dif-
ferent fused results, which can be expressed as

pei = Pr(ys ∈ K(0), yt ∈ K(1)|Ls 6= Lt)

=
∑

xi∈K(0)

∑
xj∈K(1)

Pr(ys = xi, yt = xj |Ls 6= Lt)

=
∑
gi=0

∑
gj=1

Pr
I
(xi, xj)

(6)

We have obtained the expressions of genuine and impos-
tor bit-error probability of the fused bit z in terms of the

bit-patterns in cluster c and their corresponding fused re-
sults g. To seek the g for the within-group fusion with min-
imum genuine and maximum impostor bit-error probability,
we solve the following minimization problem using integer
genetic algorithm [5, 6],

min
g
F (g) =

(
peg − pei

)
=
∑
gi=0

∑
gj=1

(
Pr
G
(xi, xj)− Pr

I
(xi, xj)

) (7)

subject to
g = {0, 1}2

m

A unique g has to be sought for every group.

4. Experimental Results
4.1. Database and feature extraction

We evaluated the discriminability and entropy of the
fused binary feature generated by the proposed fusion
algorithm using one real and two chimeric multi-modal
databases containing three modalities: face, fingerprint and
iris. The real multi-modal database, WVU[12], contains
images of 106 subjects where each subject has five multi-
modal samples, with three samples are used for training and
the remaining two for testing. Both two chimeric multi-
modal database are obtained by randomly matching im-
ages from a face, a fingerprint and an iris database. These
databases contain image of 100 subjects where each sub-
ject has eight multi-modal samples, with four samples are
used for training and the remaining four are used for test-
ing. The first chimeric multi-modal database, named as
Chimeric A, consists of face from FERET[22], fingerprint
from FVC2000-DB2 and iris from CASIA-Iris-Thousand
[1]. The second one, named as Chimeric B, consists of face
from FRGC[21], fingerprint from FVC2002-DB2 and iris
from ICE2006[3]. Our testing protocol is described as fol-
lows. For the genuine attempts, we use the first sample as
enrollment and the remaining samples as query. For the im-
postor attempts, the i-th sample of each subject is matched
against the i-th sample of remaining subjects, while each
pair of samples will be matched against once to avoid the
correlation.

Prior to evaluate binary fusion algorithms, we extract the
binary features of face, fingerprint and iris. The images of
each modality is first processed as follows:

Face Proper face alignment is first applied based on the
standard face landmark. To eliminate effect from variations
such as hair style and background, the face region of each
sample is cropped and resized to 61×73 pixels in FERET
and FRGC, resp., 15×20 pixels in WVU.

Fingerprint We first extract minutiae from each finger-
print using Verifinger SDK 4.2 [2]. The extracted minu-
tiae are converted into an ordered binary feature using the
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Figure 2: Comparison of area under ROC curve on (a) WVU multi-modal, (b) Chimeric A, (c) Chimeric B databases.

method proposed in [7] without randomization. Following
parameters in [7], each fingerprint image is represented by
a vector with length 224.

Iris The weighted adaptive hough and ellipsopolar trans-
form (WAHET) [29] is employed to segment the iris with
size 512×64, then the real features with size 480×1 are ex-
tracted from the segmented iris using extractor of Ko et al.
[16]. Both segmentation and extraction algorithm we used
are implemented using the iris toolkit (USIT) [24].

After the preprocessing, we use the PCA on face and
LDA on fingerprint and iris to reduce the feature dimension
to 50. Then, for features from all of the three modalities,
we encode each feature component to a 20-bit binary vector
using LSSC [18] and obtain a 1000-bit binary feature.

In this comparative study, we compared the proposed
method with the bit selection in [20] by varying the length
of fused features. The baseline comparisons of our exper-
iment include the uni-biometric features (i.e., face, finger-
print and iris), and the most straightforward fusion meth-
ods, i.e., concatenation and the bit-wise-operation based
methods (AND, OR, XOR). To have a fair comparison, fea-
tures given by each baseline method should have the same
length with the proposed method. However, each of the
uni-biometric binary feature is originally with length 1000.
We obtained the comparable uni-biometric binary features
by selecting the most discriminative bits from features of
each modality using the discriminability criteria as in [20].
The features of bit-wise-operation are obtained by perform-
ing the AND, OR, XOR operation on the obtained uni-
biometric binary features. It is noted that the feature of con-
catenation is obtained by concatenating the three original
(without selection) uni-biometric binary features and has
length 3000 (1000 × 3), which will be shown as a straight
line in the experimental results when varying the bit length.

4.2. Fused binary template discriminability

This section evaluates the discriminability of the fused
binary template given by the proposed fusion algorithm on
verification using area under curve (AUC) of receiver oper-
ating characteristic (ROC). By varying the bit length of the
fused binary template from 150 to 600, we plot the AUC of
ROC for three databases in Fig.2.

It can be observed that the proposed method is compa-
rable with bit selection and concatenation on all of three
databases. Excepting that face on WVU multi-modal
database is as discriminative as the proposed method and
bit selection, the proposed method and bit selection outper-
form remaining methods. It is noted that the curve for bit
selection is overlapped with the curve for face feature in
Fig.2(a) and curve for proposed method is overlapped with
the bit selection in Fig.2(b).

The results shows that the features of both the proposed
method and bit selection are more discriminative than re-
maining comparative methods even though biometrics of
different qualities are involved. The differences between
the AUC of face and fingerprint are around 7 ∼ 10% and
2 ∼ 5% on WVU multimodal and Chimeric A, resp., while
the difference between the AUC of iris and face is around
10% on Chimeric B.

The fingerprint discriminability decreases as the bit
length increases on all of three databases. This is be-
cause the most discriminative bits will be firstly selected
to construct the feature of different bit lengths. When the
bit length goes large, there are insufficient discriminative
bitscan be selected out. Eventually, the non-discriminative
(even noise) bits are used, which cause the discriminability
decreases.

4.3. Fused binary template entropy

This section evaluates the entropy of the fused binary
template given by the proposed fusion algorithm using
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Figure 3: Comparison of average Renyi entropy on (a) WVU multi-modal, (b) Chimeric A, (c) Chimeric B databases.

quadratic Renyi entropy as in [11], which measures the
content of biometric information as the complexity for
successfully guessing a target template. Specifically, the
quadratic Renyi entropy measures the effort for searching
an identified sample of the target template, implying that
they have zero hamming distance. Assuming that the av-
erage impostor hamming distance (impostor hamming dis-
tance per bit, aIHD) obeys binomial distribution with ex-
pectation p and standard deviation σ, the entropy of the tem-
plate is estimated as

H = − log2 Pr(IHD = 0)

= − log2 p
0(1− p)N∗ = −N∗ log2(1− p)

(8)

where N∗ = p(1 − p)/σ2 is the estimated number of inde-
pendent Bernoulli trials. Longer binary feature usually has
higher entropy. To neglect the effect of bit length, we plot-
ted the average Renyi entropy (entropy per bit) versus bit
length for the three databases in Fig.3.

It can be observed that the templates given by XOR-
fusion rule and the proposed fusion method rank first and
second in terms of average entropy in all of three databases,
respectively. The main reason for the fused template given
by XOR-fusion rule have such high entropy is the unifor-
mity of their fused bit higher than any of the correspond-
ing input bits, which results in reducing of the dependency
among fused bits.

It can be observed that the security curve of both the pro-
posed method and bit selection method keep decreasing as
the system length increases. For the proposed method, this
is because we extracted the groups with high entropy first
and then fused them together. For the other methods, the
bits with high discriminability (implicitly high uniformity)
will be selected out firstly. Therefore, the bit extracted later
has lower entropy than the one extracted first, which causes
security curves keep decreasing.

5. Conclusion
We have proposed a binary feature fusion algorithm for

multi-biometric systems that can give a discriminative and
high-entropy binary templates. The fused template of mul-
tiple traits using the proposed method can be used directly
as the input of popular biometric cryptosystems, e.g., fuzzy
extractor and fuzzy commitment. The proposed binary fea-
ture level fusion algorithm consist of two stages, i.e., depen-
dency reductive bit-grouping analysis, discriminative and
uniform within-group fusion. The first stage aims to re-
duce the dependency among the fused bits in the output
feature, and the second stage is to try to achieve that each
fused bit with high uniformity, small intra and large inter-
user variation. Experiments on three multi-modal database
(WVU multi-modal and two Chimeric) show that the pro-
posed binary feature fusion method can optimize fused tem-
plate with high discriminability and entropy simultaneously.
The future work of this paper is the analysis of trade-off be-
tween discriminability and security on the fused template
when adopting biometric cryptosystems.
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